
A Framework for Software Health Management using Bayesian
Statistics

—Position Paper—
Yuning He
yuning.he@nasa.gov

NASA Ames Research Center
Moffett Field, CA

Johann Schumann
johann.m.schumann@nasa.gov

SGT, Inc/KBR, NASA Ames Research Center
Moffett Field, CA

ABSTRACT
As size and complexity of safety-critical software systems increase,
Software Health Management (SWHM) must make sure that the
software always remains in safe and healthy regions of the state
space. Boundaries between healthy and unhealthy regions are
important for the detection of violations and health management.
In this position paper, we present a framework, which employs
techniques from Bayesian statistical modeling and active learning
to efficiently characterize health boundaries in high-dimensional
spaces. We will discuss, how this framework supports SWHM dur-
ing design time and during operation of learning/adapting software
systems.

ACM Reference Format:
Yuning He and Johann Schumann. 2020. A Framework for Software Health
Management using Bayesian Statistics —Position Paper—. In IEEE/ACM 42nd
International Conference on Software Engineering Workshops (ICSEW’20),
October 5–11, 2020, Seoul, Republic of Korea. ACM, New York, NY, USA,
4 pages. https://doi.org/10.1145/3387940.3392208

1 INTRODUCTION
Size and complexity of software found in safety-critical systems
has increased tremendously. Systems like self-driving automobiles,
unmanned aerial systems (UAS), or large and complex IoT (Internet
of Things) systems need large software components for proper
operation, which often contain machine-learning a lgorithms, arti-
ficial intelligence (AI) systems, or advanced and complex sensor
and image processing systems. Their proper operation, under all
circumstances, is of utmost importance. Malfunctions of such sys-
tems can cause loss of human life, substantial damage, or mission
failure.

Therefore, such systems are considered highly safety-critical
and rigorous verification and validation (V&V) of the software
is mandatory. However, most traditional V&V techniques cannot
be applied to such advanced systems. For example, the V&V of
Deep Neural Networks (DNN) is still in its infancy [3], although
numerous techniques have been developed.

Here, techniques for Software HealthManagement (SWHM) [16],
are important and useful to ensure that the software and system

ACMacknowledges that this contributionwas authored or co-authored by an employee,
contractor, or affiliate of the United States government. As such, the United States
government retains a nonexclusive, royalty-free right to publish or reproduce this
article, or to allow others to do so, for government purposes only.
ICSEW’20, October 5–11, 2020, Seoul, Republic of Korea
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7963-2/20/05. . . $15.00
https://doi.org/10.1145/3387940.3392208

always remains safe, even under adverse conditions. Typically, run-
time monitors are the basis of Health Management Systems that,
combined with a reasoning component [15], can detect if the soft-
ware is healthy or not while the system is in operation. A deviation
of system safety, performance, or other behavior from its nominal
behavior can not only point to a specific failure, but also provides
information about a decline in system and software health. In such a
case, contingency measures, like reconfiguration, use of alternative
software, or graceful degradation, just to mention a few, can be trig-
gered to attempt to return the software back into a healthy state, or
at least try to minimize damage. Numerous successful applications
and approaches toward SWHM, often combined with diagnostics
and prognostics components have demonstrated the necessity of
SWHM for large and safety-critical real-life software applications
[16].

Figure 1: Trajectories of the flight AF-447. Image from [2]

A system obviously can only operate safely within given bound-
aries. Such safety-boundaries, exist in a usually high-dimensional
state space of the system and separate safe system/software opera-
tion from unsafe behavior. A simple example might be the opera-
tional characteristics of an aircraft [9]: the range of airspeed, under
which an aircraft can safely stay in the air strongly, and non-linearly
depends on parameters like temperature and altitude. The pilot (or
the controlling autopilot software) must always ensure that the
aircraft remains within this safety envelope. Only then, system
and software health can be assured. This situation is demonstrated
in Figure 1, which shows the speed (in % of speed of the sound)
and altitude of the ill-fated flight AF-447 before its crash into the
Atlantic Ocean [2]: the solid line annotated with time points marks
the behavior of the aircraft. Starting out with a good speed of about

https://doi.org/10.1145/3387940.3392208
https://doi.org/10.1145/3387940.3392208

ICSEW’20, October 5–11, 2020, Seoul, Republic of Korea Yuning He and Johann Schumann

0.83 mach at an altitude of 35,000ft, sensor failures (in the Pitot
tubes) and a resulting erroneous behavior of the flight software
caused a reduction of speed of the aircraft at roughly the same
altitude (point of operation moves to the left on the solid line).
Whereas the area on the lower right is a safe operational region
for the aircraft, lower speeds at high altitude cause stalls and lead
to a crash. Several safety-boundaries (inverted U-shaped curves)
that have been determined by the aircraft designer separates these
areas. Due to the failures and misinterpretation of information by
the pilots, the aircraft leaves the safe operational area and enters
unsafe regions, eventually leading to the fatal crash; the system
state thus goes from healthy to extremely healthy.

SWHM must be aware of such safety boundaries in order to
be able to determine the health of the system and software. As
becomes evident from Figure 1, such boundaries are often non-
linear and can have complicated geometric shapes. Figure 2 shows
an abstract high-level view for a two-dimensional projection, which
contains several regions of good health. SWHM must ensure that
the operating point of the system remains well inside the health
and safe regions at all times. In Figure 2, the blue operating point is
well in healthy region; the magenta circle, however, is close to the
boundary, indicating a potential health problem. It is obvious that
the SWHM has to be aware of the safety and health boundaries.

poor health

good

health

Figure 2: Healthy and unhealthy regions in 2D state space.
Health boundaries are shown as solid lines.

In this position paper, we present a statistical framework for
the detection and characterization of safety and health boundaries.
A surrogate model of the system is constructed by exercising the
system with generated test cases or scenarios. The results of each
test are used to incrementally improve the statistical surrogate
model. By using methods from computer experiment design and
active learning, the number of cases to reliably model the areas
near the boundaries can be kept low. We present the architecture of
our framework, which can also estimate the boundary shapes and
return easy-to-understand geometric descriptions that can provide
feedback to the system designer or software health management
specialist.

Our framework is mainly being used for the analysis and SWHM
of software systems that interact with the physical world (cyber-
physical systems). Although those systems are controlled by soft-
ware, the health boundaries are often defined or at least influenced
by physical laws (e.g., aircraft dynamics) and thus tend to be con-
tinuous.

Software per se, on the other hand is discrete. However, when
considering larger and complex software systems, their behavior
can often be approximated by continuousmodels and thus amenable
to analysis by our framework. Typical examples, as might show
up, for example, in distributed systems or Linux software ecosys-
tems, include use of resources (memory, CPU load), response times,
failure rates, and such. Allowing such a system to enter unsafe
and unhealthy regions can lead to overall degradation of system
health and potentially catastrophic results. For example, the Mars
rover "Spirit" [13], went into a reboot loop, because the on-board
file system had not been emptied prior to landing and was thus
growing too large. That growth, however, had not been monitored.

Therefore, our framework can be applied to complex and poten-
tially distributed software systems as, for example, in software
eco-systems [1] Here, software health is often related to perfor-
mance criteria, e.g., resource consumption, response times, avail-
ability of services. Here again, boundaries can be found that sepa-
rate the behavior of a healthy system from behavior caused by an
unhealthy software. Our framework can also be applied to systems,
that can change dynamically due to unforeseen circumstances, fail-
ures, reacts to environmental influences or undergoes evolutionary
processes. A very important question for SWHM for such system
is on how to ensure that the health of the software system can be
retained during such an adaptation and change.

Techniques, which are being used successfully for the prognosis
of the health state of physical systems, like batteries [6] or power
electronics [18], or hydraulic valves [11] could also be easily adapted
toward prognostics algorithms for software systems.

In the remainder of this position paper, we briefly describe our
framework based upon hierarchical statistical modeling and tech-
niques of Computer Experiment Design and active learning, and
then discuss the application of out framework for Software Health
Management of large and complex safety-critical systems.

2 SWHM ARCHITECTURE
Figure 3 shows the high-level architecture of our framework for the
analysis of system and software health. On the right-hand side of
the figure, we have our “system under test”, the software system, for
which health boundariesmust be determined and characterized. The
system is exercised using a newly generated test case or scenario,
which has been produced by our framework as described below. The
system behavior is evaluated and compared against given health
requirements in order to determine if the system under test is
healthy or not under the given conditions and parameters.

The result of the test run is then used to refine our statistical
health surrogate model (Figure 3-left). For the representation and
construction of the model, we are using Dynamic Regression Trees
(DynaTrees) [7, 17], a dynamic Gaussian process model based upon
Particle Filters. DynaTrees are regression and classification learning
models with complicated response surfaces in on-line application
settings. This kind of models is thus ideally suited to capture and
represent the boundaries that separate healthy from unhealthy
system states.

DynaTrees create a sequential tree model whose state changes
over time with the accumulation of new data. We use this property

A Framework for Software Health Management using Bayesian Statistics ICSEW’20, October 5–11, 2020, Seoul, Republic of Korea

new test case

Design

Experimental

Computer

active learning

model
statistical

Health
Requirement

SWHM

boundary
shape estimation

Software

System

healthy?

Figure 3: High level architecture of our testing framework

to incrementally refine the model using new test cases that are
produced by our active learning module (left top of Figure 3).

For the efficient generation of most informative test cases, we
use active learning and techniques from Computer Experimen-
tal Design. Classical active learning algorithms (e.g., [5, 12]) use
search metrics that focus on under-explored regions in the domain
space in order to substantially reduce the number of test cases to
characterize the model, compared to combinatorial exploration or
randomized methods. Inspired by [10] and work on contour finding
algorithms, we loosely follow [14] and define our boundary-aware
metric boundary-EI (Expected Improvement) [8, 9] that puts the
focus of the search into regions, which are close to boundaries,
which separate safe from unsafe regions. Because our framework
constructs a model of the response probability surface (with the
boundary defined by p = 0.5), our algorithm can deal with continu-
ous health assessments in the range between 0 and 1.

Using our EI metric, our framework explores the input space
in an intelligent manner, focusing on finding new data points in
“interesting” and potentially “troublesome” areas, near boundaries
between healthy and unhealthy regions. This exploration able to
cover the entire input space with a low number of data points.

Our framework can also estimate and characterize the geometric
shapes of the boundaries using Bayesian techniques [8]. These
parameterized shapes (e.g., hyperplanes, spheres, polygons), taken
from a library can provide valuable feedback and insights to the
designer of the software system, can facilitate the understanding
of the current system health and support decision making.

3 DISCUSSION
Many traditional systems for software health management are mon-
itoring the system health against a number of predefined “thresh-
olds”. In contrast, our framework uses efficient techniques to itera-
tively construct a statistical surrogate model for representing the
health boundaries that separate health regions of the software from
unhealthy ones. Such boundaries in the high-dimensional state

space can have complex and nonlinear forms that (a) would usually
not be represented by design-time “thresholds”, and (b) reflect the
real behavior of the system in its current state and environment.

The latter is of particular importance, if the software changes
or adapts over time and does not necessarily behave exactly as
originally designed. An adaptive aircraft controller, like the NASA
Intelligent Flight Control System (IFCS) [4] adapts toward a dam-
age to keep the aircraft safe and controllable in the air. Software
systems, which contain machine-learning or AI components or fea-
ture Self-* properties [19] also belong into this category. Similarly,
growing software eco-systems may exhibit changing, adaptive, or
emerging behavior. Health management for a software system that
changes over time to, for example, adapt toward a (hardware) fail-
ure or damage, or uses online technique to dynamically optimize its
behavior, poses additional challenges: Firstly, the temporal aspects
of the adaptation must be considered for health management. For
example, if the adaptation of a damage-adaptive controller happens
too fast, oscillations may occur, which could lead to dangerous sit-
uations and poor/non-existing system health. Secondly, transients
that can occur during system adaptation or reconfiguration, are usu-
ally a sign of poor software health if they become too large. Finally,
the health boundaries of the software can change in potentially
unforeseen ways during adaptation.

In such situations, on-line determination of the health-boundaries,
which change dynamically during system operation is of utmost
importance. Figure 4 shows how health-boundaries can change
during system adaptation, learning, or optimization. Restriction
to statically defined boundaries could lead to wrong health assess-
ments.

poor health

good

health

good

health

Figure 4: Software Health boundaries are changing during
adaptation/learning/optimization (blue arrows). Operating
point (magenta) is well in healthy region before adaptation,
but close to unhealthy area after adaptation.

Such changing boundaries must be characterized during system
operation. Therefore, the effort necessary to determine these bound-
aries must be kept as low as possible. Our customized metrics for
active learning can the number of required test cases and system
evaluations in high-dimensional spaces.

We are therefore confident that our statistical framework using
hierarchical models and active learning can provide substantial
benefits for system and software health management, in particular
for adaptive and learning systems, like AI systems.

ICSEW’20, October 5–11, 2020, Seoul, Republic of Korea Yuning He and Johann Schumann

REFERENCES
[1] Carina Alves, Joyce Aline Pereira de Oliveira, and Slinger Jansen. 2017. Software

Ecosystems Governance - A Systematic Literature Review and Research Agenda.
In ICEIS 2017 - Proceedings of the 19th International Conference on Enterprise Infor-
mation Systems, Volume 3, Porto, Portugal, April 26-29, 2017, Slimane Hammoudi,
Michal Smialek, Olivier Camp, and Joaquim Filipe (Eds.). SciTePress, 215–226.
https://doi.org/10.5220/0006269402150226

[2] BEA. 2012. Final Report on the accident on 1st June 2009 to the Airbus A330-203
operated by Air France Flight AF 447. Technical Report. Bureau d’Enquêtes et
d’Analyses pour la sécurité de l’aviation civile.

[3] Markus Borg, Cristofer Englund, Krzysztof Wnuk, Boris Duran, Christoffer
Levandowski, Shenjian Gao, Yanwen Tan, Henrik Kaijser, Henrik Lönn, and Jonas
Törnqvist. 2018. Safely Entering the Deep: A Review of Verification and Valida-
tion for Machine Learning and a Challenge Elicitation in the Automotive Industry.
CoRR abs/1812.05389 (2018). arXiv:1812.05389 http://arxiv.org/abs/1812.05389

[4] John Bosworth and Peggy Williams-Hayes. 2007. Flight Test Results from the NF-
15B Intelligent Flight Control System (IFCS) Project with Adaptation to a Simulated
Stabilator Failure. Technical Report NASA/TM-2007-214629. NASA.

[5] D. A. Cohn. 1996. Neural Network Exploration using Optimal Experimental
Design. Advances in Neural Information Processing Systems 6, 9 (1996), 679–686.

[6] M. Daigle and C. Kulkarni. 2013. Electrochemistry-based Battery Modeling for
Prognostics. In Annual Conference of the Prognostics and Health Management
Society 2013. 249–261.

[7] R. Gramacy and N. Polson. 2011. Particle learning of Gaussian process models
for sequential design and optimization. Journal of Computational and Graphical
Statistics 20, 1 (2011), 467–478.

[8] Yuning He. 2012. Variable-length Functional Output Prediction and Boundary
Detection for an Adaptive Flight Control Simulator. Ph.D. Dissertation. University
of California at Santa Cruz.

[9] Yuning He. 2015. Online detection and modeling of safety boundaries for
aerospace applications using active learning and Bayesian statistics. In 2015
International Joint Conference on Neural Networks, IJCNN 2015, Killarney, Ireland,

July 12-17, 2015. IEEE, 1–8. https://doi.org/10.1109/IJCNN.2015.7280595

[10] D. Jones, M. Schonlau, and W. J. Welch. 1998. Efficient Global Optimization
of Expensive Black Box Functions. Journal of Global Optimization 13 (1998),
455–492.

[11] C. Kulkarni, M. Daigle, G. Gorospe, and G. Goebel. 2014. Validation of Model-
Based Prognostics for Pneumatic Valves in a Demonstration Testbed. In Annual
Conference of the Prognostics and Health Management Society 2014.

[12] D. J. C. MacKay. 1992. Information–based Objective Functions for Active Data
Selection. Neural Computation 4, 4 (1992), 589–603.

[13] T. Neilson. 2005. The Mars Rover Spirit FLASH anomaly. 4186 – 4199. https:

//doi.org/10.1109/AERO.2005.1559723

[14] Pritam Ranjan, Derek Bingham, and George Michailidis. 2008. Sequential Experi-
ment Design for Contour Estimation from Complex Computer Codes. Techno-
metrics 50, 4 (2008), 527–541.

[15] J. Schumann, T. Mbaya, O. Mengshoel, K. Pipatsrisawat, A. Srivastava, A. Choi,
and A. Darwiche. 2013. Software Health Management with Bayesian Networks.
Innovations in Systems and Software Engineering (2013).

[16] Ashok N Srivastava and Johann Schumann. 2013. Software health management:
a necessity for safety critical systems. Innovations in Systems and Software
Engineering 9, 4 (2013), 219–233.

[17] Matthew A. Taddy, Robert B. Gramacy, and Nicholas G. Polson. 2011. Dynamic
Trees for Learning and Design. J. Amer. Statist. Assoc. 106, 493 (2011), 109–123.
http://EconPapers.repec.org/RePEc:bes:jnlasa:v:106:i:493:y:2011:p:109-123

[18] Lifeng Wu, Jing Yang, Zhen Peng, and Hongmin Wang. 2017. Remaining use-
ful life prognostic of power metal oxide semiconductor field effect transistor
based on improved particle filter algorithm. Advances in Mechanical Engineer-
ing 9, 12 (2017), 1687814017749324. https://doi.org/10.1177/1687814017749324

arXiv:https://doi.org/10.1177/1687814017749324
[19] P. Zhou, D. Zuo, K. M. Hou, Z. Zhang, J. Dong, J. Li, and H. Zhou. 2019. A

Comprehensive Technological Survey on the Dependable Self-Management CPS:
From Self-Adaptive Architecture to Self-Management Strategies. Sensors (Basel,
Switzerland) 19, 5 (2019), 1033. https://doi.org/10.3390/s19051033

https://doi.org/10.5220/0006269402150226
http://arxiv.org/abs/1812.05389
http://arxiv.org/abs/1812.05389
https://doi.org/10.1109/IJCNN.2015.7280595
https://doi.org/10.1109/AERO.2005.1559723
https://doi.org/10.1109/AERO.2005.1559723
http://EconPapers.repec.org/RePEc:bes:jnlasa:v:106:i:493:y:2011:p:109-123
https://doi.org/10.1177/1687814017749324
http://arxiv.org/abs/https://doi.org/10.1177/1687814017749324
https://doi.org/10.3390/s19051033

	Abstract
	1 Introduction
	2 SWHM Architecture
	3 Discussion
	References

