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ABSTRACT

Context. Low and intermediate mass stars are known to power strong stellar winds when evolving through the asymptotic giant
branch (AGB) phase. Initial mass, luminosity, temperature, and composition determine the pulsation characteristics of the star and
the dust species formed in the pulsating photospheric layers. Radiation pressure on these grains triggers the onset of a stellar wind.
However, as of today, we still cannot predict the wind mass-loss rates and wind velocities from first principles neither do we know
which species are the first to condense in the upper atmospheric regions.

Aims. We aim to characterise the dominant physical, dynamical, and chemical processes in the inner wind region of two archetypical
oxygen-rich (C/O < 1) AGB stars, that is, the low mass-loss rate AGB star R Dor (M" ~1 x 107 Myr~1) and the high mass-loss rate AGB
star IK Tau (M" ~5 x 10~ M yr~1). The purpose of this study is to observe the key molecular species contributing to the formation of
dust grains and to cross-link the observed line brightnesses of several species to the global and local properties of the star and its
wind.

Methods. A spectral line and imaging survey of IK Tau and R Dor was made with ALMA between 335 and 362 GHz (band 7) at a spatial
resolution of ~150 mas, which corresponds to the locus of the main dust formation region of both targets.

Results. Some two hundred spectral features from 15 molecules (and their isotopologues) were observed, including rotational lines
in both the ground and vibrationally excited states (up to v = 5 for SiO). Detected species include the gaseous precursors of dust
grains such as SiO, AlO, AIOH, TiO, and TiO,. We present a spectral atlas for both stars and the parameters of all detected spectral
features. A clear dichotomy for the sulphur chemistry is seen: while CS, SiS, SO, and SO, are abundantly present in IK Tau, only SO
and SO, are detected in R Dor. Also other species such as NaCl, NS, AlO, and AIOH display a completely different behaviour. From
some selected species, the minor isotopologues can be used to assess the isotopic ratios. The channel maps of many species prove
that both large and small-scale inhomogeneities persist in the inner wind of both stars in the form of blobs, arcs, and/or a disk. The
high sensitivity of ALMA allows us to spot the impact of these correlated density structures in the spectral line profiles. The spectral
lines often display a half width at zero intensity much larger than expected from the terminal velocity, v, previously derived for
both objects (36 km s~ versus ve. ~17.7 km s~ for IK Tau and 23 km s~ versus V.. ~5.5 km s~ for R Dor). Both a more complex 3D
morphology and a more forceful wind acceleration of the (underlying) isotropic wind can explain this trend. The formation of fractal
grains in the region beyond ~400 mas can potentially account for the latter scenario. From the continuum map, we deduce a dust
mass of ~3.7 x 107 Mand ~2 x 10-8 Mfor IK Tau and R Dor, respectively.

Conclusions. The observations presented here provide important constraints on the properties of these two oxygen-dominated AGB
stellar winds. In particular, the ALMA data prove that both the dynamical and chemical properties are vastly different for this high
mass-loss rate (IK Tau) and low mass-loss rate (R Dor) star.

Key words. stars: AGB and post-AGB — stars: mass-loss — circumstellar matter — stars: individual: IK Tau —
stars: individual: R Dor — astrochemistry

1. Introduction

Asymptotic giant branch (AGB) stars form a late stage of stellar evolution shortly before losing their outer layers and moving into
the state where a planetary nebula is formed. These stars show severe mass-loss rates between 10® M yr! at the lower AGB,
increasing to some 10™* M yr' as the star evolves to the top of the AGB while becoming slightly cooler and considerably more
luminous. Pulsations allow for higher density regions to form at temperatures low enough for dust to condense from the gas
phase. Hoyle & Wickramasinghe (1962) were the first to propose the wind acceleration in AGB stars to be caused by radiation
pressure on dust grains, which generates an outwards directed force which counteracts the gravitational attraction of the star.
They later argued that grain-gas collisions transfer sufficient momentum to the gas to accelerate the material to velocities above
the local escape velocity, thus driving a wind (Wickramasinghe et al. 1966).

Solving the equations of conservation of mass, momentum, and energy shows that a wind with given lower-wind boundaries
(determined by the temperature (7o) and density (po) values of the outer layers of the star with gravity g) can transition from sub-
sonic to supersonic values for only one specific value of the mass-loss rate (M" ). Adding an additional force in the subsonic part of
the wind (in this case due to radiation pressure on the grains) results in a smaller wind velocity gradient but higher velocities than
in the absence of the force. The higher density scale height also results in an increase of the massloss rate. The rate of acceleration
of the wind decreases with radius, and essentially ceases from a certain radius onwards. Attenuation of the stellar radiation field



by intervening dust, a decrease in relative total cross-section of the dust as it moves outwards, and a decoupling of the dust and
gas in the tenuous outer wind causes the flow to reach a terminal wind velocity, ve.

Although the idea of radiation pressure on the dust grains as a wind-driving mechanism has existed since the sixties, we still
are not able to predict the wind acceleration, terminal wind velocity, and mass-loss rate from first principles. Detailed numerical
models solving the (above-mentioned) set of equations show the dependence of the outcome of these physical quantities on the
stellar, and hence also pulsation, characteristics. One of the major unknowns in current theoretical models concerns the dust
nucleation process. That is, we still do not know which molecules will form larger gas-phase clusters that transition into the first
little solid-state species in oxygenrich (C/O < 1, O-rich) winds. Thermodynamic condensation sequences favour alumina (Al.03) or
Fe-free silicates (such as Mg2SiOa) of which the former species might be formed at slightly higher temperatures. Grains of this type
should, however, already be large enough (~200 nm-1 um) close to the star for photon scattering to compensate for their low
near-infrared absorption cross-section, hence allowing the onset of a stellar wind.

As usual in astronomy, observations provide critical constraints for these theoretical models. Starting in the late 1960s, infrared
and sub-millimeter telescopes have determined the observational characteristics of AGB stars. Broad spectral features in the
infrared were attributed to crystalline or amorphous grains (Gillett et al. 1968; Woolf & Ney 1969). However, no dynamical
information can be retrieved from this (broad) dust features. The only way to unlock both the key chemical and dynamical
processes in the sub-sonic to supersonic transition region is by studying at high spatial resolution the molecules contributing to
the dust formation since, in contrast to dust, molecules can give us information on the wind dynamics and on the gaseous left-
overs after dust formation.

Targeted surveys either observing one molecule in a larger sample of stars or a predefined set of atomic or molecular
transitions in one (or a few) stars have successfully increased our knowledge of the velocity profile and mass-loss rate of AGB
winds (e.g. Loup et al. 1993; Ziurys et al. 2002; De Beck et al. 2010; Agundez et al. 2011; Schoier et al. 2013; Danilovich et al. 2016).
Recent instrumentation now allow for unbiased spectral surveys of stellar winds letting one to set up a molecular inventory of the
circumstellar envelope (CSE). Some 80 molecular species have been identified in evolved stars’ stellar winds. Only some 20 of
these were detected in O-rich AGB winds, while some 70 were found around carbon-rich AGB stars. One reason for this difference
is the observational bias towards the nearby carbon-rich AGB star CW Leo which has a high massloss rate wind (M =2.1 x 10°M
yrl, Decin et al. 2010a). During the last decade, recent advances in instrumentation have offered the possibility for O-rich winds
to be surveyed, which are fainter either due to a larger distance or a lower mass-loss rate. In contrast to carbon-rich winds, the
study of these Orich environments can advance our knowledge of other galactic environments, such as the interstellar medium or
young stellar objects, that have a “cosmic” abundance resembling that of O-rich winds. As such, O-rich stellar winds are excellent
laboratories to unravel the intriguing coupling between chemical and dynamical processes with a broad applicability for other
research domains.

Unbiased sub-millimeter spectral surveys of O-rich stellar winds are rare. Kaminski et al.” (2013) presented a SMA spectral
survey of the high mass-loss rate red supergiant VY CMa (M’ ~2 x 10* Myr™') between 279 and 355 GHz with a synthesised beam
of ~0.9%. The detection of 223 spectral lines arising from 19 molecules and their isotopologues allowed for a detailed investigation
of the spatio-kinematical structure of the complex nebula surrounding VY CMa. Quintana-Lacaci et al. (2016a) have presented a 1
and 3 mm line survey towards the yellow hypergiant IRC+10420 obtained with the IRAM telescope. The IRAM telescope beam size
is 21-29% at 3 mm and 9-13% at 1 mm. 106 molecular emission lines from 22 molecular species were identified, of which
approximately half of them are N-bearing species. A spectral line survey with the IRAM-30 m telescope (~80-345 GHz) and
Herschel/HIF| (~479—1244 GHz) of the O-rich pre-planetary nebula OH231.8+4.2 revealed the presence of hundreds of lines from
different species, including HCO*, H3CO*, SO*, N2H*, and H30* (Sdnchez Contreras et al. 2014, 2015). The two targets of this
publication, IK Tau and R Dor, have also already been subject of spectral survey campaigns thanks to either the high mass-loss rate
(in the case of IK Tau) or the nearby distance (R Dor, D = 59 pc). Recently, Velilla Prieto et al. (2017) published an IRAM-30 survey
towards IK Tau between 79 and 356 GHz. The half power width of the main beam varies between 7.5 and 29%. A total of ~250
lines of 34 different molecular species (including different isotopologues) were detected, including rotational lines in the ground
vibrational state of HCO*, NS, NO, and H2CO. De Beck et al. (2015a) used the SMA to obtain a spectral line imaging survey at 279—
355 GHz of IK Tau at ~0.9% spatial resolution. The survey shows over 140 emission lines, belonging to more than 30 species. In
addition, there exists an unpublished APEX spectral scan of R Dor between 159 and 368.5 GHz (De Beck et al. 2017).

The high spatial and spectral resolution and sensitivity offered by ALMA now opens a new window for sub-millimeter spectral
surveys allowing us to study the rich chemistry in stellar winds with unprecedented detail. The presence of various transitions of
a specific molecule covering a large range in excitation temperatures allows the derivation of the wind velocity profile (see, e.g.
Fonfria et al. 2008; Decin et al. 2010b, for the case of CW Leo and IK Tau, respectively). However, spatially unresolved velocity
features in (sometimes asymmetric) line profiles complicate this task. Another way to determine the wind acceleration and
terminal wind velocity is by using high spatial and spectral resolution data in such a way that one can resolve spatially and spectrally
the molecular emission of various transitions. Plotting the measured wind velocities (as determined from the half-line width)
versus half of the largest detectable scale or half of the spatial full width at half maximum (FWHM, representing the dominant line
formation region) yields a direct way of visualising and interpreting the wind profile (Decin et al. 2015). In addition, complex
morphologies can be taken into account, if present. If a high enough spatial resolution is achieved, one can examine the chemical
processes across the sub-sonic to supersonic transition region, that is, the region where dust condenses and grows, via the study
of the corresponding depletion of gas-phase molecules. This ultimately allows one to couple the derived abundance variations in
the CSE to chemical models. Additionally, observing several isotopologues allows one to determine isotopic ratios in the CSE
Table 1. Overview of stellar and wind properties of R Dor and IK Tau (Decin et al. 2017).



R Dor IK Tau

D [pc] 59 260
LILs] 6500 7700
T, [K] 2400 2100
R, [cm] 2.5 x 10" 3.8 x 10"
R, [mas] 30 10
MMy yr'] 1.6x 1077 5% 1076
Faust [cm] 53x 10 238 x 10"
By [mMas] 120 122
Voo [km s71] 5.5 17.7

Notes. Listed are the distance D, the luminosity L, the stellar temperature T, the stellar radius R», the mass-loss rate M, the locus of the dust
condensation in radius rgust and in diameter B4ust, and the terminal velocity ve..

and from that constrain the AGB nucleosynthesis, initial stellar mass, and age.

In this paper, we present the first ALMA spectral survey of two O-rich AGB stars, IK Tau and R Dor. Data have been obtained
between 335 and 362 GHz at a spatial resolution of
~120 x 150 mas (~5.3 x 103 cm for R Dor and ~2.4 x 10%* for IK Tau; see Table 1). This spatial resolution corresponds to the main
locus of dust formation in both stars. We have selected IK Tau and R Dor as being the best representatives for the class of high
mass-loss rate and low mass-loss rate O-rich AGB stars due to their proximity (260 and 59 pc, respectively). Many dust and
molecular species have been detected in their wind (for an overview, see Decin et al. 2017). Solid-state aluminium-bearing species
have been detected in the spectral energy distribution (SED) of the semi-regular variable R Dor, while the SED of Mira-type star IK
Tau seems dominated by magnesium-iron silicates. This supports the hypothesis that the dust condensation sequence in R Dor
has experienced a freeze-out after the formation of the aluminium dust species, while in IK Tau the silicates might have coated
the previously formed aluminium grains (see Decin et al. 2017, for more details). Molecules detected in the wind of both stars
include CO, HCN, SiO, SiS, SO, SO, NaCl, PO, PN, etc. (Milam et al. 2007; Kim et al. 2010; Decin et al. 2010b,c; De Beck et al. 2013,
2015a; Velilla Prieto et al. 2017). Some molecules in IK Tau, including SiO and SiS, show depletion in the CSE suggesting depletion
due to condensation onto dust grains (Decin et al. 2010b). An overview of the most important stellar and wind properties of both
stars can be found in Table 1.

The aim of this paper is to provide the community with a spectral atlas of all species detected in the ALMA data, including the
relevant flux density, velocity parameters, and angular extension. Detailed studies on the morphology, molecular excitation
regions and abundance structures as derived from in-depth non-local thermodynamic equilibrium radiative transfer simulations
will be presented in dedicated papers; one of which on the aluminium-bearing molecules (AlO, AIOH, and AICI) has already been
published (Decin et al. 2017). In this paper, we focus on the presentation of the ALMA data and the data reduction (Sect. 2). We
discuss the dust properties as retrieved from the ALMA continuum maps in Sect. 3. The spectral line results, including the line
identification, the measurements of the flux density, line width parameters and angular sizes, and a first overview of azimuthally
averaged flux densities and zeroth moment maps are given in Sect. 4. In Sect. 5, we weigh up the different molecular content in
both stars (Sect. 5.1), give a first view on the molecular morphology (Sect. 5.2) and concentrate on the kinematic structure as
deduced from the ALMA data (Sect. 5.3). As shown in Sect. 5.3, the wings of the ALMA spectral lines bear witness to projected
velocities larger than the canonical terminal wind velocity and, hence, showcase a surprisingly rich morpho-kinematical behaviour
in the inner wind region of both stars. In Sect 5.4 we use the integrated line intensity ratios of isotopologue species to deduce the
isotopic ratios of 2°Si/ 39S, 3*S/33S, and 3°CI/37Cl. We summarise our conclusions in Sect. 6.

2. ALMA observations and data reduction
2.1. ALMA observations

IK Tau and R Dor were observed with ALMA in Band 7 during August—September 2015 (proposal 2013.1.00166.S, PI L. Decin). A
full spectral scan between 335-362 GHz was made using four separate observations per star. Each observation used four 1.875
GHz spectral windows. An average of 39 good antennas were present. The observations took place over 16 days for IK Tau and 5
days for R Dor using standard ALMA procedures. The IK Tau reference source is ~5° from the target, the two reference sources
used for R Dor are 3°-4° away. All have sub-mas position accuracy except for J0428-6438, where this is (5.1, 3.5) mas. Conditions
varied between good and very good, so there are small changes in sensitivity between spectral windows due to this as well as to
intrinsically higher atmospheric opacity at higher frequencies. More details are given in Table 2. The range of baseline lengths was
0.04-1.6 km, allowing imaging of structure on angular scales up to 2% at angular resolution ~150 mas. Hanning smoothing was



applied in the correlator and the data were finally averaged every four (two) channels for IK Tau (R Dor) so the imaged channels
are effectively independent.

2.2. Data reduction

All data reduction was done using CASA (McMullin et al.

2007)%, following standard scripts for the application of calibration from instrumental measurements such as system temperature
and water vapour radiometry, and using standard sources for bandpass calibration, etc. The flux density of the primary calibration
sources is accurate to 5%; the scatter in amplitude solutions for calibration sources is a few percent or less, so the net flux scale
accuracy is ~7% or better. The astrometric accuracy is dominated by errors in the phase transfer and, possibly, antenna position
errors. These were estimated by examining the phase-reference solutions and the positions of the check sources. The IK Tau phase-
reference solution rms were around 30° which corresponds to a position uncertainty (30/360) x the beam size, or 17 mas for a 200
mas natural beam, slightly more higher than the observed check-source offsets. The R Dor averages were a little smaller (as
expected for the better conditions) but, given the greater position uncertainty of J0428-6438, it seems reasonable to adopt 17
mas astrometric accuracy for both targets. The relative accuracy (e.g. aligning different lines in the same source) is limited only by
the signal-to-noise (S/N), and would be <1 mas for S/N = 200, or 33 mas (about 1 pixel) for a faint 3o

Table 2. Summary of observations.

Source Date range PWV range ToS Chan Flux Bandpass Phase-ref Check
(vyyy-mm-dd) (mm) (min) (MHz) scale
1K Tau 2015-08-13 0.2-1.7 10 1.95  J0423-013 J0423-0120 J0407+0742  J0409+1217
2015-08-28
R Dor 2015-08-27 0.3-0.7 25 0.98 JO519—-454  J0457-2324  J0428-6438  J0506-6109
2015-09-01 J0522-3627 J0506-6109  J0428-6438

J0538—-4405

Notes. Listed are the observing data, the precipitable water vapour (PWV), the time on source per tuning (ToS), the channel spacing used in
standard line imaging after averaging (Chan), the flux scale reference source, the band pass reference source, the phase reference source and
the

check source.

Table 3. Summary of final continuum image parameters.

Star Width Beam rms  Imsize Pixel
(MHz) (mas x mas, PA) (mly) (arcsec) (arcsec)

IK Tau 15.2e3 180 x 160, 27°  0.047 10 0.04
RDor 116e3 150 x 140, -5° 0.047 7.6 0.03

Notes. Width is the continuum bandwidth (spread over total spectral span), beam and rms are the continuum restoring beam and image noise,
and “imsize” denotes the area imaged.

detection of a compact source. For each source, the target data were then shifted to constant velocity with respect to the local
standard of rest (visr). Line-free continuum channels were identified and used for self-calibration, applied to all data. The peak
positions changed negligibly during self-calibration and the final images rms are as expected for the conditions. The continuum
images were made using a first-order spectral slope, although the fractional bandwidth is too small for the spectral index
measurements to be very reliable. The continuum was subtracted and the entire cubes were imaged. The final continuum image
parameters are summarised in Table 3. Unless otherwise stated, all images discussed used partial uniform weighting (CASA “robust
0.5”).

The exact spectral restoring beam parameters depend on elevation and frequency, and are in the range 120-180 mas for IK
Tau and 130-180 mas for R Dor. The channel orms noise varies between spectral windows due to elevation, weather and the
intrinsically higher atmospheric opacity at higher frequencies. The range in IK Tau was 3—9 mJy and in R Dor the range was 2.7-5.7
mly, except in the brightest channels where the dynamic range limit of ~L000 gives 6rms< 50 mJy beam™. The ormsfor the continuum
image is 0.047 mly. The velocity resolution, also depending on frequency, was 1.6—1.7 km s~*for IK Tau and 0.8-0.9 km s™* for R
Dor.

The full width half maximum (FWHM) of the ALMA primary beam over our frequency range is 14%. 4-15%, 6. Detectable
continuum emission is well within a 1% radius in both sources. Most lines have a maximum angular extent <5% but the largest are



10%, 3 in IK Tau and 7%. 4 in R Dor'. We did not apply the primary beam correction initially, since it is more straightforward to
measure the largest angular size (LAS) and azimuthally-averaged profiles assuming flat noise per plane. The S/N, and thus the LAS,
is unaffected. For the profiles, the flux densities of the most extended emission should be increased by 60% at 5% radius or 30%
at 3%, 5 radius.

3. Continuum image

The continuum emission for IK Tau and R Dor is shown in Fig. 1. The continuum peak is 0.069 Jy beam™ for IK Tau and 0.596 Jy
beam™ for R Dor, with a total flux density within the 3o contour being 0.088 and 0.648 Jy, respectively. The radius for the 30
contour is ~520 mas (or 52 R>) for IK Tau and 450 mas (or 15 R:) for R Dor. The stellar photospheric emission contributes part of
the total flux density. Using the stellar parameters listed in Table 1, the stellar flux contribution at 345 GHz is ~0.056 Jy for IK Tau
and ~0.581 Jy for R Dor. With the contribution from free—free emission at 345 GHz being negligible (Groenewegen 1997), we can
estimate the 345 GHz emission from dust by subtracting a (stellar) point source, convolved with the natural synthesised beam,
from the continuum leaving a residual of 0.027 Jy for IK Tau and 0.067 Jy for R Dor. The onset of the dust nucleation is around 6
and 2 Ry, respectively (see Table 1) or around ~120 mas which is comparable to the spatial resolution of the ALMA data.

Assuming that the dust is optically thin and for an opacity of ~7 cm?g™ (Demyk et al. 2017) at a dust temperature of varying
between 200-650 K for IK Tau and 400-1530 K for R Dor (Decin et al. 2017), we obtain a dust mass within the 3o contour of 3.7 x
1077 Mand 2 x 108 Mfor IK Tau and R Dor, respectively. Solving the momentum equation (Decin et al. 2006), we calculate the gas,
drift, and dust velocity profile; the example for IK Tau being shown in Decin et al. (2010b). We force the drift velocity to be lower
than 20 km s, at which value sputtering of the dust grains starts to become important (Kwok 1975). This gives us the possibility
to calculate the total amount of time for the dust species to reach the observed ALMA 3o contour, being ~36 yr for IK Tau and ~4.5
yr for R Dor. This translates into a dust mass loss rate of ~1 x 108 Myr~* for IK Tau and of ~5 x 10° Myr~* for R Dor. Since the gas
mass-loss rates differ largely, the resulting dust-to-gas mass ratio are fairly different, being ~1/800 for IK Tau and ~1/250 for R Dor.
The estimated dust mass-loss rates and dust-to-gas mass ratios are subject to large uncertainties (being around a factor of 5),
mainly due to the uncertain stellar contribution, the unknown composition of the dust, the large range in dust temperatures
involved and the fact that cooler dust might not be detected in the current ALMA data.

For both targets, the dust mass-loss rate has been determined from the SED and/or from SPHERE polarimetry data. The derived
values hinge on a number of assumptions, the most important ones being the dust velocity, the grain size, the dust optical
constants, and/or the polarisation efficiency. Khouri (2014) and Van de Sande et al. (2018a) have derived both the dust and gas
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Fig. 1. Continuum image of IK Tau for a beam of 0%. 18 x 0%, 16 (/eft) and of R Dor for a beam of 0%. 15 x 0%, 14 (right; beam shown as a filled
ellipse in the bottom left corner). The contour levels are at [-1, 1, 5, 10, 50, 100] x 0.141 mJy beam™(3Gms).
mass-loss rate for R Dor, yielding a dust-to-gas ratio of ~1/560 and ~1/780 respectively. Analysing the SPHERE data, Khouri et al.
(2016) derived a very low value for the dust-to-gas ratio in R Dor being <1/1200 at 1.5 R»and <1/5000 at 5 R>. Due to a lack of
infrared spectroscopic data of IK Tau, its dust composition and dust mass-loss rate are less well constrained compared to R Dor.
Le Sidaner & Le Bertre (1996) derived a value for the dust mass-loss rate of 2.65 x 108 M yr~ for a dust velocity assumed to be
twice the gas-velocity. Combined with the results on the gas mass-loss rate and gas velocity of Decin et al. (2010b), the dust-to-
gas ratio is ~1/640.

The derived dust-to-gas mass ratio for IK Tau around 1/800 seems low. However, the ALMA data suggest that the wind speed
reaches higher velocities than predicted by the standard momentum equation (see Sect. 5.3), which would reduce the time taken
to reach the 3o dust radius and increase the dust-to-gas ratio. Moreover, following the suggestion by Khouri et al. (2016), it is well

1 We note that the data are not sensitive to emission which is smooth on scales >~29, Castro-Carrizo et al. (2010) detected 2COJ=1-0and J =
2-1in regions up to ~40% and 25%in diameter, respectively. The 12CO J = 3-2 is expected to have a smaller extent, but it is also possible that we
have resolved-out extended emission.
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possible that the dust-to-gas ratio varies through the inner wind region. In other words, the ISO-SWS data and other photometric
data of R Dor were analysed by Van de Sande et al. (2018a). They used a structure of the dust envelope consisting of a
gravitationally bound dust shell (GBDS?) located close to the star (~1.6 R:) and dust flowing out in the stellar wind as of 60 R»
onwards, similar to the structure of the dust envelope of W Hya developed by Khouri et al. (2015). They derived a dust mass-loss
rate of 4.1 x 10729 Myr~* for R Dor for the wind beyond 60 R.. The ALMA data seems to suggest a higher dust density in the region
between 2-15 R, the potential cause of which might be the presence of the GBDS and/or an equatorial density enhancement
(a.k.a. disk; see Sect. 5.3) in the inner wind of R Dor.

4. Spectral line results

The ALMA observations reveal a rich molecular spectrum of the inner wind material for both stars. The high spatial resolution of
the ALMA data allows us to resolve the molecular excitation regions and to study the complex spatial distribution in function of
the projected velocity for many molecular transitions. The data were explored using different extraction apertures, ranging from
75 to 1000 mas. Most of the spectral analysis results reported here are based on the circular extraction aperture with radius of
320 mas for IK Tau and 300 mas for R Dor. The apertures of 320 and 300 mas radius optimise the sensitivity to lines dominated by
central, compact emission, with negligible artefacts due to dynamic range limits or resolved-out flux. These radii are also similar
to the most extended continuum detected. For the most extended lines, the extraction radii of 800 mas (IK Tau) and 1000 mas (R
Dor) maximised the flux measured in the channels with the most extended emission; more extended flux may exist but is too
poorly sampled to be measured accurately. The smallest apertures of 80 mas (IK Tau) and 75 mas (R Dor) were chosen as being
comparable to the restoring beam size and in particular best reveal any absorption against the star, although they do not detect
all emission in most cases.

4.1. Line identification

We extracted spectra in circular apertures, centred on the continuum peak, of 80, 320 and 800 mas in radius (IK Tau) or 75, 300
and 1000 mas (R Dor). These were used to identify the spectral lines (see below) and thus the rest frequencies. Where multiple
hyperfine components overlap, subsequent measurements are based on the rest frequency of the brightest component, and in all
cases the measurements use the rest frequencies shifted to the observed frequency using a local standard of rest velocity, visg, of
33 km s~ for IK Tau and of 7 km s~ for R Dor3. For each spectrum, a noise spectrum was also extracted off-source,

Fig. 2. Full spectrum of IK Tau (in black, shifted upwards) and R Dor (in red) obtained with ALMA band 7 between 335-362 GHz for an extraction
aperture with radius of 300 mas. The brightest lines are identified. A zoom of the spectra (both in frequency and flux density scale) can be found

2The region in the wind where the ratio of the radiation pressure on the grains to the gravitational attraction (called the I'-factor) is still smaller
than one so that the dust particles can reside close to the star without being pushed outwards.

3 Values for the local standard of rest velocity, visg, are difficult to derive with high accuracy. Methods often used include taking the midpoint
between peaks of CO v = 0 lines or from the OH 1612 MHz maser emission are reported. The CO line profiles are, however, often asymmetric
due to the effect of blue wing absorption and/or nonhomogeneous winds. Values for IK Tau vary between 33—-35 km s~and for R Dor around 6—
7 km s™1 (Boboltz & Diamond 2005; Decin et al. 2010b; Khouri 2014; Van de Sande et al. 2018a). The ALMA high spectral resolution data of
(optically thin) high-excitation lines offer another way to estimate v sg. Doing so, we derive visg=33 + 1 km s~ for IK Tau and visg=7 £ 0.5 km s71
for R Dor.
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in Fig. A.1 for IK Tau and in Fig. A.2 for R Dor. giving a per-channel ochn_rms. The full spectrum for the ~300 mas extraction beam is shown

in Fig. 2; a magnification of the spectra (both in frequency and flux density scale) and the line identifications are displayed in Fig.
A.1for IK Tau and in Fig. A.2 for R Dor.

By default, the 320 or 300 mas aperture spectra were used for line identification; lines were required to have continuous
emission above 3x the local channel-map off-source rms. In a few cases, such as lines affected by absorption, this was relaxed
after inspection.

The identification of the spectral features combined different procedures. A first identification was made using the SMA
spectral atlas of VY CMa as published by Kaminski et al.” (2013) and spectral line catalogues of the Jet Propulsion Laboratory (JPL,
Pickett et al. 1998) and the Cologne Database for Molecular Spectroscopy (CDMS, Miiller et al. 2001, 2005; Endres et al. 2016). For
all molecules identified in this first step, a non-LTE spectrum was calculated for a fixed excitation temperature using the RADEX-
code (van der Tak et al. 2007)*. Most tools for line identification such as MADCUBALIJ® and XCLASS® are using spectroscopic data
from standard databases such as JPL or CDMS. In contrast, we have expanded the spectroscopic data in some cases to include
excited vibrational states and the infrared transitions that can pump the excited states. These calculations did not aim to fit the
data or to retrieve molecular abundances, but served the goal of correctly identifying the molecular transitions based on a
correlation with the predicted intensity. For most molecules, more than one transition was detected. In a last step, the spectral
features at the identified (rest) frequencies of the molecular transitions were fitted using a so-called soft-parabola-function (De
Beck et al. 2010)

2
- (U - ULSR)
Umax (1)

where a is a measure for the shape of the profile function, Ic the maximum flux density, and vmaxthe maximum width of the line
(which is often larger than the canonical value for the terminal velocity, ve; see Sect. 5.3). This fit was not aimed to retrieve the
best-fit parameters since many lines display complex profiles. The purpose of the fitting was to identify in a last step by manual
inspection blended lines and to determine the main component in the case of blends.

a2

I(v) = I,

4 http://home.strw.leidenuniv.nl/~moldata/radex.html

5 http://cab.inta-csic.es/madcuba/MADCUBA_IMAGEJ/
ImageJMadcuba.html

6 https://www.astro.uni-koeln.de/projects/schilke/ XCLASSInterface
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The spectral identifications of each feature are given for the ~300 and ~800 mas extraction apertures in Table A.1 and Table
A.2 and are shown in the spectral atlas in Fig. A.1 and Fig. A.2 for IK Tau and R Dor, respectively. A summary of the number of
molecular lines detected is given in Table 4. A total
Table 4. Summary of molecules detected in the ALMA band 7 survey of IK Tau and R Dor.

IK Tau R Dor

Molecule Total Max ang size Total Max ang size
AlCI 1 434 1 623
AlO 8 1760 14 529
AIOH 12 333 9 247
co 2 9760 3 5294
Cs 1 3360 0 -
c*s 1 1188 0 -
H,O 3 434 3 505
HCN 3 2318 3 5920
H“CN 1 6880 1 4240
NS 13 652 0 -
NaCl 2 797 0 -
Na'’Cl 2 333 0 -
SO 8 3680 8 6640
¥50 2 362 11 1120
*#350 2 724 2 4960
S0, 54 6880 75 4720
SO0 0 - 4 447
SO0 1 434 2 517
*350, 5 3360 19 1023
Si0 6 2028 6 7360
¥8i0 4 3360 4 5200
Wsi0 2 1231 2 6880
Si'*0 2 507 3 705
¥s5il%0 0 - 3 364
Wgit0 1 405 1 658
SiS 6 3040 0 -
Y38 4 1913 0 -
Wgis 2 884 0 -
Si*’s 2 811 0 -
Si™s 3 1028 0 -
MgiMs 1 405 0 -
Wgitg 2 507 0 -
TiO 2 289 3 400
TiO, 11 550 20 880
Total 168 197

Notes. For each molecule, the total number of detected lines and the diameter of the maximum angular size (in mas) is listed, if detected. The
hypercomponents for AlO, AIOH, and NS are counted separately, albeit often they can not be spectrally resolved.

of 168 lines is detected in IK Tau and of 197 lines in R Dor arising from 15 molecules (not counting isotopic species of some of
them). 66 lines remain unidentified (see Table 5). Out of these, the line at 345.42 GHz is suggested to potentially arise from YOH,
the line at 339.103 GHz from OH, the line at 348.634 GHz from H20, and the lines at 336.377 and 352.074 GHz might be 34S0,.
Both lines at 348.497 and 348.525 GHz might be blends with NS. The 339.103 GHz line from OH is a high-J rotational transition in
the v = 1 state. Although OH lines of high J are almost impossible to excite by collisions at low temperatures or by IR-pumping,
high-J rotational lines are a signature of energetic dissociation of H.0 (Tappe et al. 2008), which could occur deep in the envelope
of an AGB star where pulsation shocks are strong enough to generate some H-Lyman a emission.

Table 5. Frequencies (in GHz) of the unidentified lines.



335993 336.307 336471 336.815 336.973
337.421 338.170 338447 338520 338.677
338.814 339.103 339398 339417 340.787
341141 341.233 344223 344719 345.020
345.086 345420 346.120 346.196 346.954
347221 347956 348117 348.256 348.497
348.525 348.634 348.878 348998 349.530
349.800 349970 350.145 350475 350.356
350.559 350.810 351.049 351512 351581
3517790 351920 352.034 352.074 352.502
353.570 353796 355.284 355.875 355.967
356461 356462 356933 356974 357767
358468 358.680 359.660 361596 361.734
361.890

Notes. Frequencies written in boldface refer to lines detected in both IK Tau and R Dor, in italics to spectral lines only detected in IK Tau, and in
normal font only detected in R Dor.

We note that for various spectral lines in Tables A.1 and A.2 the peak flux, the integrated flux, and velocity extent in the ~300
mas region are larger than in the ~800 mas aperture. The reason for this (maybe counterintuitive) result is linked to the noise-
value which is higher in the largest extraction apertures. This has two effects. Most importantly, even if the flux measured per
channel in the faint line wings are similar, the 3-times local off-source rms is higher, and hence the estimated line extent above
this cut-off is smaller. The effects of resolved out flux and dynamic range limitations may also contribute negative artefacts. The
apparent total line extent is in some cases smaller for the largest aperture compared to the 300 or 320 mas radii, affecting the
integrated flux in a second way. These effects occur more often for R Dor, which has the brighter continuum and is more likely to
have large-scale smooth continuum and line flux, as it is closer. The narrower channels also slightly worsen the uv-coverage and
thus the dynamic range problems. As a consequence, the large-aperture measurements are less reliable for compact emission.

4.2. Analysis of the spectral cubes

For each spectral feature, different properties were measured including the velocity width, the shift of the centroid with respect
to the LSR velocity of the star, the angular width, and the peak flux and integrated flux within the specified velocity interval.

The velocity span Av of single lines (or hyperfine blends of a single species) is taken to be the continuous extent above
3.50chn_rms. Asymmetry is defined as the excess velocity on the side extending further from visg (positive on the red-shifted side).
For lines blended on one side only, twice the width on the unblended side is used (so no asymmetry can be measured). If a line
has a blend on both sides (a so-called mid blend), a measurement is only made if one blend is very faint, in which case Av is an
upper limit.

To derive the angular extent of the molecular emission, we have created zero-moment (total intensity) maps (see some
examples in Sect. 5.2). For that, the total velocity extent of unblended lines was used or only the unblended side in the case of
blends. The angular extent of the emission was estimated from the moment maps by measuring the flux density in one-pixel annuli
until the flux density fell below 1.5 times the off-source rms of the moment map, and then taking the diameter of this annulus.
However, in order to investigate asymmetries and distinguish these from beam sampling, we also measured the angular extent of
the continuous 1.50rms contour enclosing the stellar position. This was used for the measurements and morphology
characterisation given in Tables A.1 and A.2. In general the measurements were in agreement, the difference providing the
uncertainty in angular size due to source asymmetry.

The zeroth moment maps were also used to compute azimuthally averaged flux densities; see some examples in Fig. 3 for IK
Tau and Fig. 4 for R Dor. These azimuthal averages are used to get a more accurate estimate of the angular extent of molecular
emission in the case of genuinely fragmented or resolved-out extended emission. These plots can also serve to retrieve the mean
molecular density assuming (1D) spherically symmetric radiative transfer models, as done for example, by Decin et al. (2017).
There are two main sources of error in the profiles measured from azimuthally averaged annuli. Where the emission is strong, the
fluctuations within an annulus are caused by clumpiness or asymmetries in the distribution of the emission, represented by the
“absolute value of the median deviation from the mean flux density”. Where the emission is weak, the uncertainty in the mean
flux density is noise dominated, represented by the “rms normalised by the square root of the number of beam areas” in the
annulus. We took the error bars as the lesser of these two metrics for the mean flux density in each annulus. The emission of NaCl
(see Fig. 3) in IK Tau is a clear example of large error bars that arise due to a very inhomogeneous morphology (see also Sect. 5.2).

The retrieved values for each of the described quantities can be found in Table A.1 for IK Tau and in Table A.2 for R Dor. The
velocity widths and spatial extents are used in Sect. 5.3 to discuss the kinematic structure of the stellar winds.



5. Discussion
5.1. Detected molecular species

For both targets, the brightest line is the vibrationally excited

305j0 v=1J=8-7 line at 336.603 GHz which has a flux density of 55 Jy (IK Tau) and 182 Jy (R Dor) for the spectrum with extraction
beam of ~300 mas radius. The detected 22Si0, °SiO, and 3°SiO lines might be prone to masering; the vibrationally excited lines
trace the regions close to the star.

Table 4 shows the large difference in chemical composition between both stars: while only SO and SOz are detected as sulphur-
bearing species in R Dor, SiS and CS are also prominently present in the high mass-loss rate star IK Tau. This is in accord with the
conclusions drawn by Danilovich et al. (2016), who suggested that for low mass-loss rate O-rich AGB stars almost all sulphur seems
to be locked up in SO and SO2, while these two molecules can not account for the total sulphur budget in high mass-loss rate O-
rich AGB stars. Current theoretical models solving the (gas-phase) chemical network (e.g. Li et al. 2016) are not able to explain this
dichotomy. Different gas-grain chemical interactions, the effect of density clumps allowing for a varying penetration of the
interstellar UV photons affecting the photochemistry (Agundez et al. 2010), or pulsation-induced non-equilibrium chemistry
(Cherchneff 2006) might be the reason for this distinction. We are currently investigating each of these effects; the results of which
will be presented in forthcoming papers (van de Sande et al. 2018b; Boulangier et al., in prep.). We note that both CS and SiS are
expected not to be present in high amounts in O-rich winds, a conclusion drawn from chemical equilibrium calculations. The
presence of these two molecules, as well as the detection of HCN in both targets, fortifies earlier claims that chemical abundances
in stellar winds can not be reliably predicted from thermodynamic equilibrium considerations, but that the complex interaction
between morphology, dynamics and (gas-grain) chemistry should be considered.

The species AlO, AIOH, TiO, TiO2, SiO, and H20 (can) play a key role in the nucleation of dust grains; the latter two molecules
as reactants in a heteromolecular formation process for silicates (Goumans & Bromley 2012), the first ones might form via
homogeneous nucleation. Decin et al. (2017) has shown that AlO, AIOH, and AICI only consume ~2% of the total aluminium content
in both targets, hence leaving ample of room for large gas-phase (Al203)s clusters and Al-bearing dust grains to form. The ALMA
data reveal that TiO gas is traceable up to 2.4 x rqust (IK Tau) and 3.3 x rqust (R Dor) and TiO2 even up to 4.5 x rqust (IK Tau) and 7.3 x
raust (R Dor), that is, well beyond the onset of the dust condensation. A similar result is found in Mira by Kaminski et al.” (2017). We
note here that only the blue-shifted emission of the two TiO lines in IK Tau is detected. The channel map of both lines shows a
clear unresolved blob of emission at those frequencies. A search in various spectroscopic database did not bring forwards another
potential identification of these two lines. Moreover, since these two lines are also detected in R Dor (at the correct central
frequency), we are convinced that both lines belong to TiO. This compact blue-shifted emission suggests outflow (towards us), the
red-shifted emission being obscured by the star. This points towards a fast radial decrease in TiO abundance. TiO can get oxidised
via the reaction TiO + OH = TiO2 + H, which is exothermic by =141 kJ mol™ (Plane 2013). The forwards reaction is fast, but the
reverse reaction is extremely slow, so that the TiO and TiO2 concentrations become nearly equal at 1000 K because the equilibrium
constant increases at lower temperatures. In addition, both the concentrations of TiO and TiO2 decay because of the formation of
metal titanates, which might be important as predecessors of condensation nuclei (Plane 2013).

Three water vapour lines are detected in each source, including the vibrational excited H20 52,3-61,6 (v2= 1) line. The two other
lines are in the vibrational ground-state with upper Jvalues of 16 or 17. The three lines are predicted to be a maser (Amano &
Scappini 1991; Feldman et al. 1993; Gray et al. 2016). All these three lines appear compact with the diameter of the maximum
angular extent being 434 mas for IK Tau and 505 mas for R Dor, or ~22 and ~8.5 R:in radius, respectively. They are, however, not
bright enough to be definitely identified as masers; higher spectral and spatial resolution would be needed to verify these
predictions.

Sodium chloride, NaCl, is only detected in IK Tau both in the main stable isotope Na3Cl and in the less abundant Na3’Cl gas
specimen. Salt has already been detected and spatially resolved with ALMA in the high mass-loss rate supergiant VY CMa
(M ~2x10"*Myr, Decin et al. 2016). It is well know that this metal halide is highly refractory and its detection in gaseous form
points towards a chemical process preventing all NaCl from condensing onto dust grains such as photodesorption, thermal
desorption or shock-induced sputtering. Its high dipole moment (1 = 9D, Mller et al. 2005) enables efficient radiative excitation
and facilitates its detection. The fact that NaCl, as is the case with SiS and CS, remains undetected in R Dor
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Fig. 5. Total intensity (zeroth moment) maps for some bright lines in IK Tau. For all lines, except NaCl(26—25), the line contours are given, each
step being 10% of the peak flux density. For NaCl(26-25), we demonstrate the arcs offset from the stellar position by showing in dotted black
line the dust continuum contours at 1%, 10%, and 90% of the peak continuum emission. The contrast in the figure is best visible on screen.
proves again the vastly distinct chemistry in both objects where (subtle) differences in pulsation-induced shocks, optical thickness,
and gas-grain chemistry can dictate the chemical structure in the wind. As pointed out by Quintana-Lacaci et al. (2016b) in their
study of the NaCl emission in the ALMA data of the carbon-rich AGB star CW Leo, NaCl can be thermalised in high-density regions,
and as such serve as a good density tracer in collisional dominated regions. This fact is used in Sect. 5.2 when giving a first view on
the morphological structure of IK Tau.

We cannot confirm earlier claims by Velilla Prieto et al. (2017) on the detection with the IRAM-30m telescope of HCO*and NO
in IK Tau. There is a potential hint of a double peaked line profile at the rest-frequency of the H2CO (51,5—41,4) line at 351.768 GHz,
but both for the red and blue shifted wing only one spectral point is around the 3—4 x ochn_rms level. A potential reason might be a
pulsation-phase dependent formation of those molecules, but a follow-up study is needed to confirm this suggestion. Several
hyperfine components of NS are detected around 348.51 GHz.

The minor isotopes of silicon (*°Si and 3°Si), oxygen (*20), and sulphur (*3S and 34S) are traced in both targets. A first-order
analysis of the isotope ratios is presented in Sect. 5.4.

5.2. First view on the molecular morphology

The channel maps and zero-moment maps testify that the excitation region of most molecular transitions is probing a complex
spatio-kinematic density distribution (see Figs. 5 and 7)s. These specific emission patterns will be addressed in some forthcoming
papers (or have already been published in the case of the Al-bearing molecules, Decin et al. 2017). This section serves to give a
first snapshot of some of the interesting features seen in both stars.

IK Tau: With the exception of NaCl, the intensity of most other molecules is centrally peaked at the position of the continuum peak
(see Fig. 5). As has been discussed by Decin et al. (2016), NaCl is a favourable molecule to study the morphological structure in
AGB stars. The fractional abundance of NaCl (w.r.t. total hydrogen content) is very low for temperatures above 1500 K (Milam et
al. 2007; Decin et al. 2016) explaining its non-detection at the stellar position. The total intensity map of NaCl in Fig. 5 and the
channel map in Fig. B.4 show the first indication of an arc-like structure at a distance of ~0.4% from the central star. Other arcs are
visible in the channel and total intensity maps of other molecules, often at further distances from the central star (see, e.g. HCN
in Fig. 5 and its channel map in Fig. B.3). As discussed by Decin et al. (in prep.) these arcs might be part of a spiral structure
embedded within the smooth stellar outflow. The realisation that these arcs are present in the molecular data, also helps in
interpreting the continuum data. As shown in Fig. 6, the gas and dust are co-located and the extended structure in the continuum
map in the north-east direction can be explained by density enhancements related to this spiral structure.

R Dor: As can be seen in the HCN zeroth moment map of R Dor, a the “horseshoe”-like structure is visible with a bright bended
feature pointing north-west out to a distance of ~1.12% (see also the HCN(4—-3) channel maps in Fig. B.2). Other features and blobs
are visible at smaller distances from the star. As discussed by Homan et al. (2018), the stereograms of R Dor argue for the presence
of a compact disk with total extent of ~30 AU (or 0.5%). It is noteworthy that we see a “hole” at the location of the star for some
of the molecules (see, e.g. HCN(4-3) in Fig. 7). The ALMA data allow us to detect an absorption feature in the blue wing for the
first time (see also Fig. 8 in Sect. 5.3). This feature arises from impact parameters that cross the central star (see
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Fig. 7. Total intensity (zeroth moment) maps for some bright lines in R Dor. For all lines, except HCN(4-3), the line contours are given, each

step being 10% of the peak flux density. For HCN(4-3), we demonstrate the position of the “blue hole” by showing by showing in dotted black
line the dust continuum contours at 1%, 10%, and 90% of the peak continuum emission. The contrast in the figure is best visible on screen.
bottom panels in Fig. 8) yielding a typical blue-shifted absorption profile, in analogy with the well-known P-Cygni profiles that trace
outflowing material in a medium for which the source function decreases with distance’. A large ratio between the stellar angular
diameter and angular beam size facilitates its detection, and is the reason for the “blue hole” to be more pronounced in R Dor
than in IK Tau. For larger beams, too much emission from impact parameters not crossing the central star and with the same
projected velocities (along the line-of-sight) is picked up and fills in the absorption hole. This blue hole is also the reason for, for
example, the radial profile of HCN 4-3 and SiO v = 0 J = 8-7 not being centrally peaked in Fig. 4.

5.3. Wind kinematics

The ALMA data offer an excellent tool to trace the wind acceleration in the regions where dust condensation is important and the
wind velocity might transit from sub-sonic to supersonic values. In Figs. 9 and 10 we plot the half-line width at zero intensity as a
measurement of the wind velocities as a function of the radial distance as indicated by half of the measured spatial FWHM. These

7 Infalling material is recognised by an inverse P-Cygni profile, see for example Wong et al. (2016).
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plots immediately show that the retrieved wind velocities are much larger than the combined effect of previously determined gas
terminal and turbulent velocity®. Using the 300 mas aperture spectra as reference, the maximum velocity traced for

8 The term “terminal velocity” is defined in Sect. 1. The “turbulent velocity” is defined as the local velocity dispersion, equal to the local line
width at 1/e relative intensity (Morris et al. 1985).
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Fig. 8. Upper panels: demonstration of the absorption feature in the blue wing of the COv=0J=3-2,28Si0v=0/=8-7,and 3SiOv=0J=8-7
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smaller the extraction aperture, the better visible is the blue absorption feature. Bottom panels: the channel map demonstrates the “blue hole”
on the stellar position for 30Si0 v = 0 J = 8-7 (at a frequency not corrected for the visg) for IK Tau (left) and R Dor (right). For reference, the
continuum contours are shown in white at (1, 3, 5, 10) x 0.141 mJy beam~1.
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with r being the distance to the star and vothe velocity at the dust condensation radius raust. A slower acceleration until larger
distances is indicated by a larger value of B. The parametrised function derived by Decin et al. (2010b) in the case of IK Tau (f = 1)
and by Khouri (2014) and Van de Sande et al. (2018a) for R Dor (B = 5) are shown in Figs. 9 and 10, respectively. Since, as we will
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see below, the data suggest a slower acceleration, we have plotted, just to guide the eye, a model with a large but arbitrary value
of B = 10. How are we to understand these large velocities? Do the ALMA data really indicate that the terminal wind velocity is
larger than previously determined? And/or do the high values for the (logarithmic) velocity gradient infer a radiation driven wind
mechanism more complex than generally deduced from the momentum equation?

Some lines detected in our survey of IK Tau were also observed by Velilla Prieto et al. (2017) using the IRAM-30 m telescope.
The velocities derived using the IRAM data are much lower compared to our values (see blue crosses in Fig. 9). However, the IRAM
data have a much higher rms noise value of 0.0128 K (or 0.14 Jy). If we were to determine the line widths of the brightest lines
using the 3o-values of IRAM as the limit, the velocities would shift down considerably (see black crosses in Fig. 9) and would be
more in line with the previously determined wind velocity profiles and gas terminal velocity. It is clear that ALMA’s increased
sensitivity allows us to detect emission over a greater velocity range than IRAM.

Blue wing line profile and stochastic velocity: Looking at the line profiles of some molecular transitions that exhibit clearly large
velocities, we can notice some distinct features (see Fig. 8), such as asymmetric profiles with a blue wing absorption (see also Sect.
5.2) and broad wings (both in the red and blue, but better visible in the blue due to the blue wing absorption). The effect is more
pronounced for R Dor than for IK Tau, and for the latter is mainly visible in the brightest lines. Even for a smooth 1D stellar wind,
it is well known that the line profiles for optically thick lines are often asymmetric, the effect often being dubbed blue wing self-
absorption®. The physical cause for this asymmetry is that non-local effects enhance the intensity in the red wing of the profile
depressing the intensity in the blue wing since the (t = 1)-layer is reached in warmer regions for the red-shifted part of the wind
as compared to the blue-shifted regions (Morris et al. 1985). Another characteristic is the appearance of an emission feature in
the blue wing of an optically thick line with extended scattering zone in cases that the telescope beam can spatially resolve the
outer line-excitation regions (Schoenberg 1988)!!. The broader the line scattering zone, that is, the larger the stochastic velocity,
the larger the emission feature. Other physical causes such as the temperature gradient and opacity have an effect on the strength
of the feature as well.

For both stars, the blue wing feature has a width at 36:ms of around 15-20 km s for the lines shown in Fig. 8. Under the
simplifying assumption of a 1D spherically symmetric wind, purely thermal motions result in a stochastic velocity distribution of a
molecule with mass similar to CO of ~1 km s7tin the warm inner wind, reducing to ~0.5 km st in the cool outer wind regions. For
a line with peak strength around 0.5 Jy beam™ (see Fig. 8) this stochastic velocity distribution induces a widening of the line profile
(at 30rms ~12 mly beam™?) of a factor of ~4 or ~4 km s™1. While this thermal velocity dispersion contributes to the line broadening,
it cannot explain the fact that various lines have widths far above the canonical terminal wind velocities.

Pulsations: Another cause for velocity disturbance in the stellar atmosphere and inner wind regions are convection-induced
pulsations in Mira-type and semi-regular variables (Bowen 1988; Liljegren et al. 2017).

Simultaneous spectroscopic monitoring of various spectral features originating in different layers and for several instances of
time during a pulsation period enables one to trace the evolution of the global velocity field throughout the outer layers of an AGB
star and thereby the mass loss process. The detailed study by Nowotny et al. (2010) shows that for Miras the radial velocity (RV)
amplitude (difference between minimum and maximum values) in the CO Av = 3 line amounts to 20-30 km s%. With an estimated
conversion factor between gas velocities and measured RV around 1.2-1.5, the difference between post-shock outflow velocity
and pre-shock infall velocity can reach values of
~35 km sL. The high-excitation vibrational CO Av = 3 sample the regularly pulsating layers of the deep photosphere. The study by
Nowotny et al. (2010) shows that the lower excitation vibrational CO Av = 2 lines trace the slow but quite steady outflow velocity
pointing towards a line formation in layers where the material is already accelerated and variations due to shock waves are low
(ARV <10 km s7%). The CO Av = 1 lines'®in the data of Nowotny et al. (2010) are blue-shifted for every instance with a measured
RV lower than the observed terminal wind velocity v- and display a ARV of only ~1-2 km s, hence they trace the outflowing
material. Most ALMA data have upper state energies lower than those of the CO Av = 1 lines for which reason the velocity variation
due to pulsations is estimated to be negligible.

These considerations allow us to conclude that the origin of the large velocities in both stars is a genuine physical mechanism
not linked to thermal motions of the gas or pulsation behaviour of the atmospheric layers. We have put forward two different
scenarios to explain the observed velocity profile: (1) a fraction of the inner wind region does not follow the smooth radially
outflowing wind but is part of a more complex morphology, and (2) the global velocity of the isotropic wind is determined by a
more gradual but ultimately more forceful acceleration than is generally assumed. We consider the merits of both of scenarios
regarding the dynamical structure deduced from the ALMA data, and their impact on our understanding of stellar evolution.

5.3.1. Scenario 1: complex 3D morphology

Zooming into the inner wind region within 400 mas, one can notice that the velocity spread is much greater in R Dor than in IK
Tau. In the case of R Dor, the cause for this large spread is partly due to a blue emission feature at 0.3% to the south-east (see Fig.
B.1). This “blue blob” is seen in almost all lines, with the main exception being the HCN lines. A direct comparison of the blue

9 We note that the term “blue wing self-absorption” is different from the term “blue wing absorption” discussed in Sect. 5.2. 11 Calculations done
for resolution on arcsec scale.
10 Upper state energies are above 2140 cm™L



profiles between both stars also elucidates that the wings in R Dor have a more gradual decrease towards the extreme velocities
(Fig. 8). As discussed by Homan et al. (2018) these wings are reminiscent of a small disk residing in the inner wind of R Dor with a
tangential velocity of ~12 km s™* at the inner rim residing at ~6 AU. The blue blob is tentatively postulated to be a potential
companion with mass of at least 2.5 earth masses. These morphologies explain the large velocity spread around 200 mas in Fig.
10.

On the other hand, the position-velocity diagrams of the ALMA CO data of IK Tau and the arc-like structures that can be
discerned in some other bright molecular lines suggest the presence of semi-concentric shells or perhaps even a (broken) spiral-
like structure (Decin et al., in prep.). The source of these density inhomogeneities might disturb the velocity structure in the inner
wind. If the spiral structure arises from the interaction with a binary companion, then wind-binary interaction models show that
the velocity of a parcel of gaseous material in the wind can be modified due to both the reflex motion of the mass-losing AGB star
and the wake induced by the companion’s gravitational potential (Kim & Taam 2012). Their results show that the wind velocity vw
(in the centre-of-mass frame) cannot exceed vu® + v,%in any direction, with vu? being the wind speed of the intrinsically isotropic
wind and v, the orbital velocity of the AGB star. If the wind of IK Tau is indeed subject to such a process, then for a measured vw
of 36 km stand vu® of 17.7 km s72, this situation would lead to an orbital velocity v,°larger than 18.3 km s™. For a star of 1 M this
would yield an orbital radius of the mass-losing AGB star lower than 2.64 AU (or 1.7 R in the case of IK Tau). As remarked by Kim
& Taam (2012), the velocity (modulated by the orbital velocity motion of the binary system) is larger than the intrinsic wind model,
which could be considered as mimicking a wind acceleration mechanism. However, no binary companion has been detected as
yet, albeit the 22 GHz water masers and OH masers give indirect support to this hypothesis, since they show evidence for multiple
shells and/or possibly a biconical outflow more-or-less face-on (Richards et al. 2012).

5.3.2. Scenario 2: enforced dynamics in an isotropic wind

While first modelling suggests that (part of) the broad wings in R Dor might be explained by a disk, an explanation for the broad
wings in IK Tau in terms of complex 3D morpho-kinematics is far more tentative. Correcting for the velocity asymmetry!?, the
velocity structure displays a relationship with upper state excitation energy for both stars (in the region beyond 400 mas; see Fig.
11) indicating that there is no evidence that all highvelocity emission comes from inner wind regions. Figs. 9 and 10 suggest a more
gradual (larger B-values) but ultimately more effective acceleration than has been derived from the momentum equation.

Focusing first on the region within 400 mas, one indeed notices that the solution to the momentum equation systematically
overestimates the derived wind velocities in IK Tau (Fig. 9). A first reason for that overestimation is that Decin et al. (2010b) have
used the opacities of Fe-rich silicates to model the wind structure. It is well known that small Fe-poor silicates or aluminium-oxides
cannot trigger the onset of a stellar wind (Woitke 2006). Fe-rich grains have higher near-infrared opacities facilitating their
importance in the photon momentum transfer, but also making them sensitive to sublimation. In addition, theoretical
considerations suggest that most of the refractory material

11 By taking the velocity side with lowest value with respect to v sz as the total velocity half-width. Using cols. (5) and (6) in Tables A.1 and A.2,
this is obtained by the simple arithmetic (“velocity width” - abs(“velocity asymmetry”))/2.
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should condense into dust grains within a few stellar radii (e.g. Héfner 2008; Hofner et al. 2016) and that grain growth and
destruction processes in that inner wind region are dominated by collision processes resulting in a grain size distribution heavily
skewed towards small grains. Therefore, Decin et al. (2006) adopt a grain size distribution nd(a,r)da = A(r)a=>nu(r)da, with a nu
being the hydrogen number density and the quantity A(r) representing an abundance scale factor giving the number of dust
particles in units of particles per H atom. This equation bears the implicit assumption of no further grain growth when the dust
particles travel through the wind. However, an interesting finding by Paquette et al. (2011) is that silicate grain nucleation occurs
over a wide range in stellar radius — from approximately seven to more than 20 stellar radii in their models. This additional
nucleation would provide more grains to capture photons and accelerate dust (and hence gas) farther from the star. We also
mention that clumpiness will have an effect on the drift velocity, since the gas might be more effectively coupled to the dust in
denser clumps.

Another point of interest is that the logarithmic velocity gradient calculated from the momentum equation is around zero in
the region beyond ~30 R: (Fig. 9). This arises when the only significant forces determining the wind dynamics are gravity and
radiation pressure on grains and for dust opacities X being independent of radius (Goldreich & Scoville 1976). A possible cause of
the high velocity gradient at large radial distances can be the increase of x(r) with radius so that the radiation pressure becomes
increasingly effective with distance from the star (Chapman & Cohen 1986). One might suggest that the relative motions of the
dust particles in the radially outflowing wind leads to grain growth such that the dust particles have fractal dimensions significantly
lower than three. This suggestion is based on the theoretical calculations done by Dominik et al. (2016) and the laboratory studies
of Krause & Blum (2004). The nucleation models by Paquette et al. (2011) and the dynamical models by Fleischer (1994) suggest
a narrow grain size distribution with a strong peak at small grain sizes in the inner wind region®2. Further out in the wind, in the
region beyond 400 mas, the relative motions of the dust particles will be governed by thermal (Brownian) motions caused by the
random collisions with the gas molecules and turbulence caused by the relative difference in stopping time (captured in the Stokes
number) for various dust particles. As discussed by Dominik et al. (2016), subsequent collisions between two aggregates of similar
small size can be described by cluster-cluster aggregation (CCA) of which the outcome is the growth of grains that have low fractal
dimensions. The details of the outcome depend on the structure of the collision trajectory of the particles and on the rotational
state of the colliding aggregates. If so, these fluffy aggregates formed beyond 400 mas might have a large impact on the radiation
pressure efficiency, since particularly in the case that the fractal dimension is approximately two their shape maximises the
interaction with the arriving photons. The main challenge for this scenario is that the dust densities are low at 400 mas so that the
time between collision of two dust grains can be in the order of years (depending on velocity and area of the dust grain) for a
smooth wind. However, if the wind is inhomogeneous, one gets clumps which may be 10 to 50 times more dense than the average
density, decreasing the collision time with the same factor. Chapman & Cohen (1986) discussed the possibility that x(r) might
increase at larger radii due to the growth of icy mantles on the surface of the already existing grains as the temperature drops.
These new, and more absorptive, coatings should however be in the order of a monolayer. If multiple monolayers are added and
the initial fractal monomers are only a nanometre or so in diameter, then one starts to close in the holes and increase the overall
fractal dimension, thus decreasing the radiative coupling efficiency. At a distance of 400 mas, the gas temperature is around 300—
600 K, too high for water to nucleate. However, molecules which are more refractory than water might condense or react if they
hit a grain.

One might wonder if this behaviour of a wind velocity larger than expected is also seen in other data of evolved AGB stars and
supergiants. Indeed, the ALMA data of the two supergiants

12 Calculations by, for example, Dominik et al. (1989) and Gobrecht et al. (2016) show a broader distribution of grain size, but all of them
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are heavily skewed towards small grain size. It is that large ensemble of small grains which is most important for the further growth of aggregates
further in the wind.

o Ori and VY CMa display velocities of ~24 and ~105 km s, much larger than the canonical terminal wind velocities of 14 and 35
km s™!(De Beck et al. 2015b; Decin et al. 2016; Kervella et al. 2018), and also in the case of the O-rich AGB stars Mira and EP Aqr a
similar behaviour is noticed (Wong et al. 2016; Homan et al., in prep.). Although one can make the argument that the wind of each
of these stars might be subject to some particular systematic dynamical pattern caused by, for instance, directiondependent
outflows, disks, spirals, or the impact of binarity, it is intriguing that the high sensitivity of ALMA is the key to cognise these high
velocity tails. Specifically, the line sensitivity in these ALMA data is around 1.6-5 mJy beam™™, for the Mira observations it was
around 2.3 mly beam™. In contrast, the ALMA sensitivity of the observations of the carbon-rich AGB star CW Leo was only around
200-300 mJy beam™ (Decin et al. 2015), and albeit a spiral is detected in the inner wind of that target, the velocities derived from
the line widths do not exceed the canonical terminal velocity of ~14.5 km s71,

The impact of higher wind velocities cannot be underestimated. The mass-loss rate is linearly dependent on the (terminal)
wind velocity, as can be seen in the equation of mass conservation dM(r)/dt = M (r) = 4nr’p(r)v(r). Hydrogen gas densities are
often derived from CO line observations under the assumption of a [CO/H;] ratio determined from stellar evolution models. If
wind velocities are indeed higher than previously determined, this would yield an increase of M by the same factor. These higher
wind velocities imply a shortening of the AGB phase since the mass of outer atmospheric hydrogen-envelope will be reduced at
higher pace, yielding a reduction of the pulsation amplitudes and hence one of the main triggers for the wind will come to an end.

5.4. Isotopic ratios

We refrain from performing a population diagram analysis of the molecules observed in the ALMA survey. The underlying
assumption of a population diagram is a Boltzmann distribution of states that applies to an isothermal gas in local thermodynamic
equilibrium (LTE). The zero-moment maps prove that all molecular transitions are formed over a substantial part of the
circumstellar envelope and hence the isothermal assumption does not hold, rather a temperature gradient should be taken into
account. Also, molecules with a large dipole moment are mainly radiatively excited by stellar and/or dust photons for which reason
LTE is not a valid assumption. As demonstrated by Kaminski’ et al. (2013) deviations from these assumptions are the reason that
one cannot reproduce many molecular population diagrams by a single linear fit and hence any conclusions in terms of excitation
temperature or column densities should be considered with care. We intend to analyse the molecular excitation and retrieve the
proper molecular abundances under the assumption of statistical equilibrium in forthcoming papers (Danilovich et al., in prep.).

It is tempting, though, to have a first look at isotopic ratios as derived from the observed emission of isotopologues. These
ratios yield constrains on the AGB nucleosynthesis, stellar mass and age, and the Galactic environment in which the star was born.
Analogous limitations as in the case of a population diagram analysis hold here as well. Observed line intensity ratios provide us
only with a valid indicator of an isotopic ratio in the case of (i) no or the same correction for line optical thickness, (ii) no or the
same effect of radiative pumping, and (iii) given high-spatial resolution one should trace the same excitation region. These
limitations are often formulated together such that the method of line intensities ratios is only valid under the assumption of
optically thin emission in LTE, although they can be relaxed a bit under the conditions summed up before. The high spatial
resolution of ALMA offers us a possibility to properly address point (iii). The most difficult point to assess, without in-depth
modelling, is point (ii); it is also the reason to exclude potential masers (such as the numerous 22Si0, 2°SiO, and 3°SiO lines in our
data) as isotope tracers. To address point (i), we will only consider isotope ratios of the minor isotopologues, specifically of 2°Si,
30sj, 335, 345, and 3’Cl. The latter one will be compared to the main stable isotope 3°Cl. Isotopologues probing these ratios are
255iS,30sis, Si33S, Si34s, 335013, 3450, Na*>Cl, and Na3’Cl. For all species, with the exception of NaCl, intensity ratios of lines with the
same quantum numbers are considered to be compliant with point (iii). For NaCl this was not possible, and the Na3°Cl J = 27-26
and J = 26-25 lines are compared to the Na3>ClJ = 28-27 transition. Line intensity ratios are corrected for the difference in Einstein
A-coefficient, or in terms of the quantities given by the CDMS database the predicted integrated intensity (at 300 K), the frequency,
the rotational-spin partition function, and the lower state energy. In the case of NaCl, also a correction for the upper state
degeneracy is taken into account. Since neither SiS or NaCl are detected in R Dor, only the 3S/33S ratio can be derived. Often, only
one corresponding transition between both isotopologues is available since we also exclude lines that are blended or resolved out.
As a consequence, no formal uncertainty on the derived ratio can be calculated. For IK Tau, we derive that 2°Si/3°Si = 4.1, 345/33S =
5.6 + 0.36, and 3*CI/3’Cl = 1.1 + 0.21, while for R Dor 345/335 =~ 7.8 + 0.7.

The large dipole moment of NaCl (i = 9 D)**implies a large uncertainty on the derived 3°Cl/3’Cl fraction, since these lines might
be highly sensible to radiative pumping via, for example, line overlap even in other transitions. This might explain why the derived
ratio is much lower than what has been derived for the Sun, interstellar medium, some dense interstellar clouds, and the carbon-
rich AGB star IRC+10216 which all have values around 3.1 (Cernicharo et al. 2010a,b; Agindez et al. 2011). 35Cl and 3’Cl are thought
to be formed during explosive oxygenburning in supernovae (Jaschek & Jaschek 2009) and should not be modified during the red
giant and asymptotic giant phase evolution of low mass stars. As such, it is expected that the 3°CI/3*’Cl ratio in IK Tau should be
close to the value of its parental cloud.

13 The hyperfine components of 3350 have been summed when comparing to the non-hyperfine molecule 34SO.
14 The dipole moments of SiS and SO are only 1.735 and 1.535 D, respectively.



The isotopes 23S and 3*S are mainly products of oxygen burning (Chin et al. 1996; Mauersberger et al. 1996) with 3*S being quite
sensitive to metallicity (Woosley & Weaver 1995). These isotopes and their relative ratio are not expected to be modified during
the evolution of a low-mass star. Indeed, the 34S/33Svalues derived for IK Tau and R Dor are close to values for the interstellar
medium (6.27 + 1.01, Chin et al. 1996) and solar system (=5.5, Kahane et al. 1988); the same conclusion was reached in the case
of the carbon-rich AGB star IRC+10216 (5.7*-% %, Kahane et al. 1988).

The silicon isotope fraction 2°Si/3%Si of IK Tau is slightly higher than the value derived by Decin et al. (2010b), being 2°Si/3Si = 3
with an uncertainty of a factor of 2. We refer to the in-depth discussion on the silicon isotope ratios, including the ratio w.r.t. 28Si,
by Decin et al. (2010b). The specific 2°Si/3°Si ratio is considered to be quite high. Compared to the solar isotopic ratio, (2°Si/3°Si) =
1.52, IK Tau seems underabundant in neutron-rich Si isotopologues. Zinner et al. (2006) studied the change in silicon isotopic ratios
when stars evolve along the asymptotic giant branch, but they found that no noticeable changes occur in the Siisotopes when the
star is still O-rich. Consequently, for these O-rich AGB stars the silicon isotope ratios reflect the interstellar cloud out of which the
star was born. As such, Decin et al. (2010b) suggested that IK Tau was born in an interstellar medium with a mixture enriched by
X-type grains of which supernovae type Il are thought to be main contributors.

6. Summary

In this paper we have presented the first ALMA spectral survey of two oxygen-rich AGB stars. The high mass-loss rate star

IK Tau (M ~5 x 10* M yr) and low mass-loss rate star R Dor (M" ~1 x 10”7 Myr~!) were surveyed between 335 and 362 GHz at a
spatial resolution of ~150 mas. This spatial resolution corresponds to the locus of the main dust formation in both stars. Some 200
molecular features were detected in each source, arising from 34 molecules (including isotopologues). Careful analysis of the
spectra, total intensity maps and radially averaged flux density profiles lead to the compilation of a spectral atlas for both sources,
which is visually represented in Figs. A.1 and A.2 and tabulated in Tables A.1 and A.2. This atlas can be used to retrieve the
molecular abundance structure in the envelope, deduce the local and global morphology patterns, analyse the kinematics, etc.
Moreover, the atlas is very useful to shape future observing programmes for ALMA, SMA, PdBI, etc.

Specifically, the ALMA data cover transitions from AICI, AlO, AIOH, CO, CS, H20, HCN, NS, NaCl, SO, SO, SiO, SiS, TiO, and TiO2
with some of their isotopologues, including rotational lines in both the ground state and vibrational excited states. SiO lines are
detected up to v = 5. A clear dichotomy is seen in the sulphur chemistry of both stars: whereas (almost) all sulphur seems to be
locked up in SO and SO2in R Dor, while CS and SiS are also prominently present in IK Tau. NaCl and NS are detected in IK Tau, but
not in R Dor. As discussed by Decin et al. (2017), the gas-phase aluminium chemistry between both targets is clearly different. TiO
and TiOzare detected well beyond the main dust condensation region in both stars, indicating that some fraction does not partake
in dust nucleation and growth.

The channel maps and total intensity maps testify to a complex wind morphology and show the presence of blobs, arcs, and/or
a small disk in the inner wind region. This nonhomogeneous density distribution will have a profound impact on the ongoing
chemical processes, since lower density regions will allow energetic interstellar UV photons to penetrate deeper into the envelope,
resulting in a more active photochemistry in these inner winds. This process might explain the detection of molecules, such as
HCN, SiS and CS. These molecules are indicators of a carbon-rich chemistry, and their detection in an oxygen-rich environment
points towards processes such as photochemistry and/or pulsation-induced shocks yielding a non-equilibrium chemistry.

The high sensitivity of ALMA allows us to study the weak wings of the line profiles and from that deduce the wind velocity
structure in the transition region from sub-sonic to supersonic values. Surprisingly, a large fraction of lines display line widths, and
hence velocities, well beyond the canonical wind terminal velocity, for both stars. These large velocities have remained undetected
in previous observations. A (tentative) spiral-like structure in IK Tau, and a small disk combined with a blueshifted blob in R Dor
might explain (part of) these large velocities. A correlation between the wind velocity and excitation temperature seems to suggest
that a more gradual but finally more forceful acceleration is shaping the wind speed of the intrinsically radially outflowing material.
We propose that the further growth of grains in the region beyond ~30 R-leads to fractal grains with fractal dimension around
two, hence increasing the radiation pressure efficiency in that part of the wind.

Quite a few species show a “hole” at the stellar position in the blue-shifted channel maps, manifested in the spectrum as a
blue wing absorption feature. This is particularly prominent for brighter lines and for spectra extracted with an aperture
comparable to the stellar diameter. The cause of this blue hole is the crossing of impact parameters through the stellar disk and
the outflowing material, much in analogy with the classical P-Cygni profiles in massive-star winds. Assuming that the emission at
extreme blue and red-shifted velocity arises from (complex) 3D structures which barely contribute to the line-of-sight emission at
impact parameters crossing the stellar surface, the sharp edge of the blue absorption peak allows us to determine the terminal
plus turbulent velocity of the (classical) isotropic wind.
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ALMA spectral atlas of IK Tau and R Dor between 335 and 362 GHz
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Fig. A.1. ALMA spectral atlas of IK Tau between 335 and 362 GHz extracted for a circular beam with an aperture of 320 mas. Data are displayed

per 3 GHz frequency band; a zoom to better visualise the weaker lines is shown in the bottom panels.
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Fig. A.2. ALMA spectral atlas of R Dor between 335 and 362 GHz extracted for a circular beam with an aperture of 300 mas. Data are displayed

per 3 GHz frequency band; a zoom to better visualise the weaker lines is shown in the bottom panels.
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Fig. A.2. continued.
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Appendix B: Channel maps

In this section, we present the HCN(4-3) channel maps of R Dor and IK Tau, and the NaCl(26—25) channel map of IK Tau. These
channel maps serve as support of the discussion in Sect. 5.2.
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Fig. B.1. Channel map of the SO (134,10-133,11) emission in R Dor. The circle denotes the place of maximum dust emissivity (taking the contours
at 1%, 10 and 90% of the total flux). An extra blob appears at ~0.3% from the central position in the blue channel maps.
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Fig. B.2. Channel map of the HCN(4-3) emission in R Dor. The circle denotes the place of maximum dust emissivity (taking controus at 1% and
99% of the total flux). The contrast is best visible on screen.
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Fig. B.3. Channel map of the HCN(4-3) emission in IK Tau. The circle denotes the place of maximum dust emissivity (taking controus at 1% and
99% of the total flux). The contrast is best visible on screen.
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Fig. B.4. Channel map of the NaCl(26—25) emission in IK Tau. The circle denotes the place of maximum dust emissivity (taking controus at 1%
and 99% of the total flux). The contrast is best visible on screen.
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