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On Development of Three-Dimensional Visualization Capabilities in 
Glenn Research Center Communication Analysis Suite 

 
Lucas D. Shalkhauser*, Eric Henderson†, and Bryan W. Welch 

National Aeronautics and Space Administration 
Glenn Research Center 
Cleveland, Ohio 44135 

Summary 
With NASA’s mission to return to the Moon sustainably by 2024 and using that success as a means to 

step onto the barren world of Mars, it remains important to conduct research and planning as thoroughly 
and efficiently as possible. In a mission as complex as landing humans on another celestial body, a 
network of orbiting satellites and ground stations must accurately and reliably communicate with each 
other, enabling crucial data communications throughout the mission. Visualizing this important data 
communications increases the understanding of the data and can accelerate analyses efforts. To help with 
this, three-dimensional (3D) visualization software was developed allowing a 3D representation of 
various communications systems to be created. The purpose of this software development was to create 
an interactive visualization with data exported from MATLAB® (The MathWorks, Inc.) scripts in the 
Glenn Research Center Communication Analysis Suite (GCAS) that is easy to understand, can show all 
necessary data, and display the data accurately. The main types of data to visualize are from the State 
Propagation, Line-of-Sight (LOS), and Dynamic Link Margin (DLM) scripts. These all show positions 
and orbits of satellites and ground stations, while the LOS data also shows when the satellites and ground 
stations have the ability to communicate with each other based on their respective antenna positions and 
fields of view. Additionally, the DLM mode color codes the communications link performance onto the 
LOS access lines. Visualization requires a graphics language that is easily accessible, contains required 
features, and can easily read data produced by the GCAS MATLAB® scripts. Three.js, a graphics library 
for Web Graphics Library and coded in JavaScript, was selected for this visualization. The software 
development was to convert the data from MATLAB® to JavaScript by implementing a MATLAB® 

function converting the output data of the scripts to a JavaScript Object Notation file. A key part of the 
software development was creating the visualization within JavaScript and Three.js to visualize any 
combination of planets, moons, orbits, satellites, ground stations, and LOS links and handle future 
features without changing major parts of the code. The current visualization capability runs directly from 
MATLAB® and can dynamically create any scene. This software development currently supports the 
lunar communications analysis underway by NASA, and can be easily expanded upon in the future to aid 
any analysis requirements to help plan current and future space missions. 

Nomenclature 
3D three dimensional 
CSS Cascading Style Sheets 
DLM Dynamic Link Margin 

                                                            
*Summer Intern in Lewis’ Educational and Research Collaborative Internship Program (LERCIP), undergraduate at 
Baldwin Wallace University. 
†Summer Intern in Lewis’ Educational and Research Collaborative Internship Program (LERCIP), undergraduate at 
The Ohio State University. 
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FOV field of view 
GCAS Glenn Research Center Communication Analysis Suite 
HTML HyperText Markup Language 
JSON JavaScript Object Notation 
LOS Line-of-Sight 
NaN not a number 
WebGL Web Graphics Library 
XAMPP Cross-platform, Apache (The Apache Software Foundation), MariaDB (MariaDB Foundation), 

PHP (The PHP Group), and Perl (Perl.org) 

Introduction 
There are many factors at play during a mission to safely travel to another planetary body. One such 

factor is the ability to accurately simulate communications satellite orbits and vehicle trajectories. This is 
necessary and important as the Agency determines the architecture for upcoming missions, such as 
revisiting the Moon or traveling to Mars. The ability to take massive amounts of simulation data and 
analysis and condense it into an interactive graphical simulation can assist in understanding the data, as well 
as allow for faster testing of parametric analyses. The Glenn Research Center Communication Analysis 
Suite (GCAS) is a powerful tool to simulate the potential orbit of spacecraft, such as the Lunar Gateway, 
allowing the Agency to optimize all aspects of the mission in an easily understood visual representation. 

Simulating and analyzing space communications is an essential part of planning and executing a 
successful mission. When performing an analysis, GCAS returns raw data (e.g., results of potential 
connections between spacecraft and ground stations) that can easily be plotted in a chart or graph. While 
charts and graphs provide researchers and engineers the data of interest, they do not help the user 
visualize and understand the orbits and links in a dynamic way. The three-dimensional (3D) GCAS 
visualization software program can take the GCAS raw data, generated from MATLAB® (The 
MathWorks, Inc.), and turn it into an accurate, interactive, and modern visualization. This allows users to 
generate simulation data and view the analysis results at the same time, providing an exact visual 
representation of the data. The output of the visualization software is extremely useful for demonstrations 
during a presentation or event to help the audience understand the data. 

The 3D visualization software was developed using open-source software elements. Open-source 
software provides numerous advantages (e.g., low or no cost, accessibility, etc.) to the developer and user. 
In this case, the only software cost involved is the MATLAB® license, as JavaScript and all associated 
open-source libraries are free of charge. The software runs using Google ChromeTM (Google, Inc.), 
meaning it is highly accessible, cross-platform, and does not require external programs to run outside of 
MATLAB®. Developing 3D visualization simulation software in this manner provides NASA the ability 
to expand the visualization functionality when a new aspect of an analysis becomes available. 

Visualization Software Overview 
The GCAS 3D software currently supports the visualization of three modes of analyses: Orbit 

Propagation, Line-of-Sight (LOS), and Dynamic Link Margin (DLM). The visualization of a satellite’s 
orbit is compatible with eight planets, two dwarf planets, and 21 moons. The software shows realistic 
lighting and planetary body surface textures and it has custom 3D models that are moved around the 
scene to represent ground stations, satellites, and other object types. The software draws out the paths of 
satellite orbits, which are represented as grey lines. Figure 1 visualizes a configuration with the Moon in 
the foreground with one lunar south pole ground station and three communication satellites, while having 
the Earth in the background with the three Deep Space Network ground stations illustrated. 
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Figure 1.—Communications system visualization. 

 
For LOS and DLM modes, the software creates colored lines that can turn on or off to illustrate 

satellite connections to other satellites or to ground stations visualizing the presence and/or performance 
of different link types. In DLM mode, the color of the line dynamically changes to match the 
communications link margin of the link of interest. There are also many easy to use graphical user 
interface options that allow the user to customize elements in the scene such as line color, turn labels on 
or off, switching what body the camera is centered on, changing the size of the 3D models, changing the 
width of the lines, autorotating the camera, and much more. 

Software Development 

Three.js (Ref. 1), a library for the Web Graphics Library (WebGL) graphics engine, serves as the 
graphics library for this visualization software and is coded using JavaScript. Three.js is easy to use, has 
powerful features, and has very strong documentation. As a web graphics library, the WebGL software 
runs from an internet browser. Using a browser has many advantages, such as compatibility between 
different operating systems, the ability to make changes without compiling, the option to later integrate it 
into other websites or programs, and the ability for the software to run without installing a program or 
requiring anything other than Google ChromeTM. A security feature in Google ChromeTM prevents images 
and textures from loading properly, and so a local server hosting program called the cross-platform, 
Apache (The Apache Software Foundation), MariaDB (MariaDB Foundation), PHP (The PHP Group), 
and Perl (Perl.org), or XAMPP, was used during development. For general usage, the software uses a 
PythonTM-based web framework (Python Software Foundation) called Django® (Django Software 
Foundation) (Ref. 2) for the local server hosting program functionality. Django® executes without 
installation, which allows for greater portability and ease of use.  
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The next development consideration was moving the large amounts of planet, orbit, position, and link 
data from MATLAB® to JavaScript. It was important to make it automatically readable in JavaScript 
while retaining the format of the MATLAB® data, which contains large amounts of arrays and structures. 
The solution was to convert the data to a JavaScript Object Notation (JSON) file format. A JSON file is 
an open-standard file format that stores human-readable data and preserves all data types. The JSON files 
are most commonly used on the web, and JavaScript has great support for the file type. MATLAB® has a 
function natively built-in called jsonencode (Ref. 3), which will turn any MATLAB® datatype into a 
standard JSON formatted file. One issue discovered was that some of the MATLAB® data contained NaN 
(i.e., not a number) and infinity numbers, which are not valid characters in JSON files, causing the 
JavaScript JSON loader to fail. Since the data containing these invalid characters was not needed in the 
visualization, a script was written to remove the invalid characters from the MATLAB® data before 
encoding to JSON format. The encode times, file size, and JavaScript load times were cut in half due to 
the removal of the invalid characters and unnecessary data from MATLAB®. 

User Controls of Visualization Scene 

The Orbit Propagation mode of the simulation software, which is capable of running large quantities 
of data (including days of continuous orbit), and is a means for the user to control the flow, was 
important. The bottom of the screen features a large range slider and button panel. Each “step” on the 
slider represents one time step in the data, as shown in Figure 2. The program automatically advances at a 
user-controllable rate through the data, and the range slider indicates that movement, similar to how an 
online video’s progress bar operates. The range slider is semitransparent by default, allowing the tools to 
be less obtrusive when not in use. However, when the user hovers their cursor over the range slider, it 
brightens and becomes fully opaque. By dragging the slider either to the left or right, the scene travels to 
the corresponding point in time. 
 

 
Figure 2.—Button panel and slider bar. 
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The primary button panel resides to the left of the range slider bar, shown in Figure 2, and includes 
buttons for manipulating the scene. In addition to the functionality for playing and pausing the simulation, 
additional buttons allow the user to either advance one time step forward or backward, restart the 
animation from the beginning, or skip to the end entirely. These buttons become fully opaque and 
increase in size when the cursor hovers over them to improve visibility. To make these basic functions 
even more accessible, keyboard shortcuts were implemented, using JavaScript event key codes to code 
certain events (in this case, initiate the button’s functionality). For example, pressing the spacebar yields 
the same result as pressing the actual play or pause button on the screen. Likewise, the left and right 
arrow keys, respectively, retreat and advance the time step by one step. Holding down either shift or 
control and pressing the left or right arrow key will either restart the simulation or skip to the finish, 
respectively. Each function of the primary button panel is represented by these accessible keyboard 
shortcuts, providing the user with the flexibility to move throughout the scenario without a mouse. 

Screen Capture and Video Recording 

It is often valuable to save a particularly noteworthy segment of a simulation. The visualization 
software offers two such ways to do so: capturing a screenshot image or recording a video. As seen in 
Figure 3, the user accesses the buttons for these features on the bottom right of their screen, directly to the 
right of the range slider.  
 

 
Figure 3.—Record (left) and screen capture (right) buttons.  
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The screen capture capability builds the screenshot based on the information available on the page 
(Ref. 4) using a JavaScript library named html2canvas. While there exists plenty of screen capture 
software, many are unable to capture the HyperText Markup Language (HTML) elements, which in this 
application contain vital information such as the simulation time and satellite and station labels. By 
calling the html2canvas library and saving the created object as a blob or a file-like object of immutable, 
raw data that is not necessarily in a JavaScript-native format, the screenshot can be locally saved to the 
system for future use (Ref. 5). Unwanted segments of the visualization, such as buttons and sliders, were 
explicitly hidden from the screenshot.  

The ability to record video registers the audio and video as well as screen activity recording (Ref. 6) 
using a JavaScript library called RecordRTC. Other JavaScript libraries, such as CCapture, only record 
the canvas (the part of the screen that contains the simulation), but excludes text-based items such as the 
timestamp and labels. At the time of writing, Google ChromeTM, and most other browsers, do not support 
the necessary RecordRTC features that allow the program to automatically start recording upon clicking 
the button; instead, the user must select exactly what they want to record from a list of screens, 
applications, and tabs, which may not be immediately obvious to the typical computer user. To 
appropriately guide the user to the correct selection, a modal window gives the user precise and easily 
understood instructions, as demonstrated in Figure 4. 
 

 
Figure 4.—Video recording modal window. 
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Understanding and Working With Glenn Research Center 
Communication Analysis Suite Data 

Creating a visualization of planets with moons orbiting around them, ground stations, satellite orbits, 
LOS links, and other objects, can be done different ways, dependent on the data provided. The JSON file 
has five structures of data: inputData, nodeParams, nodeConfig, inputConfig, and inputDates. The 
inputData structure contains the positions of planets, satellites, lighting, moons, and LOS visibility as 
defined in the configuration. Whereas, nodeParams contains a copy of the parameters, such as ground 
station positions, satellite orbital parameters, antennas, the planetary body that the satellite is orbiting, and 
other parameters. Figure 5 illustrates the nodeConfig data structure and contains an array of the 
configurations for LOS, including the transmit node, antenna, and field of view (FOV), and the receive 
node, antenna, and FOV. In the example, the number 3 is referring to node 3, which is the third satellite, 
ground station, or object index that was defined in the MATLAB® configuration. The same is true for the 
receive number. The other numbers refer to the antenna number and FOV index parameters that were 
defined in the MATLAB® configuration. The LOS configurations can be node A to node B to node C or 
even longer multinode configurations, where each extra node would create another six numbers in the 
array. The structure inputDates contains start and end dates of the data and the time step representing the 
number of seconds between data points. Whereas, inputConfig contains other parameters that are not 
currently used in the visualization software.  

There are three types of structural elements in the inputData structure: TIMEDATA, LOS 
configurations, and planetary and node position data. The TIMEDATA element lists the date and time for 
each time step. This data is used by the onscreen label (illustrated in Figure 1) to display the time and date 
of the data in the visualization. Next, for each array defined in nodeConfig, LOS configuration provides a 
corresponding dataset that contains multiple arrays and structures of data about when each individual 
segment has LOS visibility (if it is a multimode configuration) and when the entire configuration has 
visibility. This visualization software only uses the intersected visibility across each configuration. 
Finally, for the planetary and node position data, each planetary body defined in the initial MATLAB® 
configuration has a lower-level structure defining each body and node’s fixed and inertial positions with 
respect to the parent body’s location. The structure contains the positions of all the other planetary bodies, 
satellites, ground stations, and the Sun from the perspective of that structure’s body. For example, if the 
analysis scenario has satellites around Earth, the Moon, and Mars, there will be a structure for each 
satellite and each planetary body. The Moon structure will have the Moon at [0, 0, 0] and the position data 
of the planetary bodies and objects at each time step in Cartesian coordinates in both the Inertial Frame 
and Fixed Frame coordinate systems. This allows the software to plot the positions of all the bodies and 
objects from the perspective of each planetary body. When the program animates, the positions of the 
 

 
Figure 5.—Transmit node A to receive node B Line-of-Sight 

configuration. Field of view (FOV).  
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objects come from one of those data structures. The array index (each time step) of each object position 
array is determined by the user interface. When the time step changes, the program looks at the position 
data of each object at that array index and updates the position of each object in the scene. The user has 
the ability to change the planet camera focus to any of the other planetary bodies. When it is changed, the 
software looks at the new body’s corresponding structure within the inputData structure to obtain its 
positions. This allows the user to view the scene from the perspective of any planetary body.  

Creating and Managing Graphical Scene 

Creating an accurate and realistic scene of satellites, ground stations, sunlight, planets, moons, and 
orbits, which also provides an easy-to-use and helpful experience for the user, requires many different 
elements and techniques. To show the visualization properly, the program determines which planets and 
moons the user wants to include, what planet the selected moons orbit, what satellites orbit which 
planetary body, the ground station locations, and much more. In three.js, each planet, satellite, orbit, and 
LOS link has a corresponding software object created. Each object has different parameters and properties 
stored in a way to easily reference while the program renders the scene. Three.js uses meshes and camera, 
and lighting objects to create and render the scene, as illustrated in Figure 6. A JavaScript body object 
keeps track of and stores all the three.js scene objects created. For each planetary body in the scene, a 
JavaScript body object gets created. Each body object contains all the satellites, ground stations, orbit 
paths, layer information, body data, and moons associated with that planetary body. The moon property of 
the object is an array of body objects, one for each moon currently orbiting the main body. This object 
structure is key to creating a dynamic scene to use with any MATLAB® configuration. 

 
 

 
Figure 6.—Three.js graphics layout. 
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The visualization scene contains two light source objects. The first comes from the Sun, which 
provides the appearance of sunlight and changes position using a field in the inputData for each planet. 
The second comes from ambient light, which adds a very small amount of light to the whole visualization 
scene to make the dark side of the planets look more observable when not illuminated by the appearance 
of sunlight. The Sun object is an image of the Sun inserted into the scene and moves as time progresses. 
In addition, the visualization software illustrates planetary body orbits. When enabled, lines in the scene 
show the path a planet or moon follows in relation to the body of focus in the visualization scene. 

The elements used in the visualization scene, as illustrated in Figure 7, are made up of two main 
groups—the body objects, which are linked to a planetary body and the static scene objects that are not 
tied to a planetary body. Some of the static scene objects are sunlight, the Sun object, ambient lighting 
that includes a skybox, which is a high-resolution star background obtained from NASA Goddard Space 
Flight Center Scientific Visualization Studio (Ref. 7) and illustrated previously in Figure 1. To create the 
labels (seen in Figure 1) a special “css2drenderer” three.js library converts a Cascading Style Sheet (CSS) 
label to an object in the scene that can be moved within the scene. This library requires a second three.js 
renderer along with the normal renderer, to draw the labels in the scene.  

A large part of the visualization software development was optimizing the load and run times. When 
the program is started, three.js creates all six properties (satellites, ground stations, LOS links, satellite 
orbits, labels, and planetary body) of each object and assigns them to a layer (Figure 7). There is a layer 
created for each planetary body in the scene (for each item in the body array). Each layer consists of a 
main body and, if used, any secondary bodies (i.e., if Earth is the main body then the Moon is the 
secondary body, but only if there is a satellite or ground station set around or on the Moon, respectively). 
Both the main body and any secondary bodies consist of the six properties. Before the program finishes 
the derivation of all layers upon program startup, all layers except one are hidden, only showing the 
objects for that specific planetary body. When the user switches the planetary body focus, the current 
layer is hidden and the new layer becomes visible. This allows instantaneous switching between planets 
without removing, computing, and creating those objects again, which would use more computer 
resources and increase load times. 
 

 
Figure 7.—Visualization objects. Field of view (FOV). Line of sight (LOS). 
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The textures of the planetary bodies are all smoothly wrapped around the shape of the planetary body. 
The planetary bodies are defined as ellipsoids, based on the equatorial and polar radii of the planetary 
body, obtained from data within the GCAS software. Unlike the other planetary bodies, Earth uses four 
different textures: a map, normal map, specular map, and cloud layer. The map contains the texture of the 
Earth’s surface. The normal map (also known as bump map), adds height to the map in areas of the Earth 
that are higher than others (i.e., mountains). The specular map differentiates the land from the water, 
therefore allowing the rendering to add extra light (shininess) to the water. Finally, the cloud layer adds 
cloud images that move independently of the Earth’s surface. All these maps make the Earth more 
realistic to observe.  

Concluding Remarks 
The three-dimensional (3D) visualization software described in this report aids researchers and 

engineers to analyze space communications scenarios to develop and plan current and future missions. It 
helps users better understand the data output from the Glenn Research Center Communication Analysis 
Suite (GCAS) capabilities. The portability of the visualization software to multiple users, as well as the 
ease of use will help to increase the user base of the GCAS software. The visualization software uses 
modern JavaScript and three.js programming languages and libraries to illustrate communications 
analysis scenarios to users in Google ChromeTM (Google, Inc.). Additional features to add to the 
visualization software include the following: antenna field of view, objects orbiting the Sun, different 
object 3D models, more graphical user interface options, smoother transitions between time steps, support 
for additional communications analysis functions, and much more. The software platform provides an 
environment to build upon and can be easily expanded in the future. 
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