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Executive Summary

Examples of gaps include difficulties to specify safety requirements, coverage of training and
test sets for deep learning, and the missing explainability of decisions made by autonomous
AI systems.
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Chapter 1

Introduction

Modern unmanned systems require substantial autonomous capabilities to enable ambitious
missions in space. Autonomous components (AUCs) range from model-based diagnostics
and prognostics components to artificial intelligence (AI) based systems for analyzing and
“understanding” the environment, making informed decisions, and acting on those decisions.
Software components of a mission with autonomous operations are both safety- and mission-
critical.

Failures or wrong decisions can put the mission at risk, for example, an unmanned
Europa mission. Autonomous aircraft of cars can endanger human life. Because of the
huge state space and often probabilistic nature of such software systems, combined with
a dynamic and unknown environment, current best practices of software assurance (SWA)
are not sufficient for autonomous systems.

In this report, we analyze gaps that occur in Software Assurance of an autonomous
(software) system (AUC). We identify several distinct areas, where gaps occur:

Requirements Which gaps exist in formulating and checking of requirements for AUC?

Code/Algorithms Autonomous systems may need to employ specific algorithms for au-
tonomous operations, for example machine learning, search, or probabilistic algo-
rithms. For many of those algorithms V&V is still at its infancy, so large gaps in
SWA can be expected.

Data Many AUCs rely on large amounts of data to operate. A typical example is the
data that is used to train a Deep Neural Network (DNN) for image understanding.
How can assurance be performed for such data? Handling and quality assurance for
training data comprises a substantial gap.

Process It is to be expected that an autonomous system might require more run-time
assurance than a traditional software system. Gaps exist on level of specification,
architecture, and effectiveness of such run-time assurance components. Furthermore,
the heavy use of data and off-line machine learning is not yet properly integrated into
the software (assurance) process

In this report, we will focus on each of these topics. In Section 2, we will present a short
overview of the generic structure of an autonomous system. Section 3 focuses on challenges
and gaps with respect to requirements for AUCs followed by overview of algorithms and
languages, which are prominently used for Autonomous Systems (Section 4). Algorithms
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will be characterized and gaps identified. In Section 5, we focus on three different kinds
of algorithms: search-based, data-based, and Neural networks. Then we discuss topics
and gaps in the assurance of ”data” (Section 6) followed by summary and conclusions in
Section 7.
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Chapter 2

Anatomy of an Autonomous
System

The high-level architecture of a typical autonomous system (AS) is shown in Figure 2.1. It
reflects an abstraction of system architectures found, e.g., in [1,2,3]. The hardware system
(e.g., spacecraft, UAS, robot, car) is equipped with numerous sensors that allow the AUCs
to sense and perceive the environment as well as its own state.

Environment

AUC

low−level controlprocessing
sensor/signal actuators/

cognition
decision making

behaviors / control

Figure 2.1: Typical High-level architecture of an autonomous system

Sensor drivers and processing units are in charge of communicating with the hardware
and to perform basic data processing (e.g., filtering or data conversion). These sensor data
are then used by components on the behavioral level to perform basic behavioral tasks.
Typically, feed-back control (e.g., PID control), mode logic, or navigation components are
found on this level. Low-level (path) planners can be present on this level as well.
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Finally, on the cognitive level, we find components that try to “make sense” of environ-
ment and system status, like image understanding, sensor fusion, diagnostics, prognostics,
and root cause analysis. The information provided by these system are used as a basis
for the decision-making components. Decisions and high-level plans are then percolated
down to the behavioral components for refinement and execution, which will be carried out
through control of the system’s actuators.

Some of these components can be considered as “traditional” software, which means
that SWA approaches are mature and well studied. Examples include drivers for sensors
and actuators, feedback controllers, and middle-ware (e.g., cFS/cFE). Although all layers
must work together to achieve the autonomous goals, we will mainly focus on the behavioral
and cognitive layers and their interactions.
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Chapter 3

Requirements

Requirements for a system (hardware and/or software) must concisely describe what the
system shall or shall not do. Different levels of requirements are used to lay down the
description and required behavior of the overall system and its components on different
levels of granularity and details. For traditional software systems, numerous methods and
tools for the acquisition and management of requirements exist, as well as tools that support
their analysis.

When considering an autonomous system as depicted in Figure 2.1, the question will
be, inhowfar the “autonomous nature” of the system impacts formulation and analysis of
requirements.

On a high level of requirements, very generic high-level requirements about the mission
and the system will be defined. In contrast to a traditional system, an autonomous sys-
tem usually will have a substantially different mission profile. Instead of command-reaction
requirements (“after receiving a launch command, ignite the thruster”), the autonomous
system must be able to correctly perceive its status and react properly in myriads of pos-
sible circumstances. A damage-adaptive system, for example, might be required to “in all
unforeseen circumstances, the battery voltage must not be below 10V”. It is obvious that
such a requirement cannot be tested properly.

More specifically, we can identify the following challenges when working with require-
ments for autonomous systems:

Unknown environments cannot be specified in requirements (or they would be known).
Yet, an AUC must be able to operate in unknown and changing environments.

Complex tasks which need to be carried out by the autonomous system must be spec-
ified and potentially broken up into smaller pieces (e.g., perception of landscape,
identification of target, path-planning to reach target). Such complex tasks require
a tight interaction between all SW components of the system (the AUCs and the
non-autonomous components), which needs to be reflected in the requirements.

Health status of the autonomous system is comprised of diagnostic and prognostic in-
formation, as well as their interpretation. For larger AUCs, requirements regarding
system health and status can be extremely complex.

Cognition is an extremely important task within the autonomous operations. Sensor and
environmental data must not only be processed and analyzed, but must undergo a
cognitive process in order to be useful for decision making. Typical example include
image understanding or the prediction of the behavior of another system.
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Probabilistic behavior of the system must somehow be captured in the requirements.
For example, a stop-sign should be recognized in 99.99% of all cases.

Ethical behavior is playing an increasing role for autonomous systems, which interact
with humans or a sensitive environment. Typical examples include real-time decisions
to be made by an autonomous car (“kill the passenger or the pedestrian crossing the
street?”) or the trade-off between scientific return versus contaminating/damaging
an off-world environment.

Emerging behavior can be the result of operations of an autonomous system. E.g., the
autonomous system might adapt toward unforeseen circumstances, might “invent”
new modes, or even might take over earth as depicted in numerous Science Fiction
movies (e.g., Matrix, Terminator).

For all the above challenges and special cases of requirements, we must ask:

1. Do we have the language/formalism to concisely express the requirement?

2. Can the requirement be written in a compact and concise manner, which is still
human-understandable?

3. Can such a requirement be (formally) analyzed and/or tested against the actual sys-
tem?

Table 3.1 lists AUC-specific characteristics for requirements against these questions and will
thus identify major gaps in the ability to capture, express, and use the requirements for
V&V.

Table 3.1: Requirements characteristics for AUC and challenges. Y=Yes, (Y)=limited,
?=unknown

AUC characteristics Req. language Compact/Concise Analysis Test

Unknown environment Y (Y) ? ?
Complex Tasks Y Y (Y) Y
Health status Y (Y) Y Y
Cognition (Y) ? (Y) (Y)
Ethical behavior ? ? ? ?
Emerging behavior ? ? ? ?
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Chapter 4

Software Algorithms and
Languages

The software load of an autonomous system can be quite heterogeneous. As depicted in
Figure 2.1, it usually contains a large number of components that closely interact with each
other. Many software components, in particular on the lower layers consist of algorithms and
software, traditionally used in safety-critical systems (e.g., sensor data processing, feedback
control, or middle-ware). For those components, mature methods and tools exist for their
verification and validation (V&V).

4.1 Kinds of Algorithms used in AUCs

Here, we therefore focus on the “hard” autonomous algorithms, which most often, can be
found on the cognitive and decision-making layer of the architecture. We can distinguish
the following types of algorithms:

Rule based: In a rule-based system, all decisions are made along predefined rules, which
have been set up during the development of the system. Such rules can be implemented
as if-the-else cascades, or, among others, finite state machines. There also exist several
program languages that are specifically tailored for rule-based systems (e.g., Prolog,
OPS5, CLIPS).

Whereas the rules are usually easy to understand by the human expert, their sheer
number and questions of correctness and consistency can make V&V of rule-based
systems extremely hard. The software-structures used to implement rule-based sys-
tems are in most cases straight-forward, so that in this area, only few SWA gaps exist.
However, if search is needed to find applicable rules, the situation changes (see below).

A typical rule-based system is the TCAS on-board collision-avoidance system [4].
Although used for commercial transports, the operations of TCAS shows many char-
acteristics of an autonomous systems. [5] show challenges and difficulties to V&V such
a system.

Planning: For most automated and autonomous systems, planning and plan execution play
important roles. Virtually all satellites and spacecraft have the capability to execute
plans. There, sequences of actions (e.g., control thruster, make photo, trigger science
experiment) are executed, depending on the current state of the system. In traditional
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systems, these plans are developed on the ground and up-linked for execution. Higher
degrees of automation and autonomy require the adaptation of plans or even the
automatic in-situ construction of new plans.

For example, PLEXIL [6] is a planning execution system used for many NASA space
and Aeronautics missions. The PLEXIL execution engine has a small computational
footprint and does not require dynamic memory for its execution. [7] describes for-
malization and V&V approaches for the planning system PLEXIL.

The on-board construction of plans, however, requires search and optimization algo-
rithms, which will be described below.

Statistical Algorithms and Filtering: Such algorithms are mainly used for processing
of sensor data, sensor fusion, prognostics, as well as probabilistic reasoning.

Typical filtering algorithms, like the Kalman filter and its variants (e.g., EKF, UKF),
have been around for a long time and are well used in embedded and safety-critical ap-
plications. Their underlying recursive least-linear square approach is well understood
and can be executed in a fixed-time steps without the need of dynamic memory.

Particle filters on the other hand can deal with more complex probability distributions,
but require more computational resources and might, for some variants, even use
random initializations. Still, PF algorithms can be executed in a fixed time step.

Probabilistic reasoning algorithms (e.g., a Bayesian graph reasoner) can be used to
determine the likelihood of a certain situation, given observables (e.g., sensor informa-
tion) and their probability. Bayes reasoners are typically used for fault detection and
diagnosis [8]. The reasoning steps can be executed with a fixed worst-case execution
time and fixed memory by compiling the graph structure into an arithmetic circuit [9].

Machine Learning (offline): Many AUCs contain algorithms that are controlled by pa-
rameters that have been determined using machine learning algorithms on often large
amounts of data. The actual learning—often called training—is performed during
the development of the AUC. Then, the parameter values are frozen and remain un-
changed during system deployment. The most prominent example is a Deep Neural
Network (DNN), which will be discussed in detail in Section 5.

The execution code for such an algorithm like a DNN is very simplistic, does not
require dynamic memory and has a fixed worst-case execution time. All the “knowl-
edge” of such a component is sitting in its parameters (“weights”), which have been
estimated by an external machine-learning algorithm. During deployments, these
weights do not change, hence the name “pretrained NN”.

High dimensions of inputs and large numbers of parameters often require the use of
non-conventional hardware, e.g., GPUs (Graphical Processing Units) or Tensorflow
[10] for the training of such networks during system development time.

Optimization (numerical): these kinds of algorithms try to iteratively find a minimum
(or maximum) of a high dimensional function. This class of numeric functions is very
generic and can be used for multiple purposes in autonomous systems: trajectory
planning, adaptation, machine-learning applications, or sensor-related applications.

Typically such an algorithm contains a loop, which must be executed until a specific
criterion is fulfilled, e.g., the error E < θ. Even if each individual execution of the
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loop has a fixed execution time, there is no way to determine, when the algorithm
actually terminates. Therefore, such algorithms are not used in traditional safety-
critical software, where a fixed execution time is required. However note, that some
optimization tasks can be solved by recursive methods like the Kalman filter.

In addition, multivariate optimization algorithms can not be guaranteed to find the
global minimum or maximum. Rather, they might only find local minima, which
might cause questions about validity and suitability of the solution.

Symbolic/discrete search: Whereas optimization algorithms discussed above perform a
search in a high-dimensional numerical space, symbolic or discrete search enumerates
or traverses search spaces, which consist of discrete states. Typical examples for such
algorithms include automatic logic reasoners, Model Checkers, or SAT solvers. Given
a Boolean formula, a SAT solver tries to find a variable assignment that makes the
Boolean formula true. The discrete state spaces, which can be huge, are traversed
in a clever manner to reduce search time in many instances. Such algorithms find
their application in planning, reasoning about the system’s health status, contingency
planning, and many other AUC applications.

Typically, such search algorithms require dynamic memory and do not have a bounded
execution time.

Machine Learning (online): Finally, if the autonomous system has to adapt toward un-
foreseen situations or needs to learn new things during deployment, then on-line ma-
chine learning algorithms are being used. They can be of various complexity and can
use filtering, optimization, or even discrete search.

However, they might use dynamic memory, don’t have a fixed worst case execution
time, and are, in general, very hard to verify and validate.

4.2 Algorithm Characteristics

The members of each algorithm group presented above can be characterized by a number
of specific features. Here, we focus on features that have a substantial impact on the ability
to verify and validate (V&V) such algorithms. These features include

Dynamic Memory (DM) Dynamic memory allocation “malloc” are traditionally hard to
V&V and numerous bugs (like memory leak, use-after-free) can occur. Standards for
traditional safety-critical software do not allow the use of dynamic memory allocation.

No Worst Case Execution time (NWCET) Most embedded software systems are ex-
ecuted in a way, where each component is being executed at a given rate, e.g., 80Hz.
This automatically limits the maximal execution time per invocation. Overrun can
lead to hard-to-detect and dangerous errors. Therefore, most safety-critical software
systems require that each SW component has a worst case execution time (WCET)
lower than the component rate. WCET analysis is a standard V&V technique, but it
fails if algorithms do not have a fixed WCET. Typically such algorithms contain con-
vergence loops, potentially unbounded tree or graph search, or solve machine learning
tasks. The proper V&V of such algorithms within an embedded environment is still
largely unsolved.
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Non-determinism (NDET) Non-determinism of a calculation can be caused by effects
of parallel or multi-threaded execution or the explicit use of (pseudo) random number
generators. NDET leads to the situation that specific runs of the software cannot be
exactly reproduced, making proper validation very hard. Therefore, embedded and
safety-critical software is not supposed to contain any non-deterministic behavior.

Yet, many statistical and machine learning algorithms require the use of randomized
sampling, therefore introducing NDET. V&V and certification of such algorithms
comprises a large gap.

Non-Markovian (NMARK) A non-Markovian behavior, often called “non-deterministic”
by controls experts, will always reproduce exactly the same run, given the same in-
put data. It is therefore not necessarily non-deterministic in the sense mentioned
above. The main characteristics of such an algorithm is that the current state xt at
time t cannot be calculated only based upon xt−1, but information from all previous
states (implicit or explicit) x0, x1, . . . , xt−1 are used by the algorithm. Due to this
state history requirement, testing of such an algorithm can complicated and resource-
consuming. Typically, on-line adaptive algorithms exhibit these characteristics.

Data-driven (DATA) In a data-driven algorithm, the control of the program is not
present in the code (i.e., the structure of the program), but depends on data and
parameters. Typical examples of data-driven algorithms include Neural Networks,
Markov-Decision Processes, or large lookup tables. Also data bases (e.g., SQL) ex-
hibit these characteristics.

In many cases, the code-fragments implementing such an algorithm (e.g., a DNN
classifier) consist of very small and straight-forward generic algorithms, which can be
fully covered (e.g., MC/DC coverage) by extremely few test cases. Therefore, code-
coverage testing of such algorithms (as prescribed by, for example, DO-178C [11])
does not provide any assurance.

Rather, V&V techniques, specifically tailored toward these kinds of algorithms must
be used. Here, one gap lies in the development and maturation of such techniques,
and the second gap lies into incorporating of analysis results into the V&V and SWA
process.

Any Time (AT) If an algorithm cannot be guaranteed to provide the full solution within
a fixed time, sometimes “anytime” variants of the algorithm exist. Such an algorithm
can provide, at each point in time, a partial or approximate solution. However, this
trade between execution time and correctness or quality poses substantial V&V gaps,
as for those algorithms, the quality and suitability of the approximate or partial
solution must be studied.

Numerical (NUM) Many algorithms in the area of embedded and autonomous systems
are numerical algorithms. Important V&V tasks include the analysis of potential
roundoff errors, coverage testing, automatic test case generation (see, .e.g., [12]), ro-
bustness, and requirements for calculation accuracy. Although several techniques and
tools exist to address these issues, most formal tools (like model checkers, static an-
alyzers, or symbolic execution engines) only work for the domain of integer numbers.
Therefore, numerous V&V gaps exists in this area.
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Table 4.1 relates algorithm types from the previous subsection with their typical char-
acteristics. Each non-empty field can mean a V&V gap.

Table 4.1: AUC algorithm types and their typical characteristics

Algorithm Type DM NWCET NDET DATA AT NMARK NUM

Rule-based
Planning system X X X
statistical/filtering X X X X X
ML (offline) X X X
Optimization X X X X
symbolic/discr search X X X X X
ML (online) ? X X X X X X
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Chapter 5

AUC Algorithms

In this section we discuss, in more detail, three popular kinds of algorithms which are
used to implement AUC functionality: search-based algorithms, data-driven algorithms,
and—because of the current popularity—Artificial Neural Networks.

5.1 Search-based Algorithms

This category of algorithms includes numerical optimization algorithms as well as discrete
algorithms. The former are mainly used to find optima, i.e., minima or maxima of an
objective function in an often high-dimensional space. Discrete search is usually employed
within rule-based decision systems as well as logic reasoning systems.

Although a large variety of such algorithms exist, they tend to have these common
characteristics:

• the number of search iterations is not or cannot be limited. Typical control structures
include while(E > theta){...} or while(converging ){...} . This means, that such an
algorithm has, in most cases, no upper bound for the run-time [13]. Traditional safety-
critical software does not allow loops like that, as they make a worst-case runtime
analysis impossible. Functions which unknown and potentially unlimited runt-time
behavior are hard to V&V in general and thus form a gap in traditional V&V for
safety-critical systems.

• Some tasks can be solved with any-time algorithms, which can provide, at any point
in time, with an approximated solution, but then the assurance question arises about
the usefulness and correctness of that partial answer.

• In many cases, search algorithms require large amounts of memory or dynamic mem-
ory. This again does not satisfy traditional assurance requirements for safety-critical
software.

• Multivariate numerical algorithms cannot be guaranteed to find the global optimum
[13]. Rather, they might get stuck in some local minimum. Here again, no assurance
can be given, exhibiting a gap.

• Probabilistic search and optimization algorithms are used successfully in autonomous
systems. However, their V&V is still in their infancy and gaps with respect to handle
non-deterministic software as well as the other issues concerning search algorithms
exist.

16



5.2 Data-driven Algorithms

In traditional safety-critical software, “data” show up mainly in the form of (engineering)
constants and (small) lookup-tables. Control is exclusively done by programming language
constructs (if-then-else, state machines, etc.). Other than that, data-bases are used some-
times, which are comprised of well-understood algorithms and mature implementations.

Autonomous systems, however, use numerous variants of “data-driven” software, where
“a lot of information” is hidden in the data. The most prominent example is a (Deep)
Neural network.

Given a high-dimensional input x it calculates a value y using a large number of nu-
merical parameters (or weights) W , which have been estimated during development time
by machine learning.

The result can be a numeric value, a discrete label (e.g., an index of a recognized image),
or a temporal sequence of values (time series).

The implementation of the actual algorithm is extremely simple and basically consists of
some linear-algebra operations. This algorithm basically does not change between different
applications. Rather, its customization toward the specific autonomy task is entirely driven
by data.

Other algorithms with similar characteristics include, for example, Markov processes
and their implementations as, for example, found in ACAS X [14,15]. Even some filtering
and estimation algorithms used in Prognostics belong to that category.

Similarly, but working on discrete data and structures are graph-based algorithms as
used, for example, for planning, Bayesian networks for reasoning, or graph/tree-based al-
gorithms used for logic reasoning (e.g., SAT).

All these algorithms have in common

• the (code) structure of the algorithm can be very simple

• control of the algorithm’s behavior and output is entirely governed by data

• these data are established during system development time (e.g., for a pre-trained
DNN) or even can change during operation (e.g., on-line adaptive systems)

• some systems have constant time and memory (e.g., neural networks), some have not
(e.g., graph-based algorithms)

V&V gaps for such algorithms show up in different dimensions:

• algorithms like DNN algorithms are extremely small and simple. Traditional code-
coverage testing, e.g., as prescribed by DO-178C [11], can be performed with almost
no test cases. However, even a 100% MC/DC coverage does not say anything about
the quality or correctness of the results calculated by the DNN. Therefore, the metric
of code coverage is meaningless for such algorithms as the “meat” is hidden in the
data. Therefore, other V&V techniques need to be used. Gaps include suitability
of DNN specific V&V approaches/tools as well as their integration into the software
V&V process.

• Quality and correctness of the design-time data. In most current DNN applications,
the DNNs are being trained during design time using large data sets “training data”.
A proper V&V must take into account the quality and coverage of these training
data as well as the quality and suitability of the DNN architecture and the training
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algorithm used. All these topics lead to active research areas but many questions are
still unsolved.

• Quality and correctness of dynamically adapting data. When data (e.g., weights of
a neural network) are adjusted during system operation, care must be taken that
these updates do not diminish quality and correctness of the system behavior. These
changes need to reflect the actual change of the system (e.g., due to some failure) or
the environment, but must not capture unwanted or artificial effects.

Techniques have been studied in the realm of traditional adaptive neural networks,
but only very few and isolated approaches toward V&V exist [16]

• non-deterministic behavior. Although most data-driven algorithms are deterministic
in nature, machine learning algorithms can introduce dependency on mission history or
even introduce randomness. These effects make V&V extremely difficult and therefore
identifies a SWA gap. (see Conclusions)

5.3 Artificial Neural Networks

Artificial neural networks, in particular Depp Neural Networks (DNN) have become very
popular in many autonomy applications, mainly driven by the development of self-driving
cars.

DNN are mainly used as classifiers or function approximators and are, in most cases,
trained off-line. This means that the training of the DNN parameters (“weights”) is per-
formed during development time. The evaluation of a pre-trained network is a straight-
forward algorithm consisting of simple linear arithmetic operations (Figure 5.1). For exam-
ple, for any node in a fully connected layer, its output is calculated as oj = f(

∑
iwij · xi)

for inputs xi, weights wij , and a nonlinear function f (like a tanh or Relu).

Figure 5.1: Typical architecture of DNN with several convolutional and fully connected
layers. Figure generated via http://alexlenail.me/NN-SVG/index.html
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More involved are DNNs, which are being trained on-line, i.e., the adaptation of weights
occur during the deployment of the system. Such systems are currently used only in rare
cases, but their application will become more important for highly autonomous missions,
where the autonomous system must adapt toward unknown environments and unforeseen
events. Advanced missions to icy moons will most probably require on-board learning neural
networks.

From a SW assurance point of view, the on-board software portion for a pre-trained
DNN is not problematic due to its simple algorithm. However, big V&V gaps concerning
the behavior of the network. which is guided by its parameters. Here, selection of the
network architecture, the training algorithm and regime, and the selection/availability of
training and test data is of great importance. V&V approaches for DNN are still in its
infancy, [17] gives an overview of V&V approaches suitable for DNNs.

[16] suggests the following activities related to V&V of NNs

1. separate NN from traditional software components

2. analyze network architecture

3. consider NN as function approximator

4. address opaqueness of NN

5. analyze learning algorithm

6. analyze selection and quality of training data

7. provide means for online monitoring

In their review article, [17] identify the following challenge categories concerning V&V
of DNNs:

• State-space explosion

• Robustness

• Systems engineering

• Transparency

• Requirements specification

• Test specification

• Adversarial attacks

and Formal methods, Control theory, Probabilistic methods, Test case design, and Process
guidelines as techniques and approaches to address these challenges. Figure 5.2 shows a
proposed mapping between challenges and technologies.
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Figure 5.2: Mapping between categories of solution proposals and challenges (from [17])

20



Chapter 6

Data for Autonomous Systems

In traditional software systems, data most often shows up in the form of engineering con-
stants, configuration data, and small lookup tables. On the other hand, numerous al-
gorithms used for AUCs and modern software systems require, as discussed above, large
numbers of data. For example, gigantic tables or representations of graphs are found, for
example, in components that use neural networks of MDPs (Monte Carlo Decision Proce-
dures). The ACAS X collision avoidance system [15] is a typical example. These data are
part of the on-board software load and is executed while the system is in operation. Most
often, these data are not changed during operation.

The development of AUCs, which use machine-learning based algorithms rely on often
huge data sets during development time. Those are being used to estimate parameters (e.g.,
DNN weights) that will ultimately control the system behavior during the mission.

However, current practices and processes do not formally define a role for these data
sets. In many cases, they are ”kept around” somewhere. Due to the safety-criticality of
the AUCs, which ultimately depend on these data, this comprises a major assurance gap.
We propose to consider data as first-class citizens on the same level as software during
development, V&V, and deployment.

From a process-perspective, the traditional ”V” should be extended by a data acquisition
and modeling phase plus a specific ”machine learning testing” phase. Figure 6.1 illustrates
the extended ”V”.

Implementation

Integration

Unit

Testing

Testing
Detailed
Design

Architectural
Design

Specification

Acceptance 
Testing

System
Testing

Requirements

Data Acq Plan
Modeling Testing

ML

Figure 6.1: The ”V” shape extended by tasks necessary to handle data driven and machine-
learning algorithms
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Necessary tasks (which can be currently considered gaps) include

• assurance of (training) data quality and coverage.

• assurance of the machine learning architecture, configuration, and learning algorithm.
This typically concerns questions like: is the number of layers for the DNN justified
and produces most reliable results?

• assurance of suitability of ”data-driven software component”. The question of: is a
DNN the right or best algorithm for that task? Has the DNN be selected because it
is ”cool”?

• assurance of test coverage and quality

The data used to develop an AUC must therefore undergo similar activities for devel-
opment and assurance like the software itself: documentation, version control, debugging,
V&V, etc.
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Chapter 7

Conclusions

In this report, we have looked at typical algorithms used in autonomous systems, grouped
them and described some of their special characteristics. These characteristics, for example,
dynamic memory, non-determinism, points to relevant gaps in techniques, processes, and
practices of software assurance that will need to be addressed for V&V of autonomous
systems. Figure 7.1 shows a high-level architecture and identifies such gaps.
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Figure 7.1: Overview and high-level architecture of an autonomous system with V&V ac-
tivities (green) and gaps (red question marks: ?)

Whereas most of these gaps concern specific topics, (software) assurance for autonomous
systems ultimately must address the following important issues:

• How to assure “ethical” behavior of an autonomous system? The typical example
for this issue is the necessity of a self-driving car to make a real-time decision that
causes the passenger to be killed or the pedestrian in a cross-walk. [18] discusses such
problems.

• How to assure safety of complex autonomous functions? The ASTM publication F-
3269 [19] is a first attempt toward a standard to safely bound the flight behavior of
an autonomous vehicle.

• How to assure operations in a unknown or changing environment? Solving this issue
is mandatory for advanced space missions, for example, missions to the Icy Moons.
This issue also plays an important role in the deployment of self-driving cars: can we
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assure that a self-driving car, which was trained to drive in Mountain View, can safely
handle the streets of San Francisco?

• How to assure safe/effective autonomy—human interaction and collaboration as needed
for modern space missions (e.g., Artemis)?

• How can we assure that “emerging behavior” of an autonomous system can be de-
tected, controlled, and, possibly, avoided? Uncontrolled emerging behavior might pose
severe safety hazards.
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