
The Ten Lockheed Martin
Cyber-Physical Challenges:

Formalized, Analyzed, and Explained

Anastasia Mavridou, Hamza Bourbouh, Dimitra Giannakopoulou,
Thomas Pressburger, Mohammad Hejase, Pierre-Loic Garoche,

Johann Schumann

NASA Ames Research Center

Cyber-Physical Systems (CPS)

• Integrate computation with physical processes

• More than 60% of engineers use Simulink for the development
and simulation of CPS [1]

[1] Nejati, Shiva, Khouloud Gaaloul, Claudio Menghi, Lionel C. Briand, Stephen Foster, and David Wolfe.
"Evaluating model testing and model checking for finding requirements violations in Simulink models."
In Proceedings of the 2019 27th ESEC/FSE, 2019.
[2] Chris Elliot, ”On Examples Models and Challenges Ahead for the Evaluation of Complex Cyber-Physical with
State of the Art Formal Methods V&V”, S5 conference, 2015.

• Ensure that bugs are identified as early as possible

• It is paramount to check requirements against models

Controller picture from [2]

CPS Requirements

• CPS requirements are usually expressed in natural language

• Riddled with ambiguities

“The roll hold reference shall be set to 30 degrees in the same direction
as the actual roll angle if the actual roll angle is greater than 30 degrees
at the time of roll hold mode engagement.”

Lockheed Martin Cyber-Physical System Challenges

Autopilot component:

CPS Requirements

• CPS requirements are usually expressed in natural language

• Riddled with ambiguities

“The roll hold reference shall be set to 30 degrees in the same direction
as the actual roll angle if the actual roll angle is greater than 30 degrees
at the time of roll hold mode engagement.”

Lockheed Martin Cyber-Physical System Challenges

Autopilot component:

Every time
these

conditions hold
or only when
they become

true?

Does my
model satisfy

this
requirement?

[3] Johann Schumann, Matt Knudsen, Teme Kahsai, Noble Nkwocha, Katerina Goseva-Popstojanova,
Thomas Kyanko, "Report: Survey on Model-Based Software Engineering and Auto-Generated Code”, NASA
Technical Memorandum, NASA/TM-2016-219443, 2016.

What types of bugs are found in models and code?

in models in auto-generated code

[3] Johann Schumann, Matt Knudsen, Teme Kahsai, Noble Nkwocha, Katerina Goseva-Popstojanova,
Thomas Kyanko, "Report: Survey on Model-Based Software Engineering and Auto-Generated Code”, NASA
Technical Memorandum, NASA/TM-2016-219443, 2016.

What types of bugs are found in models and code?

in models in auto-generated code

Requirements: incomplete,
ambiguous/misunderstood,

contradictory

CPS requirements and models are hard to analyze

Natural language requirements CPS models

CPS requirements and models are hard to analyze

Natural language requirements CPS models

Are formal languages expressive enough to capture CPS requirements?

CPS requirements and models are hard to analyze

Are formal languages expressive enough to capture CPS requirements?
Can analysis tools handle the complexity and scale of CPS models?

Natural language requirements CPS models

• Evaluate the feasibility and benefits

• Application of automated tools to perform analysis

• Our end-to-end approach involves:

• Requirement elicitation, formalization, and analysis

• Model analysis against formalized requirements
FSM shall always satisfy if sensorLimits & autopilot then pullup

Our Approach: End-to-end analysis of CPS

The Ten Lockheed Martin CPS Challenge Problems (LMCPS)

• A set of industrial benchmarks. Each challenge includes:

• Natural language requirements

• A Simulink model

• A set of parameters (in .mat format) for simulating the model

• A set of industrial benchmarks. Each challenge includes:

• Natural language requirements

• A Simulink model

• A set of parameters (in .mat format) for simulating the model

• The challenges are:

• Representative of flight-critical systems

• Publicly available

The Ten Lockheed Martin CPS Challenge Problems (LMCPS)

https://github.com/hbourbouh/lm_challenges

https://github.com/hbourbouh/lm_challenges

• Requirements and models are typical of CPS systems

• Inputs and outputs are modeled through signals

• LMCPS models are highly numeric and often exhibit non-linear
behavior

The Ten Lockheed Martin CPS Challenge Problems (LMCPS)

• Examples of LMCPS challenges:

• Tustin Integrator (TUI)

• Feedforward Cascade Connectivity Neural Network (NN)

• 6DoF with DeHavilland Beaver Autopilot (AP)

• Requirements and models are typical of CPS systems

• Inputs and outputs are modeled through signals

• LMCPS models are highly numeric and often exhibit non-linear
behavior

The Ten Lockheed Martin CPS Challenge Problems (LMCPS)

• Examples of LMCPS challenges:

• Tustin Integrator (TUI)

• Feedforward Cascade Connectivity Neural Network (NN)

• 6DoF with DeHavilland Beaver Autopilot (AP)

Vectors and Matrices

• Requirements and models are typical of CPS systems

• Inputs and outputs are modeled through signals

• LMCPS models are highly numeric and often exhibit non-linear
behavior

The Ten Lockheed Martin CPS Challenge Problems (LMCPS)

• Examples of LMCPS challenges:

• Tustin Integrator (TUI)

• Feedforward Cascade Connectivity Neural Network (NN)

• 6DoF with DeHavilland Beaver Autopilot (AP)

Vectors and Matrices

Non Linear and Non Algebraic Blocks

• Requirements and models are typical of CPS systems

• Inputs and outputs are modeled through signals

• LMCPS models are highly numeric and often exhibit non-linear
behavior

The Ten Lockheed Martin CPS Challenge Problems (LMCPS)

• Examples of LMCPS challenges:

• Tustin Integrator (TUI)

• Feedforward Cascade Connectivity Neural Network (NN)

• 6DoF with DeHavilland Beaver Autopilot (AP)

Vectors and Matrices

Non Linear and Non Algebraic Blocks

Continuous time blocks

• Requirements and models are typical of CPS systems

• Inputs and outputs are modeled through signals

• LMCPS models are highly numeric and often exhibit non-linear
behavior

The Ten Lockheed Martin CPS Challenge Problems (LMCPS)

• Examples of LMCPS challenges:

• Tustin Integrator (TUI)

• Feedforward Cascade Connectivity Neural Network (NN)

• 6DoF with DeHavilland Beaver Autopilot (AP)

Vectors and Matrices

Non Linear and Non Algebraic Blocks

Continuous time blocks

Complex req. formalizations

• Elicit, explain, and formalize the
semantics of the given natural
language requirements
(Steps: 0, 1) 

• Generate verification code and
monitors that can be
automatically attached to the
Simulink models
(Steps: 2, 3, 4)  

• Perform verification by using
Lustre-based model checkers or
SLDV
(Steps: 5, 6)

The FRET-CoCoSim Integrated Framework

The FRET-CoCoSim Integrated Framework

All tools are open source and
developed at NASA Ames

• Elicit, explain, and formalize the
semantics of the given natural
language requirements
(Steps: 0, 1) 

• Generate verification code and
monitors that can be
automatically attached to the
Simulink models
(Steps: 2, 3, 4)  

• Perform verification by using
Lustre-based model checkers or
SLDV
(Steps: 5, 6)

Step 0: Requirement Elicitation

Requirement from the 6 DoF DeHavilland Beaver Autopilot LMCPS challenge

[AP-003c]: The roll hold reference shall be set to 30 degrees in the same
direction as the actual roll angle if the actual roll angle is greater than 30
degrees at the time of roll hold mode engagement.

Natural language requirement:

Step 0: Requirement Elicitation

Requirement from the 6 DoF Dehavilland Beaver Autopilot LMCPS challenge

[AP-003c]: The roll hold reference shall be set to 30 degrees in the same
direction as the actual roll angle if the actual roll angle is greater than 30
degrees at the time of roll hold mode engagement.

Natural language requirement:

Step 0 involves understanding the requirement and making it precise.

We start by identifying the variables involved.

Step 0: Requirement Elicitation

Requirement from the 6 DoF Dehavilland Beaver Autopilot LMCPS challenge

[AP-003c]: The roll hold reference shall be set to 30 degrees in the same
direction as the actual roll angle if the actual roll angle is greater than 30
degrees at the time of roll hold mode engagement.

Natural language requirement:

Step 0 involves understanding the requirement and making it precise.

We start by identifying the variables involved.

 Now we are ready to write the requirement in the FRETish language!

Step 0: Requirement Elicitation

Requirement from the 6 DoF Dehavilland Beaver Autopilot LMCPS challenge

[AP-003c]: The roll hold reference shall be set to 30 degrees in the same
direction as the actual roll angle if the actual roll angle is greater than 30
degrees at the time of roll hold mode engagement.

Natural language requirement:

FRETish fields:

Scope, condition, component*, shall*, timing response*

Step 0: Requirement Elicitation

Requirement from the 6 DoF Dehavilland Beaver Autopilot LMCPS challenge

[AP-003c]: The roll hold reference shall be set to 30 degrees in the same
direction as the actual roll angle if the actual roll angle is greater than 30
degrees at the time of roll hold mode engagement.

Natural language requirement:

FRETish fields:

Scope, condition, component*, shall*, timing response*

FRETish version:
If abs(roll_angle) >30 & roll_hold_mode_engagement,

Step 0: Requirement Elicitation

Requirement from the 6 DoF Dehavilland Beaver Autopilot LMCPS challenge

[AP-003c]: The roll hold reference shall be set to 30 degrees in the same
direction as the actual roll angle if the actual roll angle is greater than 30
degrees at the time of roll hold mode engagement.

Natural language requirement:

FRETish fields:

Scope, condition, component*, shall*, timing response*

If abs(roll_angle) >30 & roll_hold_mode_engagement,
Autopilot shall

FRETish version:

Step 0: Requirement Elicitation

Requirement from the 6 DoF Dehavilland Beaver Autopilot LMCPS challenge

[AP-003c]: The roll hold reference shall be set to 30 degrees in the same
direction as the actual roll angle if the actual roll angle is greater than 30
degrees at the time of roll hold mode engagement.

Natural language requirement:

FRETish fields:

Scope, condition, component*, shall*, timing response*

If abs(roll_angle) >30 & roll_hold_mode_engagement,
Autopilot shall immediately

FRETish version:

Step 0: Requirement Elicitation

Requirement from the 6 DoF Dehavilland Beaver Autopilot LMCPS challenge

[AP-003c]: The roll hold reference shall be set to 30 degrees in the
same direction as the actual roll angle if the actual roll angle is greater
than 30 degrees at the time of roll hold mode engagement.

Natural language requirement:

FRETish fields:

Scope, condition, component*, shall*, timing response*

If abs(roll_angle) >30 & roll_hold_mode_engagement,
Autopilot shall immediately satisfy
roll_hold_reference = 30*sign(roll_angle)

FRETish version:

Step 0: Requirement Elicitation

[AP-003c]: The roll hold reference shall be set to 30 degrees in the same direction
as the actual roll angle if the actual roll angle is greater than 30 degrees at the time
of roll hold mode engagement.

Natural language requirement:

FRETish fields:
Scope, condition, component*, shall*, timing response*

[AP-003c-v1]: If abs(roll_angle) >30 & roll_hold_mode_engagement,
Autopilot shall immediately satisfy roll_hold_reference = 30*sign(roll_angle)

FRETish version:

Step 0: Requirement Elicitation

[AP-003c]: The roll hold reference shall be set to 30 degrees in the same direction
as the actual roll angle if the actual roll angle is greater than 30 degrees at the time
of roll hold mode engagement.

Natural language requirement:

FRETish fields:
Scope, condition, component*, shall*, timing response*

[AP-003c-v1]: If abs(roll_angle) >30 & roll_hold_mode_engagement,
Autopilot shall immediately satisfy roll_hold_reference = 30*sign(roll_angle)

FRETish version:

p: abs(roll_angle)
q: roll_hold_mode_engagement
r: response

Step 0: Requirement Elicitation

[AP-003c]: The roll hold reference shall be set to 30 degrees in the same direction
as the actual roll angle if the actual roll angle is greater than 30 degrees at the time
of roll hold mode engagement.

Natural language requirement:

FRETish fields:
Scope, condition, component*, shall*, timing response*

[AP-003c-v1]: If abs(roll_angle) >30 & roll_hold_mode_engagement,
Autopilot shall immediately satisfy roll_hold_reference = 30*sign(roll_angle)

FRETish version:

p: abs(roll_angle)
q: roll_hold_mode_engagement
r: response

Step 0: Requirement Elicitation

[AP-003c]: The roll hold reference shall be set to 30 degrees in the same direction
as the actual roll angle if the actual roll angle is greater than 30 degrees at the time
of roll hold mode engagement.

Natural language requirement:

FRETish fields:
Scope, condition, component*, shall*, timing response*

[AP-003c-v2]: Autopilot shall immediately satisfy (abs(roll_angle) >30 &
roll_hold_mode_engagement) => roll_hold_reference = 30*sign(roll_angle)

FRETish version:

Step 0: Requirement Elicitation

[AP-003c]: The roll hold reference shall be set to 30 degrees in the same direction
as the actual roll angle if the actual roll angle is greater than 30 degrees at the time
of roll hold mode engagement.

Natural language requirement:

FRETish fields:
Scope, condition, component*, shall*, timing response*

[AP-003c-v2]: Autopilot shall immediately satisfy (abs(roll_angle) >30 &
roll_hold_mode_engagement) => roll_hold_reference = 30*sign(roll_angle)

FRETish version:

p: abs(roll_angle)
q: roll_hold_mode_engagement
r: roll_hold_reference = 30 * sign(roll_angle)

Step 0: Requirement Elicitation

[AP-003c]: The roll hold reference shall be set to 30 degrees in the same direction
as the actual roll angle if the actual roll angle is greater than 30 degrees at the time
of roll hold mode engagement.

Natural language requirement:

FRETish fields:
Scope, condition, component*, shall*, timing response*

[AP-003c-v2]: Autopilot shall immediately satisfy (abs(roll_angle) >30 &
roll_hold_mode_engagement) => roll_hold_reference = 30*sign(roll_angle)

FRETish version:

p: abs(roll_angle)
q: roll_hold_mode_engagement
r: roll_hold_reference = 30 * sign(roll_angle)

Step 0: Requirement Elicitation

[AP-003c]: The roll hold reference shall be set to 30 degrees in the same direction
as the actual roll angle if the actual roll angle is greater than 30 degrees at the time
of roll hold mode engagement.

Natural language requirement:

FRETish fields:
Scope, condition, component*, shall*, timing response*

[AP-003c-v2]: Autopilot shall immediately satisfy (abs(roll_angle) >30 &
roll_hold_mode_engagement) => roll_hold_reference = 30*sign(roll_angle)

FRETish version:

p: abs(roll_angle)
q: roll_hold_mode_engagement
r: roll_hold_reference = 30 * sign(roll_angle)

roll_hold_mode_
engagement ?
What does that

mean?

Step 0: Requirement Elicitation

[AP-003c]: The roll hold reference shall be set to 30 degrees in the same direction
as the actual roll angle if the actual roll angle is greater than 30 degrees at the time
of roll hold mode engagement.

Natural language requirement:

FRETish fields:
Scope, condition, component*, shall*, timing response*

[AP-003c-v3]: when in roll_hold mode Autopilot shall immediately satisfy
(abs(roll_angle) >30) => roll_hold_reference = 30*sign(roll_angle)

FRETish version:

Step 0: Requirement Elicitation

[AP-003c]: The roll hold reference shall be set to 30 degrees in the same direction
as the actual roll angle if the actual roll angle is greater than 30 degrees at the time
of roll hold mode engagement.

Natural language requirement:

FRETish fields:
Scope, condition, component*, shall*, timing response*

[AP-003c-v3]: when in roll_hold mode Autopilot shall immediately satisfy
(abs(roll_angle) >30) => roll_hold_reference = 30*sign(roll_angle)

FRETish version:

Step 1: Requirement Formalization

[AP-003c]: The roll hold reference shall be set to 30 degrees in the same direction
as the actual roll angle if the actual roll angle is greater than 30 degrees at the time
of roll hold mode engagement.

Natural language requirement:

[AP-003c-v3]: when in roll_hold mode Autopilot shall immediately satisfy
(abs(roll_angle) >30) => roll_hold_reference = 30*sign(roll_angle)

FRETish version:

Past Time Linear Temporal Logic formula:

H(roll_hold & (! FTP | (Y (! roll_hold))) => abs(roll_angle >
30 => roll_hold_reference = 30 * sign(roll_angle)))

where FTP is a predicate that holds at the First Time Point of an execution

Step 2: Generation of Analysis Code

[AP-003c]: The roll hold reference shall be set to 30 degrees in the same direction
as the actual roll angle if the actual roll angle is greater than 30 degrees at the time
of roll hold mode engagement.

Natural language requirement:

Past Time Linear Temporal Logic formula:
H(roll_hold & (! FTP | (Y (! roll_hold))) => abs(roll_angle >
30 => roll_hold_reference = 30 * sign(roll_angle)))

CoCoSpec analysis code:

Step 3: Automated Architectural Mapping

[AP-003c]: The roll hold reference shall be set to 30 degrees in the same direction
as the actual roll angle if the actual roll angle is greater than 30 degrees at the time
of roll hold mode engagement.

Natural language requirement:

[AP-003c-v3]: when in roll_hold mode Autopilot shall immediately satisfy
(abs(roll_angle) >30) => roll_hold_reference = 30*sign(roll_angle)

FRETish version:

Step 4: Automated Architectural Mapping

[AP-003c]: The roll hold reference shall be set to 30 degrees in the same direction
as the actual roll angle if the actual roll angle is greater than 30 degrees at the time
of roll hold mode engagement.

Natural language requirement:

[AP-003c-v3]: when in roll_hold mode Autopilot shall immediately satisfy
(abs(roll_angle) >30) => roll_hold_reference = 30*sign(roll_angle)

FRETish version:

Generation of
traceability data!

Step 4: Generation of Simulink Monitors

[AP-003c]: The roll hold reference shall be set to 30 degrees in the same direction
as the actual roll angle if the actual roll angle is greater than 30 degrees at the time
of roll hold mode engagement.

Natural language requirement:

CoCoSpec analysis code:

Simulink monitor:

Step 4: Generation of Simulink Monitors

Simulink monitor automatically attached on the model:

The CoCoSim Tool

CoCoSim (Contract based Compositional verification of Simulink models) is used to verify user-supplied
requirements.

Step 5: Analysis and Counterexample Generation

Step 6: Simulation

Verification results

Lessons Learned

Can LMCPS requirements be captured in FRET?

• We captured 69/74 LMCPS requirements in FRET

• We were not able to formalize requirement [TUI-004] that contains a temporal
condition

• The rest of the requirements that were not expressed were either out of scope
of the Simulink model or unclear

Lessons Learned

Can LMCPS requirements be captured in FRET?

• We captured 69/74 LMCPS requirements in FRET

• We were not able to formalize requirement [TUI-004] that contains a temporal
condition

• The rest of the requirements that were not expressed were either out of scope
of the Simulink model or unclear

Is FRETish intuitive?

• Several requirements fall into recurring patterns.

• We are currently extending FRET with the capability of defining typical
requirement patterns

Lessons Learned

Can LMCPS requirements be captured in FRET?

• We captured 69/74 LMCPS requirements in FRET

• We were not able to formalize requirement [TUI-004] that contains a temporal
condition

• The rest of the requirements that were not expressed were either out of scope
of the Simulink model or unclear

Is FRETish intuitive?

• Several requirements fall into recurring patterns.

• We are currently extending FRET with the capability of defining typical
requirement patterns

Are FRET explanations useful?

• We extensively relied on the semantic descriptions and diagrams

• They helped us identify several semantic nuances

Lessons Learned

How effective is the FRET-CoCoSim integration?

• We were able to generate specifications and traceability data for all LMCPS
challenges

• Simulink monitors were automatically generated and attached to the models

Lessons Learned

How effective is the FRET-CoCoSim integration?

• We were able to generate specifications and traceability data for all LMCPS
challenges

• Simulink monitors were automatically generated and attached on the models

How did we deal with model and specification complexity?

• We performed modular analysis

• Simulink monitors were automatically deployed at different system levels

Modular Analysis

• For the Autopilot challenge this proved particular useful:

• We were able to analyze all properties that were specified at local level but none of the
properties that were specified globally

Lessons Learned

Which types of property reasoning/checking did we find
useful?

• Vacuity checking & simulation

• Check a weaker property

• Check feasibility with bounded model checking

What else was useful?

• Abstractions for non-linear functions

To summarize

• LMCPS provides a valuable case study to evaluate:
• Requirements elicitation
• Analysis tools

• Using an end-to-end framework significantly simplifies requirements
elicitation and model analysis

• Eliciting requirements with unambiguous and as-intended
semantics is not an easy task
• Explanations and interactive exploration of requirements helps

• CPS requirements are complex to analyze
• It is important to provide modular analysis

Our open source tools can be accessed on Github:
https://github.com/NASA-SW-VnV/fret

https://github.com/NASA-SW-VnV/CoCoSim Thank you!

https://github.com/NASA-SW-VnV/fret
https://github.com/NASA-SW-VnV/CoCoSim

