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1. Abstract 

In the Puget Sound region of Washington, high levels of air pollutants put residents’ health at risk by 

increasing their likelihood of developing critical respiratory conditions. This project used remotely-sensed 

data to investigate aerosol optical depth (AOD) from NASA satellite sensors including the Terra and Aqua 

MODerate Resolution Imaging Spectroradiometer (MODIS) and European Space Agency Copernicus 

Sentinel-5 Precursor TROPOspheric Monitoring Instrument (TROPOMI). The team visualized the most 

recent data in Google Earth Engine (GEE) API to display air pollution trends in Washington State, which 

will support the Puget Sound Clean Air Agency’s (PSCAA) decision-making processes. The team performed 

linear regressions using the Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm to 

form a relationship between ground-level microscopic particles (PM2.5) and AOD in the Puget Sound region, 

validating the relationship using concentration readings taken from Environmental Protection Agency (EPA) 

air quality monitors. The team utilized estimated PM2.5 and other satellite data to produce a web-based tool 

and to evaluate the effectiveness of using such a tool for near real-time air quality monitoring within a 

particular region. The team found that the tool provides useful supplementary data that fills in the gaps of the 

PSCAA’s air monitoring network. 
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2. Introduction 

2.1 Background Information 
Over the last decade, understanding of the dangers to human health from poor air quality has increased and 
led to heightened concerns over air quality worldwide. On a global scale, mortality from air pollution in urban 
areas ranges from 13 to 125 deaths per 100,000 people (Anenberg et al., 2019). Pollution levels spiked during 
the Industrial Revolution, and negative conditions peaked in the United States in 1948, when a deadly smog 
event occurred in Donora, Pennsylvania. Due to the city’s bowl-like geological features, an inversion event 
trapped clouds of toxic smog from the city’s many industrial plants at ground level, impairing visibility and 
triggering health consequences. The smog killed 20 people and left thousands with serious respiratory health 
conditions (Jacobs et al., 2018). This event sparked the Clean Air Act, giving the federal government authority 
to enforce regulations on air pollution (Ross et al., 2012). Despite improvement since the Clean Air Act 
passed, air quality remains one of the top ten risks to human health in urban areas around the world, even in 
those with generally low pollution levels (Anenberg et al., 2019).  
 
Aerosols are categorized based on the size of particulate matter (PM); ultrafine PM ranges from less than 0.1 
µm to <2.5 µm, fine PM is 2.5 µm, and coarse PM ranges from >2.5 µm to 10 µm. Fine and ultrafine 
particles (PM2.5) can originate from a variety of natural and anthropogenic sources, including volcanic 
eruptions, wildfires, and industrial combustion. Of all aerosols, fine and ultrafine particles are responsible for 
most of the damage to human health, and pose a serious health risk both from short-term and long-term 
exposure (Kennedy, 2007). Health effects include lung cancer and cardiopulmonary mortalities (Liu et al., 
2009). Cells in the lungs absorb inhaled particulate matter, allowing it to enter the circulatory system and 
become lodged in vital organs (Kennedy, 2007). Populations at high risk include children, elderly people, 
pregnant women, and people with pre-existing respiratory conditions (Balbus & Malina, 2009). Johnston et al. 
estimated that 339,000 premature deaths occur annually due to exposure to landscape fire smoke (2012). 
Research on hazardous pollutants found that biomass burning from wildfires or stoves and black carbon 
from diesel exhaust are the primary sources of atmospheric PM2.5 in Seattle, Washington (Wu et al., 2007). 
Wildfires in particular cause concern for residents in Washington. Although not all of Washington State 
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suffers from wildfires each year, particulate matter from fires elsewhere in the Pacific Northwest reaches 
Washington and worsens air quality there. Seattle and the Puget Sound region, in particular, suffer from poor 
air quality due to wildfire particulate matter because of the topography of the region; atmospheric inversions 
frequently trap pollutants in the valley (E. Saganić, personal communication, February 6, 2019). 
 
On-the-ground networks of air quality sensors tend to be sparse, and their data do not cover large areas, 
leaving gaps in available air quality data. Remote sensing makes it possible to fill in those gaps by providing 
spatially comprehensive data on pollutant concentrations (Hu et al., 2013), although it also only provides data 
influenced by the entire atmospheric column and with a coarser temporal resolution than in situ data 
(Lyapustin & Wang, 2018). Satellite sensors can detect concentrations of pollutants such as nitrogen oxides, 
sulfur dioxide, and ozone directly. PM2.5 concentrations must be estimated from satellite aerosol optical depth 
(AOD), which is a measure of the amount of light scattered or absorbed by aerosols in the atmosphere (Hu et 
al., 2013). To estimate PM2.5 concentrations from AOD, previous studies have created models from on-the-
ground data and satellite-derived AOD, which begins to provide accurate estimates (Schaap et al., 2009). 
Some studies included other meteorological and land use variables such as relative humidity, boundary layer 
height, and population density to improve model accuracy (Hu et al., 2013; Hu et al., 2014). Local 
meteorology and land use patterns influence the relationship between AOD and PM2.5, so local calculations 
are necessary to create accurate models (van Donkelaar, 2010). To further improve accuracy, some studies use 
geographically weighted regression models to provide information specific to smaller regions (Hu et al 2013, 
Fotheringham et al., 1998). 
 
For this study, the Spring 2020 NASA DEVELOP Washington Health & Air Quality team investigated 
current air pollution trends in Washington State using a tool created in Google Earth Engine (GEE) (Figure 
1). The tool uses remote sensing data from the Terra, Aqua, and Sentinel-5P satellites to display up-to-date 
concentrations of air pollutants. The tool allows for a view of air pollution that would be difficult to monitor 
using ground sensors alone due to their inability to track the pollutants higher in the troposphere (M. 
Newchurch, personal communication, February 26, 2020). 
 

 

 

Figure 1. Study area map of Washington State with Snohomish, King, Pierce, and Kitsap Counties 
highlighted. 
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2.2 Project Partners & Objectives 
The team partnered with the Puget Sound Clean Air Agency (PSCAA), a regional governmental organization 
working in four counties surrounding the Puget Sound in Washington State. The PSCAA works to enforce 
regulations set by the federal Clean Air Act and the Washington Clean Air Act and to monitor and educate 
residents about local air quality (PSCAA, 2014). The agency has eighteen on-the-ground air quality sensors in 
their jurisdiction, mostly around Seattle, which provide information on concentrations of air pollutants 
including PM2.5 and nitrogen oxides (PSCAA, n.d.a; PSCAA, n.d.b). Because their ground sensors do not 
provide data for the entire region and cannot track pollutants above the ground level, the PSCAA expressed 
interest in using remote sensing data to fill in the gaps. To meet the PSCAA’s needs, this project identified 
sources and dispersion patterns of air pollutants in the Pacific Northwest region and created a web-based tool 
allowing the partner to access and display the data in GEE. The team used data from EPA on-the-ground 
sensors to calibrate and validate the tool. The PSCAA will be able to use the tool to identify areas with high 
concentrations of air pollutants, facilitating the agency’s work in establishing burn bans, declaring public 
notices, and educating the public during harmful air quality events. 

3. Methodology 

3.1 Data Acquisition  
The team acquired data from the Multi-Angle Implementation of Atmospheric Correction (MAIAC) 
algorithm of Aqua and Terra Moderate Imaging Spectroradiometer (MODIS) and Sentinel-5P Tropospheric 
Monitoring Instrument (TROPOMI) (Table 1). MAIAC provided high-quality data on AOD since quality 
issues such as cloud cover and sea glint had already been corrected in the dataset. The AOD data were 
unitless. The team used MAIAC data from June through September of 2018 to establish PM2.5 prediction 
equations, and the tool will provide predicted PM2.5 up to present day. TROPOMI provided data showing 
atmospheric column density for nitrogen dioxide (NO2), sulfur dioxide (SO2), ozone (O3), carbon monoxide 
(CO), methane (CH4), and formaldehyde (HCHO). The column density data are provided in units of 
molecules/m2. To make the TROPOMI data more usable for the PSCAA, the team converted the data to 
μg/cm3. To do this, the team divided the column density value for each pixel by the sensor altitude value for 
each pixel (P. Swartzendruber, personal communication, March 23, 2020; Kira, 2016). The final TROPOMI 
data values represented averaged concentrations for each pollutant across the entire atmospheric column. 
 
Table 1.  
Description of platform/sensor, along with data source, level of product, and spatial resolution. 

Platform & Sensor Data Source Product Level Spatial Resolution 

Sentinel-5P TROPOMI GEE Level 3 0.01 arc degree (1.11 km) 
Terra MODIS GEE Level 3  1 km 

Aqua MODIS GEE Level 3 1 km 

 
3.2 Data Processing 
The MAIAC algorithm retrieves AOD using a combination of time series analysis and pixel and image-based 
processing (Lyapustin & Wang, 2018). AOD measures the distribution of aerosol particles within a column of 
air extending from the Earth’s surface to the top of the atmosphere. Aerosol particles in the atmosphere 
either scatter or absorb light; AOD is the calculation of the quantity of light removed from a beam by such 
aerosol particles (Gupta, 2016). AOD does not measure concentration of PM2.5, but there are multiple 
statistical approaches to relate these two parameters (N.a., 2016). The team chose to use the two-variable 
statistical approach (Schaap, et al. 2009) using methodology shared by NASA ARSET (2016) and beginning 
with data from EPA on-the-ground air sensors. The team chose 29 of Washington State’s 58 EPA Federal 
Reference Method on-the-ground PM2.5 sensors at random and extracted the MAIAC AOD data over each 
sensor location. To make the results more accurate, they extracted monthly median AOD data for June, July, 
September, and August 2018, and performed separate analyses of each month. This led to separate equations 
to calculate PM2.5 for each month in the study period. The team performed the AOD extraction in GEE; the 
AOD value for the pixel lying above each sensor point was applied to that point. With the AOD point data, 
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the team performed linear regressions between the AOD and measured PM2.5 for each of the 29 sensor 
points, with measured PM2.5 as the independent variable and AOD as the dependent variable. The line of best 
fit from the linear regression served as the equation to predict PM2.5 concentrations based on the AOD value 
for each MAIAC pixel. There are separate equations for June (Equation 1), July (Equation 2), August (Equation 
3), and September (Equation 4). These equations can be applied to those months in future years as well to 
predict PM2.5 values in different study periods. The team found Air Quality Index (AQI) values for the PM2.5 
concentration estimates and TROPOMI NO2, SO2, O3, CO, CH4, and HCHO concentrations using the U.S. 
Environmental Protection Agency (EPA) online AirNow AQI Calculator, which is based on the EPA’s 
definitions of national air quality standards (see Appendix A) (Environmental Protection Agency, n.d.; 
Environmental Protection Agency, 2019). 

 
PM2.5=11.6535057602808(AOD) + 127.447165636683 

  

 
PM2.5= 7.60636503245922(AOD) + 96.9238526808914 

 
 

PM2.5= 9.98426796516342(AOD) + 351.330679000716 
 
 

PM2.5= 0.279424207388697(AOD) + 3.16597334016399 
 
3.3 Data Analysis 
The team validated the statistical relationship between AOD and PM2.5 by comparing the predicted PM2.5  
values with the measured PM2.5 concentrations from the 29 EPA on-the-ground sensors not used to establish 
the relationship. To do this, the team extracted predicted PM2.5 values over each sensor point in GEE and the 
PM2.5 value for the pixel over each sensor point was applied to that sensor. The team then performed linear 
regressions between predicted PM2.5 and measured PM2.5 values, with the measured PM2.5 as the independent 
variable and the predicted PM2.5 as the dependent variable. They performed one linear regression each for 
June, July, August, and September 2018 to evaluate the accuracy of the predicted PM2.5 on a monthly basis, 
and also performed one linear regression for August 14, 2018 to evaluate the predicted PM2.5 values on a finer 
temporal scale. August 14, 2018 is on record as having especially poor air quality in the Puget Sound region 
due to recent Pacific Northwest wildfires and an atmospheric inversion over the Puget Sound, which trapped 
pollutants close to the surface (Mass, 2018).  
 

4. Results & Discussion 

4.1 Analysis of Results 
R-squared values greater than 0.5 indicate a statistically significant correlation between measured and 
predicted PM2.5. The linear regressions performed to validate the predicted PM2.5 values for the months of 
June, July, August, and September 2018, as well as August 14, 2018, all had r-squared values below 0.5 (Figures 
2 – 6). The r-squared value for June was 0.003, for July was 0.0002, for August was 0.4798, for September 
was 0.0298, and for August 14 was 0.1512. The r-squared values for each predicted PM2.5 attempt were below 
0.5 and did not meet the team’s threshold for accuracy. This is evident when predicted and measured PM2.5 
data are compared in map form as well, which confirms that the relationship found by the regression models 
does not reflect actual on-the-ground conditions (Figure 7). The consistently low r-squared values indicated 
that the team’s methods of calculating PM2.5 concentration estimates were not the most accurate for this 
region. Including more variables in the statistical analysis of the relationship between AOD and PM2.5 would 
improve the accuracy of the PM2.5 estimates. 
 
 

(1) 

(2) 

(3) 

(4) 
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Figure 2. Scatterplot displaying relationship between monthly averaged PM2.5 concentrations derived from 
Aqua and Terra MODIS (MAIAC) data versus concentration of EPA Sensors at selected stations. The results 

are for June 2018. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Scatterplot displaying relationship between monthly averaged PM2.5 concentrations derived from 
Aqua and Terra MODIS (MAIAC) data versus concentration of EPA Sensors at selected stations. The results 

are for July 2018. 
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Figure 4. Scatterplot displaying relationship between monthly averaged PM2.5 concentrations derived from 
Aqua and Terra MODIS (MAIAC) data versus concentration of EPA Sensors at selected stations. The results 

are for August 2018. 
 

Figure 5. Scatterplot displaying relationship between monthly averaged PM2.5 concentrations derived from 
Aqua and Terra MODIS (MAIAC) data versus concentration of EPA Sensors at selected stations. The results 

are for September 2018. 
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Figure 6. Scatterplot displaying relationship between daily PM2.5 concentrations derived from Aqua and Terra 
MODIS (MAIAC) data versus concentration of EPA Sensors at selected stations. The results are for August 

14, 2018. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7. Map of Washington State displaying Aqua and Terra MODIS (MAIAC) predicted PM2.5 data and EPA 

sensor data points for August 14, 2018. 
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The team worked to validate TROPOMI data in the same method as PM2.5 to ensure that the data were as 
accurate as possible. However, TROPOMI data were limited for the dates the team chose to validate, and the 
team was ultimately unable to confirm the accuracy of the TROPOMI data. The network of on-the-ground 
sensors for pollutants aside from PM2.5 is limited as well, which made it more difficult for the team to 
perform TROPOMI validations. The TROPOMI data is still included in the team’s Air Pollutant 
Identification Tool (AirPIT) along with the predicted PM2.5 data. Despite low r-squared values and limited 
data availability for validation, the data displayed by the tool will provide the PSCAA with useful information 
on pollutant gradients and trends in their region. 
 
4.2 Future Work 
Identifying areas at risk of wildfires in the Pacific Northwest would further aid the PSCAA and other Pacific 
Northwest organizations in their air quality work since wildfires in the region contribute significantly to 
particulate matter concentrations in the atmosphere. A NASA and NOAA joint venture called Fire Influence 
on Regional to Global Environments Experiment – Air Quality (FIREX – AQ) investigates natural and 
prescribed fires and could be helpful with assessing the accuracy of satellite detections (Murphy, 2020). 
 
In 2017, the Ozone Water-Land Environmental Transition Study (OWLETS) used Light Detection and 
Ranging (LiDAR) to examine ozone in the Chesapeake Bay air-shed (Aknan, 2019). In 2018, OWLETS-2 
provided a follow-on study to better understand the behavior of ozone and related trace gases across the 
water-land transition zone in the upper portion of the Chesapeake Bay (Aknan, 2019). Because of the similar 
geography and patterns of nitrogen dioxide emissions caused by cargo ships shared by the Bay and the 
Sound, it would be useful to incorporate the OWLETS missions’ findings in future studies of air quality in 
the Puget Sound. 
 
Two NASA satellites aiming to advance air quality monitoring, the Multi-Angle Imager for Aerosols (MAIA) 
and Tropospheric Emissions: Monitoring Pollution (TEMPO), are set to launch in the early 2020s. MAIA’s 
primary objective is to determine the relative toxicity of various particulate matter components and to assess 
the effects of particle size and composition on adverse birth outcomes, cardiovascular and respiratory disease, 
and premature death at 1-km spatial resolution (Liu & Diner, 2017). TEMPO will obtain data of air pollutants 
with higher spatial and temporal resolution than is currently available (Aknan, 2019). Both MAIA and 
TEMPO data could be incorporated here to improve the spatial and temporal resolution of the work in this 
study. 
 
Gupta and Christopher (2009) and Hu et al (2013) found that including meteorological and land-use variables 
in models using satellite data to assess air quality significantly improves model accuracy. Including variables 
such as boundary layer height, relative humidity, air temperature, and wind speed in the relationship between 
AOD and PM2.5 established in the team’s GEE tool would improve the accuracy of the tool. Including 
further wind data to display the dispersion of air pollutants, rather than only their most recently recorded 
locations and concentrations, would make it possible for the PSCAA to better track the movement of air 
pollutants during poor air quality events. 

 

5. Conclusions 

MAIAC provides high-quality, high-resolution aerosol data which is useful for air quality studies utilizing 
remote sensing. In contrast, Level 3 TROPOMI data does not cover the entire state of Washington, which 
leads to significant gaps in available data for remote sensing air quality studies; combined with a limited on-
the-ground air sensor network, these limitations curtail the information that researchers can glean from 
TROPOMI data. Finally, the two-variable statistical method is viable for estimating PM2.5 concentrations 
from satellite-derived AOD, but it is not as accurate as a multi-variable or modeling method. Although the 
results of this project were limited, the PSCAA will be able to incorporate them into their decision-making 
processes. 
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7. Glossary 

Aerosols – suspended semi-solid particles in the atmosphere 
AOD – aerosol optical depth; a measurement of the quantity of light removed from a beam by aerosol 
particles 
AQI – Air Quality Index 
Black carbon – emissions from diesel engines as a result of incomplete combustion 
CH4 – methane 
Clean Air Act – federal legislation implemented in 1970 to improve national air quality 
CO – carbon monoxide 
Earth observations – Satellites and sensors that collect information about the Earth’s physical, chemical, and 
biological systems over space and time 
EPA – Environmental Protection Agency 
ESA – European Space Agency 
GEE – Google Earth Engine  
Inversion event – an atmospheric phenomenon where warmer air gets trapped at the surface due to colder 
air above it 
LiDAR – Light Detection and Ranging 
MAIAC – Multi-Angle Implementation of Atmospheric Correction algorithm 
MODIS – MODerate Resolution Imaging Spectroradiometer 
NAAQS – National Ambient Air Quality Standards  
NO2 – nitrogen dioxide 
NOAA – National Oceanic and Atmospheric Administration 
O3 – ozone  
PM2.5 – particulate matter with a diameter equal to or less than 2.5 µm 
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PSCAA – Puget Sound Clean Air Agency 
SO2 – sulfur dioxide 
TROPOMI – Tropospheric Monitoring Instrument 
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9. Appendices 

Appendix A 
Table A1. 
EPA Air Quality Index Values 

Levels of 
Health 
Concern 

AQI 
Values 

PM2.5 

Concentration 
Ranges 
(µg / m3) 

NO2 

Concentration 

Ranges 

(µg / m3) 

CO 

Concentration 

Ranges 

(µg / m3) 

Ozone 

Concentration 

Ranges 

(µg / m3) 

SO2 

Concentration 

Ranges 

(µg / m3) 

Good 0 to 50 0 to 12  0 to 53 0 to 4.4 0 to 0.054 N/A 

Moderate 51 to 
100 

12.1 to 35.4 54 to 100 4.5 to 9.4 0.055 to 0.07 N/A 

Unhealthy 
for 
Sensitive 
Groups 

101 to 
150 

35.5 to 55.4 101 to 360 9.5 to 12.4 0.071 to 0.085 N/A 

Unhealthy 151 to 
200 

55.5 to 150.4 361 to 649 12.5 to 15.4 0.086 to 0.105 N/A 

Very 
Unhealthy 

201 to 
300 

150.5 to 250.4 650 to 1249 15.5 to 30.4 0.106 to 0.2 305 to 604 

Hazardous 301 to 
500 

250.5+ 1250+ 30.5+ 0.21+ 605+ 

(Environmental Protection Agency, n.d.) 

 


