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1. Abstract 
Toa Baja, located just west of San Juan in Puerto Rico, is known as “the underwater city” due to its 
propensity to flood. The city contains the mouth of the island’s longest river, Río de la Plata, which drains 
into the Atlantic Ocean on the northern edge of the municipality. Proximity to these major water features and 
the flat, low terrain contribute to the flood-prone nature of the area. During tropical storm events, such as 
Hurricane Maria in 2017, Toa Baja experienced inundation of up to 20 feet. Changes in the global climate 
system are causing more intense and frequent tropical storms, making places like Toa Baja subject to 
irreparable damage. This NASA DEVELOP project collaborated with the Municipio Autónomo de Toa Baja, 
ResilientSEE, and the Massachusetts Institute of Technology Urban Risk Lab to supplement recent 2018 
Federal Emergency Management Agency Hydraulic Engineering Centers-River Analysis System flood maps, 
which designated 63% of the area as a flood plain. The analysis provides a high-resolution interpretation of 
flood susceptibility using a variety of factors that collectively influence the likelihood of flooding. Sentinel-1 
C-Band Synthetic Aperture Radar (C-SAR) data processed with Google Earth Engine scripting identified 
historical inundation and was used for validation purposes. Socioeconomic factors were combined with the 
inundation layer producing a final risk output. These outputs will improve public understanding of exposure 
to flood risk in Toa Baja and provide scientific evidence for flood mitigation advocacy. 
 
Keywords: Landsat, NASA, ESA, Google Earth Engine, ArcGIS Pro, SAR, flood risk, flood susceptibility, 
tropical storms 

 

2. Introduction 
2.1 Background Information 
Flood events cause an average of 40 billion dollars in infrastructure damage per year worldwide (Organisation 
for Economic Co-operation and Development, 2016). The hurricane season of 2017 was the costliest in 
United States history, with Hurricane Maria causing 103 billion dollars in economic losses to Puerto Rico 
alone (Halverson, 2018). In the Municipality of Toa Baja (Figure 1), nearly 14,000 homes were flooded, 
resulting in 1.3 billion dollars in damage. The northeast coast of Puerto Rico floods frequently due to heavy 
rainfall, storm surge inundations, and its unique topography (López-Marrero & Yarnal, 2010). Toa Baja, 
referred to by locals as the “Underwater City,” has more than 60% of its land designated as floodplain 
(Federal Emergency Management Agency, 2009). Tropical storms, exacerbated by warming oceans and sea-
level rise, are a growing concern to citizens in this municipality.  
 
Gauging relative flood susceptibility involves the analysis of various criteria that influence the likelihood of 
flooding. Susceptibility refers to the relative likelihood of flooding for any given location in the study area. 
Flood vulnerability looks only at socioeconomic factors such as population and building density. The 
combination of flood susceptibility and vulnerability is flood risk. Gauging relative flood risk gives the 
municipality a better picture of the most vulnerable and susceptible areas. Methods used to analyze 
susceptibility and risk involved multi-criterion evaluation- criterion, where criteria are weighted using the 
analytic hierarchy process (AHP). In the realm of natural hazard modeling, the AHP is one of the most 
commonly used methods of ranking the influence of criteria (Tehrany, Pradhan, & Jebur, 2014). The AHP is 
an easy to use multi-criteria weight estimation method of assigning numerical values to abstract concepts 
(Saaty, 1988; Zou et al., 2013). Nine criteria were selected as flood-influencing factors in our analysis based on 
previous literature and available data (Kia et al., 2012; Roopnarine et al., 2018; Tehrany et al., 2014). To 
validate our analysis, we used the European Space Agency’s (ESA) Sentinel-1 & 2 and NASA Landsat 5 & 7 
satellite imagery to map actual past inundation using Google Earth Engine. Our analysis builds upon existing 
Federal Emergency Management Agency (FEMA) flood risk maps by utilizing Earth observations and 
providing a finer resolution than the large vector polygons which they used to define Toa Baja flood risk. Our 
results were compared against actual inundation for validation purposes.  
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Figure 1. The study area of this project is the Municipality of Toa Baja on the northern coast of Puerto Rico. 
Toa Baja is located just outside of San Juan and is known as “La Ciudad Bajo Aguas” or “the underwater city” 

due to its propensity to flooding from its unique geography and the island’s location in “hurricane alley.” 
 
2.2 Project Partners & Objectives 
This project partnered with the Municipio Autónomo de Toa Baja, ResilientSEE, and the Massachusetts 
Institute of Technology (MIT) Urban Risk Lab. The Municipio Autónomo de Toa Baja is a local government 
entity. The Municipality employs professionals to provide the Mayor with available data and analysis for 
infrastructure and emergency planning. Prior to our study, the municipality utilized official 2005 FEMA 
Flood Insurance Rate Maps (FIRM) and the most recent 2018 Hydrologic Engineering Center's River 
Analysis System (HEC-RAS) Puerto Rico Advisory Maps in their planning. Our additional partners were 
ResilientSEE a nonprofit with the mission of combining social, environmental, and economic factors to 
improve the quality of life and extreme weather event preparedness in Puerto Rico. Also, the MIT Urban 
Risk Lab collaborated with the team to provide insight on project methodology and final products. 
 
The primary goal of this project was to create a static flood susceptibility map of the study area by combining 
weighted factors such as elevation, slope, and soil moisture. Additionally, a flood risk map was created by 
incorporating additional human-related variables to account for human flood impacts. To validate the 
outputs, the susceptibility and risk maps were compared against actual historical flooding that occurred during 
Hurricane Maria in 2017 as well as the 2018 HEC-RAS maps. 
 
The Municipality of Toa Baja was interested in informing its residents on relative flood risk within the 
municipality. Previously, the only resource for the public to gauge relative flood risk for their area was the 
2009 FEMA FIRM. Our analysis builds upon the 2009 measure of flood risk and made the results accessible 
through a Toa Baja-specific ArcGIS Online StoryMap. This simple interactive map allows residents to 
explore flood risk, susceptibility, and contributing factors with ease. This project fills the need for data-based 
products to inform government and public decision making.  
 
 
 

 

 



3 

 

3. Methodology 
Esri ArcGIS Pro software was used to process datasets and to create flood susceptibility, vulnerability, and 
flood risk maps (Roopnarine et al., 2018). We weighted and combined nine different flood factor raster 
datasets to assess the overall flood susceptibility (Figure 2). The actual occurrence of inundation was used to 
validate our measure of flood susceptibility. Synthetic aperture radar (SAR) data from ESA’s Sentinel-1, made 
available through Google Earth Engine (GEE), were used to map historical flood inundation that occurred 
during hurricane Maria in 2017, Hurricane Irma in 2017, and flood events on February 24, 2020 and October 
10th, 2017 for validation of the susceptibility map.  

 
GEE is advantageous because large datasets can be stored, processed, and analyzed on this cloud-computing 
platform. Utilizing GEE eliminated the laborious data download process associated with traditional remote 
sensing flood analysis (DeVires, et al., 2020). Use of Landsat data was also explored for flood detection, but 
did not yield usable imagery due to clouds and capture timing. SAR proved to be the ideal satellite imagery for 
detecting inundation in cloudy conditions, while optical sensors proved insufficient (Shen et al., 2019).  

 
3.1 Data Acquisition 
This analysis involved Earth observation imagery (see Appendix, Table A1), ancillary raster datasets (see 
Appendix, Table A2), and ancillary vector datasets (see Appendix, Table A3). Earth observations were 
utilized to measure vegetation and flood detection. GEE Application Programming Interface (API) was used 
to calculate NDVI for input in the susceptibility analysis and to map inundated areas for validation. This was 
completed using code from DeVires et al., 2020 and the United Nations Office for Outer Space Affairs 
Knowledge Portal. To improve the interpretability of our final flood risk output, the census tracts from the 
American Community Survey 2017 were used to summarize risk using the mode pixel value. The shapefile 
was derived from ArcGIS Online (see Appendix, Table A3). 
 
3.1.1 Flood Susceptibility Criteria  
Nine different criteria were weighted based on their contribution to a flood event and combined to create the 
flood susceptibility map (Figure 2). The landcover variable accounts for the influence of varying surface types 
on flood susceptibility. Forested areas are less likely to experience flooding than urban landscapes because of 
the difference in groundcover permeability. The Normalized Difference Vegetation Index (NDVI) is a 
measure of relative vegetation health. This parameter accounts for the associated influence of plant root 
networks on rain runoff. Elevation accounts for the influence of gravity on the movement of water in the 
landscape. The slope parameter factors in where water will accumulate based on the land gradient. The 
topographic wetness index (TWI) models runoff based on elevation. TWI adds an additional layer of 
robustness as opposed to factoring only slope and elevation and is described as an “indicator of the effect of 
local topography on runoff flow direction and accumulation” (Ballerine, 2017). The height above the nearest 
drainage (HAND) is an approximate measure of the vertical height of a given pixel from the nearest flow 
accumulation area. This is a uniformly comparable, landscape-normalized model found to influence flood 
susceptibility in previous research such as Armenakis, Romero, and Usman, 2018. The saturated hydraulic 
conductivity (KSAT) parameter is a measure of the speed that water infiltrates soil in millimeters per second. 
Infiltration rates influence the amount of runoff during a rainfall event and is therefore an important factor in 
flood susceptibility. Storm surge hazard must also be considered, as Toa Baja is a coastal municipality, where 
tropical storms and hurricanes are a frequent contributor to flooding events. The last parameter considered 
was distance to water, which accounts for riverine floodplains in the study area.  
 
3.1.2 Digital Elevation Model 
Ancillary raster datasets included soil properties, elevation, land cover classes, and storm surge hazards, and 
these datasets were essential in calculating flood susceptibility, flood risk, and for validation of our results. 
The soil infiltration rate raster layer was downloaded from the United States Department of Agriculture Web 
Soil Service. Elevation data were downloaded from a National Oceanic and Atmospheric Administration 
(NOAA) site hosting the United States Geological Survey Lidar data. The spatial coordinate-specific tiles 
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were individually downloaded from their file transfer protocol site and then merged. High resolution 
landcover data from 2010 were provided by NOAA Office for Coastal Management. Storm surge data were 
retrieved from the National Hurricane Center and Central Pacific Hurricane Center website, which is also 
affiliated with NOAA. 
 
3.1.3 KSAT 
The KSAT variable was downloaded directly from the USDA web soil service. To download the data, first an 
area of interest polygon is created. Then, navigation through the ‘Soil Data Explorer’ and subsequent ‘Soil 
Properties and Qualities’ tab is necessary. Once there, the saturated hydraulic conductivity (KSAT) data was 
downloaded from the ‘Soil Physical Properties’ menu, at a depth of 10cm. 
 
3.1.3 Storm Surge 
Storm Surge was adapted from the Sea, Lake, and Overland Surges from Hurricanes (SLOSH) model from 
the National Weather Service. The SLOSH model takes into account a specific shoreline and applies physics 
equations factoring the wind field driving the storm surge. Landcover was acquired from the NOAA Office 
for Coastal Management and was used without alteration.  

 
3.1.5 Vector datasets 
Hydrological features vector data were sourced from the Puerto Rican government website, provided by the 
Centro de Recaudación de Ingresos Municipales, Oficina de Gerencia y Presupuesto. The building footprints 
were provided by crowdsourced data entry from OpenStreetMap and downloaded for our specific area 
through the GeoFabrik website. The 2018 FEMA Hydraulic Engineering Center’s River Analysis System 
(HEC-RAS) flood risk data were downloaded directly from the Toa Baja Municipality website and were used 
to validate our final flood susceptibility model. 
 
3.1.6 Flood Vulnerability Criteria and Mapping 
Three different criteria were used to determine vulnerability to flooding. Population density and building 
density layers were used as measures of vulnerability, as determined by previous studies (Roopnarine, 2018). 
Our team sourced the building density data from OpenStreetMap and population data from World Pop. In 
addition to the aforementioned data layers, an informal settlements layer, which was provided by the Toa Baja 
Municipality, was also included. Such settlements are vulnerable to inclement weather due to the fragility of 
their socioeconomic status and housing conditions. Homes built in informal settlements may be more 
vulnerable to damage in the case of extreme weather events. These three datasets were combined in ArcGIS 
Pro creating a single vulnerability raster layer.  

 
3.2 Data Processing 
Various datasets were combined using the raster calculator tool in Esri ArcGIS Pro 2.3.0 to create the flood 
susceptibility, vulnerability, and risk maps. Linear combination involved harmonizing all inputs into the same 

scale, projecting to the NAD83 NSRS 2007 coordinate system, and calculating weights using the analytical 
hierarchy process (Saaty, 1994). The weighted combination with a raster calculator is also known as a 
weighted linear combination (Pourghasemi, Pradhan, & Gokceoglu, 2012). 
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Figure 2. Flowchart of the process involved in creating the flood susceptibility and flood risk. 

 
The flood susceptibility output had three different forms, based on the weighting schemes derived from 
consultation with three experts who informed the weights through the AHP pairwise comparison matrix. To 
determine which version of the flood susceptibility output to use, we compared each with actual inundation 
caused by previous flood events. This was done using RStudio, via correlation between flooded pixels and 
flood susceptibility value, and visual comparison of the segregation of peaks in histograms which were 
masked to flooded and non-flooded pixels of the susceptibility outputs. The most accurate model of flood 
susceptibility was both the most correlated with actual inundation and had a more notable separation of 
histogram peaks indicating lower susceptibility values in non-flooded areas and higher susceptibility values in 
previously flooded areas.  

 
3.2.1 Static Flood Susceptibility Map 
Some inputs to the flood susceptibility map simply required clipping and scale standardization. Others 
required more processing. The following specifies the additional processing conducted. Elevation data from 
the NOAA coastal LiDAR scan were mosaicked into a high-resolution 1-meter digital elevation model 
(DEM). Distance to water, elevation and slope layers were derived using ArcGIS Pro spatial analyst tools. 
Elevation and slope were created using the DEM, and distance to water was derived from the vector layer 
Toa Baja rivers. 

The NDVI factor was produced in GEE. Sentinel-2 MSI images were filtered to the dates 09/01/2019 
through 10/31/2019. A GEE script was developed to derive the median pixel value and mask clouds, 
eliminating a potentially cumbersome step in other scripting environments. From the DEM, we calculated 
TWI within ArcGIS Pro using multiple tools from the spatial analyst toolbox as outlined in Figure 3. The tools 
included flow direction, flow accumulation, slope, and raster algebra expressions all based upon the original 
DEM (Hojati & Mokarram, 2016). 
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The elevation dataset was also used to derive height above nearest drainage (HAND) criterion. The HAND 
was calculated using a publicly available premade ArcGIS tool which involves the creation of flow direction, 
flow accumulation, and other parameters to derive the final output (Rahmati, 2018). The tool’s script was 
originally created for use in ArcGIS desktop, which we adapted for functionalization in ArcGIS Pro using 
Python. 

 
3.2.2 Analytical Hierarchy Process 
After the criteria were selected, they were arranged in a hierarchy based on the previously established 
methods widely available in literature (Roopnarine et al. 2018; Kazakis, Kougias, & Patsialis 2015; Samanta, 
Kumar Pal & Palsamanta, 2018; Elsheikh, Ouerghi, & Elhag, 2015; Tehrany et al., 2014a, 2014b). To 
determine the relative weight of each factor in the susceptibility analysis we used the Analytical Hierarchy 
Process (AHP), which is described as “a multi-objective, multi-criteria decision-making approach” by Yalcin 
(2008). This required experts to complete a pairwise comparison matrix, which assigns relative weights to all 
nine parameters (see Appendix, Table A4).  
 
Three experts completed the pairwise comparison matrix to inform the AHP. The three resulting weighting 
schemes were applied to the susceptibility factors for the weighted linear combination. This resulted in three 
different versions of flood susceptibility, which were each then compared against a consolidated inundation 
footprint of four different flood events. The flood inundation was detected using SAR data in GEE. The 
APH model that aligned the best with actual inundation was used as our final flood susceptibility result. 
Compatibility was measured in R through basic statistical correlation and pixel histogram comparison.   

 
 

Figure 3. Flow chart illustrating the creation of TWI with ArcGIS Pro 2.3.0 spatial analyst tools and raster algebra 

expressions. 

 
3.3 Data Analysis 
Determining which flood susceptibility model to use as our final, of the three different weighing schemes, 
was done via comparison with actual inundation detected with GEE. Correlation was the intuitive method of 
statistically assessing which dataset correlated best with inundation. When this did not produce compelling 

Input: Lidar DEM
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Direction

Input:DEM
Result: FD

Spatial Analyst Tools

→Hydrology→Flow 
Accumulation

Input:FD
Result: FA
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→Surface→Slope

Input: DEM
Result: SLOPE
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→Map Algebra

→Raster Calculator
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Spatial Analyst Tools
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→Raster Calculator
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Spatial Analyst Tools
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→Raster Calculator

("FA" + 1) * pixel size
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Spatial Analyst Tools

→Map Algebra

→Raster Calculator
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enough evidence for selection (see Appendix, Table A5), we additionally assessed the histogram peaks of 
susceptibility pixels masked for both flooded and non-flooded areas (see Appendix, Figure B1). The most 
accurate model was determined to be ‘Option C’ which is highlighted in yellow in the corresponding table 
and figure referenced above.  
 
The team used weighting from ‘Option C’ to create the final vulnerability and susceptibility layers. The 
vulnerability layer combined with the weighted susceptibility layer form the final static flood risk output 
(Figure 4). This bivariate method of depicting flood risk was chosen because it still preserves both measures of 
susceptibility and risk while allowing the additional measure of cumulation. The three layers are all continuous 
raster datasets and can be used as separate measures to inform decision-making. The risk dataset, being of 
most interest to our partners, was averaged by regions within Toa Baja for a measure of relative flood risk as 
a zonal summarized value. To improve the interpretability of the final flood risk output, the mode pixel value 
was assigned to the corresponding American Community Survey census tract (Figure 5). This was to makes 
findings more usable operationally. 

 

Figure 4 and Figure 5. On the left is the final risk map, highlighting the intersection of vulnerability and susceptibility 

throughout Toa Baja (Figure 4). On the right is a risk map summarized by census tract (Figure 5). Both maps were 
generated using ‘Option C’ weighting. 

 

4. Results & Discussion 
4.1 Analysis of Results 
Our risk map shows nine levels of varying risk. The bivariate legend (Figure 4) illustrates high susceptibility 
and low vulnerability in light blue. These show areas where flooding is likely, but there are little to no 
vulnerable populations. The light blue in our map aligns with a northern area designated as wetlands. Magenta 
within the map delineates high vulnerability areas with low susceptibility. This shows us where people are 
living, yet are not as likely to be impacted by flooding. In our case, the magenta is clustered around the 
foothills of Toa Baja, where elevation and distance from the coast reduce the susceptibility to flooding. The 
convalescence of high susceptibility and high vulnerability is delineated in navy blue. These areas include a 
high population density located where floods are more likely to occur.  

 
Because our parameters informing vulnerability were limited, which is discussed in the ‘Limitations’ section, it 
is also useful to examine flood susceptibility alone (see Appendix, Figure B2). The flood susceptibility analysis 
values were summarized by zones defined by cardinal regions; these regions were defined and provided by the 
Toa Baja Municipality. The most notable finding is that the northern region was found to be nearly 50% 
highly susceptible to flooding (see Appendix, Figure B3). Highly susceptible was defined here as being from 
3.66-5 on the scale of 1-5. Finer summary statistics at the census tract level found some areas to be as high as 
64% susceptible to flooding (see Appendix, Figure B4). 
 
 



8 

 

 
 
4.2 Validation 
To validate our flood susceptibility map, we compared the result with the 2018 HEC-RAS FEMA Flood 
Advisory Maps (Figure 6), which are the most updated maps that the municipality utilizes as a reference. The 
HEC-RAS dataset was developed in coordination with FEMA in 2018 following Hurricane Maria. This 
dataset increased the proportion of estimated flood zone in Toa Baja from 48% in previous FEMA estimates 
to 63%. These maps establish different zones to characterize flood hazards. We added an “outside flood 
zone” (OFZ) class to delimit zones in Toa Baja outside the zone polygons established by FEMA. 

 
Table 2 
Percent pixel agreement between HEC-RAS Advisory Maps and flood susceptibility map. 

 FLOOD SUSCEPTIBILITY 

High Moderate Low 

H
E

C
-R

A
S

 Z
O

N
E

 

A - floodway 89.42% 65.61% 20.95% 

AE - coastal A zone 2.92% 2.07% 0.46% 

VE - flood zone 0.67% 0.63% 0.34% 

X - 0.2% annual flood 3.03% 2.74% 1.81% 

OFZ - outside flood zone 3.94% 28.93% 76.43% 

 
The results show spatial coherence between HEC-RAS Maps and our flood susceptibility map. To validate 
our model, we divided it into three classifications: High, Moderate, and Low. We compared the percentage in 
each category with the FEMA zones (Table 2). Zone A contains 89.42% of the High susceptibility values. 
This represents the floodway with a 1% annual chance flood. However, Zone A also contains the most 
Moderate susceptibility values at 65.61%. Zone X, which represents a 0.02% annual chance of flooding, 
contains 3.03% of the high susceptibility values. The OFZ zone, which represents areas outside of FEMA’s 
floodplain designation, is primarily dominated by low and medium values at 76.43% and 28.93% respectively. 
This indicates accuracy in our map. Even so, we must emphasize that 20.95% of the Low susceptibility values 
are within Zone A, which indicates uncertainty in this study, as we would expect a small percentage of Low 
susceptibility values in an ideal agreement. 
 



9 

 

 
Figure 6. 2018 HEC-RAS FEMA Flood Advisory Maps. 

 
4.3 Limitations 
SAR imagery has been known to collect false positive flooding from building shadows in urban areas, and 
Toa Baja has multiple urban areas where we attempted to detect flooding. These false positives may have 
appeared in our flood inundation detection through GEE, but we were unable to measure these potential 
errors without in situ inundation data. Additionally, this project created a static flood susceptibility map using 
multiple assumptions to accommodate our study area and partners’ needs. Storm surge and riverine flooding 
are two types of flooding accounted for in our analysis, but ideally, they should be assessed separately. Our 
weights were assigned based on expert knowledge after we consulted three scientists. There is inherent error 
in these weight assignments, and our experts did not agree on any particular weighting scheme. Due to 
limitations in data availability, this study does not account for age or income in our measure of vulnerability. 
However, the team recognizes these are social groups that will likely be more vulnerable during times of 
disaster. Recent granular demographic information is necessary to be able to incorporate these variables into 
raster-based analyses. 
 
4.4 Future Work 
Our study used Sentinel-1 C-SAR data to detect past flooding in Puerto Rico, given that NASA has no 
current SAR sensor. Future studies can use our project as a template for the NASA-ISRO SAR mission, 
which is scheduled to launch in 2021. Our team attempted to incorporate MODIS observation imagery, but 
the spatial resolution of 250-meters was too coarse for our small study area. Additionally, the short ten-week 
completion window for our project limited the validation capabilities. Incorporating soil moisture, rainfall 
data, man-made hydrological features, and previous storm flood depth measures into a flood risk assessment 
can be done in the future to improve upon our analysis. 
 
In terms of methodology, a factor-weighting method could be incorporated by making a covariance matrix 
with each layer and a target variable (for example, a flood raster). This produces a rough estimate of how each 
variable contributes to the flood raster. Due to the limited time, we were unable to utilize this approach, yet it 
remains a feasible quantitative methodology for future work.  
 

5. Conclusions 
The Municipality of Toa Baja experienced devastating flooding during Hurricane Maria, and their leadership 
aims to prepare for future flooding events their residents may face. Their main concern is prioritizing the 
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distribution of limited resources to their most at-risk residents. Our project exemplifies how the 
interpretation of flood risk can be improved through the use of Earth observations. Through our analysis, we 
found the east region of Toa Baja is most at risk for flooding, due to the high susceptibility to flooding in 
tandem with a high density of population, buildings, and informal settlements. However, we found that the 
north region is most susceptible to flooding given its proximity to the coast and the preponderance of 
wetlands in this region. The south is the least at risk in our model, mainly because of the distance from the 
coast and the elevation provided by foothills. Our risk map also shows there are smaller “at risk” areas all 
around the municipality. This granular analysis provides our partners with an improved understanding of 
where they can allocate resources in times of an emergency. Additionally, these results are presented in an 
accessible platform to easily inform the public about their risk and susceptibility to flooding. 
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7. Glossary 
GEE - Google Earth Engine 
FEMA - Federal Emergency Management Agency 
NDVI - Normalized Difference Vegetation Index 
TWI - Topographic Wetness Index 
HAND - Height Above the Nearest Drainage 
GIS - Geographic Information Systems 
KSAT - Saturated Hydraulic Conductivity  
HEC-RAS - Hydrologic Engineering Center's River Analysis System 
NISAR - NASA-Indian Space Research Organization (ISRO) SAR Mission 
PCRaster - Open source software for environmental modeling. 
SoilGrids - Publicly available global soil properties data maps.  
NOAA - National Oceanic and Atmospheric Administration 
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9. Appendices 
 

Appendix A 
Table A1 
Earth observation imagery sources used for project. 

Platform & Sensor Parameter Use 

Landsat 7 Enhanced Thematic 
Mapper (ETM+) 

Inundation 
Landsat 7 ETM+ imagery was ingested at 30 m 
resolution into the interactive flood mapping tool 
to map recent flood events. 

Landsat 5 Thematic Mapper 
(TM) 

Inundation 
Landsat 5 TM data were ingested at 30 m 
resolution into the interactive flood mapping tool 
to map recent flood events. 

Copernicus Sentinel-2 
Multispectral Instrument 
(MSI) 

NDVI 

Copernicus Sentinel-2 MSI imagery was used to 
calculate the Normalized Difference Vegetation 
Index (NDVI) for the integration with the static 
susceptibility map. 

Copernicus Sentinel-1 C-
Synthetic Aperture Radar 
(SAR) 

Inundation 

Copernicus Sentinel-1 SAR data were used to map 
historical flood extent and were used to map past 
flood events, which were later used for validation 
of our model. 

 
Table A2 
List of ancillary raster datasets. 

Dataset Date Used Use 

United States Department of 
Agriculture Web Soil Service 

2017 
A Saturated Hydraulic Conductivity Layer was 
used to represent soil infiltration rate 

United States Geological 
Survey (USGS) NOAA Coastal 
Lidar Scan Digital Elevation 
Model (1 m resolution) 

2015 
We used the USGS LiDAR DEM to calculate 
TWI, HAND, slope, and elevation. 

NOAA Landcover 2010 
We used the NOAA Coastal Change Analysis 
Program high-resolution 1-meter landcover from 
2010 in the flood risk and susceptibility maps. 

National Hurricane Center and 
Central Pacific Hurricane 
Center  

2018 
 

We used the storm surge hazard measure to 
account for inundation intensity resulting from 
coastal surge in the flood susceptibility model. 

 
Table A3 
Ancillary Vector Datasets 

Dataset Date Used Use 

Hydrography Revision from 
Centro de Recaudación de 
Ingresos Municipales (CRIM) 
Basemap, Puerto Rico 

2001 to 2004 
Calculation of distance from the water input layer 
for flood susceptibility analysis. 

OpenStreetMap - Geofabrik 2020 
Building footprints were used to create density 
variables for flood risk analysis. 

Hydrologic Engineering 
Center's River Analysis System 
(HEC-RAS) Puerto Rico 
Advisory Maps 

2018 
These maps validated our flood susceptibility 
outputs. 

http://landsat/LE07/C01/T1_SR
http://landsat/LE07/C01/T1_SR
https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LT05_C01_T1_SR
https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S2_SR
https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S2_SR
https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S1_GRD
https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S1_GRD
https://websoilsurvey.sc.egov.usda.gov/App/HomePage.htm
https://websoilsurvey.sc.egov.usda.gov/App/HomePage.htm
ftp://ftp.coast.noaa.gov/pub/DigitalCoast/raster2/elevation/PR_USGS_DEM_2015_8654/
ftp://ftp.coast.noaa.gov/pub/DigitalCoast/raster2/elevation/PR_USGS_DEM_2015_8654/
ftp://ftp.coast.noaa.gov/pub/DigitalCoast/raster2/elevation/PR_USGS_DEM_2015_8654/
ftp://ftp.coast.noaa.gov/pub/DigitalCoast/raster2/elevation/PR_USGS_DEM_2015_8654/
https://coast.noaa.gov/dataviewer/#/landcover/search/
https://www.nhc.noaa.gov/nationalsurge/#data
https://www.nhc.noaa.gov/nationalsurge/#data
https://www.nhc.noaa.gov/nationalsurge/#data
http://www.gis.pr.gov/descargaGeodatos/ambientales/Pages/Hidrograf%C3%ADa.aspx
http://www.gis.pr.gov/descargaGeodatos/ambientales/Pages/Hidrograf%C3%ADa.aspx
http://www.gis.pr.gov/descargaGeodatos/ambientales/Pages/Hidrograf%C3%ADa.aspx
http://www.gis.pr.gov/descargaGeodatos/ambientales/Pages/Hidrograf%C3%ADa.aspx
https://download.geofabrik.de/north-america/us/puerto-rico.html
http://cedd.pr.gov/fema/index.php/download/
http://cedd.pr.gov/fema/index.php/download/
http://cedd.pr.gov/fema/index.php/download/
http://cedd.pr.gov/fema/index.php/download/
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American Community Survey 2017 Shapefile used to summarize final flood risk output 

 
Table A4 
Insert a Description here 

Parameters 
Weights 

S1 S2 S3 

Elevation 0.19 0.25 0.12 

Slope 0.10 0.26 0.08 

Landcover 0.03 0.16 0.04 

NDVI 0.03 0.05 0.02 

Storm Surge 0.31 0.11 0.23 

Distance to water 0.07 0.08 0.17 

Height above nearest drainage (HAND) 0.19 0.04 0.23 

Topographic Wetness Index (TWI) 0.06 0.04 0.10 

Saturated Hydraulic Conductivity (KSAT) 0.03 0.02 0.01 

 
Table A5 
Correlation analysis results. 

 
 MARIA Sep. 2017 Oct. 2017 Feb. 2020 ALL 

Option B  0.20622 -0.1009 -0.0033 -0.0313 0.07252 

Option C 0.19978 -0.061 0.00429 -0.0098 0.09837 

Option A 0.21194 -0.0879 -0.0031 -0.0336 0.08217 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://www.arcgis.com/home/item.html?id=45ede6d6ff7e4cbbbffa60d34227e462
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Appendix B 

 

   
Option A Option B Option C 

Figure B1. Histogram comparisons of flooded v.s. non-flooded masked flood susceptibility pixels 
 

 
Figure B2. Flood susceptibility map. 
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Figure B3. High flood susceptibility by cardinal zone. 
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Figure B4. High flood susceptibility by census tract. 

 
 
 


