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Owing to the frequency of occurrence and high risk as-
sociated with bearings, identification and characterization
of bearing faults in motors via nondestructive evaluation
(NDE) methods have been studied extensively, amongst
which vibration analysis has been found to be a promising
technique for early diagnosis of anomalies. However, a ma-
jority of the existing techniques rely on vibration sensors at-
tached onto or in close proximity to the motor in order to
collect signals with a relatively high SNR. Due to weight and
space restrictions, these techniques cannot be used in un-
manned aerial vehicles (UAVs), especially during flight op-
erations since accelerometers cannot be attached onto mo-
tors in small UAVs. Small UAVs are often subjected to vi-
brational disturbances caused by multiple factors such as
weather turbulence, propeller imbalance or bearing faults.
Such anomalies may not only pose risks to UAV’s internal
circuitry, components or payload, they may also generate
undesirable noise level particularly for UAVs expected to
fly in low-altitudes or urban canyon. This paper presents
a detailed discussion of challenges in in-flight detection of
bearing failure in UAVs using existing approaches and offers
potential solutions to detect overall vibration anomalies in
small UAV operations based on IMU data.

1 Introduction
The integration of small unmanned aerial vehicles

(UAVs) for parcel delivery, surveillance, weather monitor-
ing, precision agriculture and other applications will have
an effect on the national airspace in the coming years [1, 2].
Thus, it is imperative to identify and prepare for potential
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hazards or risks associated with these vehicles. Hazards rel-
evant to small UAVs may include flight deviation outside
approved airspace, proximity to static and dynamic obsta-
cles, loss of control and critical system failure such as loss of
navigation or communication link and degraded power-train
system or mechanical faults. A systematic approach is thus
required for in-flight non-destructive evaluation (NDE) and
health monitoring of UAVs in order to enable efficient and
safe operations in the low-altitude airspace as well as miti-
gate associated risks to people and property on ground [3].
With that objective, NASA’s Aeronautics Research Mission
Directorate describes a strategic plan for investigating and
advancing in-time safety assurance capabilities [4] by inte-
grating information from multiple sources. Information may
be (1) vehicle specific such as battery state-of-charge, com-
ponent’s health status, (2) from third-party sources such as
weather, obstacles and terrain information providers or (3)
from UAV Traffic Management (UTM) such as real-time
traffic within an airspace.

Among critical power-plant components in UAVs are
motors that include rolling parts called bearings and pro-
pellers. Similar to other mechanical systems, bearings in
UAVs are prone to fatigue degradation over time leading to
motor failure, which in turn may interfere with nominal oper-
ations of the hub, spinner and propeller. In order to study risk
associated with bearing failures in UAV motors, a report re-
leased by the Department of Aerospace Engineering and Me-
chanics at the University of Minnesota on failure mode and
effect analysis (FMEA) in a small low-cost unmanned UAV,
was reviewed [5]. The experimental flight test hardware con-
sisted of a fixed-winged electric aircraft, as shown in Fig 1,
provided by the NASA Langley Research Center with a wide
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array of sensors for data collection along with a 6 degrees-
of-freedom aerodynamic simulation model at the core of its
flight research platform. A summary of motor FMEA , as
reported in [5], is presented in Table 1. The cause for each
failure mode in the motor has been identified and their effects
are classified in terms of likelihood and criticality. Although
likelihood of bearing failures is medium (M), they are associ-
ated with high criticality of 1, which represents a fatal failure
mode that could result in damage to the vehicle or property,
serious injury or even loss of life, according to the Flight As-
surance Procedure released by NASA Goddard Space Flight
Center [6]. Hence, it is imperative to develop in-time and
reliable bearing failure diagnostic and monitoring capability
for enabling safe UAV operations in the future.

Fig. 1. Ultra Stick 120 ‘Ibis’ UAV for FMEA study at University of
Minnesota [5].

Current practice for ensuring safety of the motors in-
cludes a prescribed pre-flight and post-flight inspection of
the motors followed by replacement of the bearing parts if
a motor is ‘felt’ to be warmer or noisier than its counter-
parts [7]. Although bearings, like any component undergo-
ing fatigue, are not supposed to fail instantaneously during
a short flight of 1-2 hours, lack of in-flight monitoring and
highly subjective nature of the prescribed checks occasion-
ally lead to unprecedented motor failures [5]. Besides intrin-
sic fatigue failure causes or environmental elements such as
moisture or grains of sand may get caught in between the
rotor and stator inside a motor, thereby affecting its motion
and aggravate a previously undetected fault. Current practice
assumes periodic replacement of parts in lieu of condition-
based-maintenance. However this assumption relies on a po-
tentially costly maintenance regime that is not always ad-
hered to.

Previous studies have demonstrated vibration analysis as
a successful NDE technique to detect faults in rolling bear-
ings. Prior research [8, 9] validates bearing fault detection
methods on experimental vibration data recorded in ideal
conditions wherein accelerometers are attached on to the mo-
tor frame. The output vibration signal from those testbeds
contains strong signatures from bearing faults which can be
diagnosed with relatively high confidence. On the other

hand, in most commercial small UAVs, especially in the
rotor-type vehicles, accelerometers cannot be attached onto
each motor due to weight and space constraints. This is the
main reason behind the gap in existing research and practical
implementation of bearing fault diagnostics in small UAVs.
Most UAVs are equipped with a single Inertial Measurement
Unit (IMU) which consists of a tri-axial accelerometer at-
tached onto the main frame of the vehicle. A fault signal
from the IMU is often buried within noise from other sources
such as external turbulences and propeller imbalances. How-
ever, such IMU data can be used to identify vibrational dis-
turbances experienced by the UAV which may arise from a
faulty motor. It is imperative to detect vibrational anoma-
lies during a UAV flight owing to the risk posed on UAV
circuitry or payload when exposed to abnormal vibrations.
Techniques such as wavelet transforms [8, 10, 11] and artifi-
cial neural network (ANN) [12] have been employed to en-
hance diagnostic features for early detection of faults. Such
techniques, although highly effective, require high computa-
tional resources. Caciotta et al. [13] have described an enve-
lope analysis technique tested on simulations of signals from
a triaxial accelerometer mounted on a electric motor in UAV.
However, that study did not evaluate their bearing diagnostic
techniques on real UAV flight data.

This paper presents an overview of existing studies on
bearing fault detection on laboratory datasets. Accelerome-
ter signals recorded by a IMU mounted on a real octocopter
flight with faulty bearings are depicted and compared with
laboratory data. Vibrational signatures from IMU accelera-
tion data are extracted based on their frequency spectral rep-
resentation, and a in-flight vibration anomaly detection ap-
proach based on tracking non-unique frequency components
is demonstrated.

2 Bearing Fault Detection in Laboratory Datasets
In order to study and implement existing methods for

bearing fault diagnostics, public datasets from laboratory ex-
periments are analyzed in this section. Run-to-failure tests
were performed on bearings by the Center for Intelligent
Maintenance Systems (IMS) at the University of Cincinnati,
under normal load conditions and the data is available in the
NASA Ames Prognostic Center of Excellence dataset reposi-
tory [14]. The test rig consisted of four bearings on one shaft
driven by an AC motor. Accelerometers were attached onto
each bearing using adhesives, as depicted in Fig. 2, to record
continuous vibration signals over the entire life-span of each
bearing.

The vibration data for all four bearings along with ad-
ditional details of the test set up is available in [8]. Vibra-
tion data from the accelerometers was collected every 20
minutes at a sampling rate of 20 kHz by a National Instru-
ments DAQCard − 6062E data acquisition device. Damage
to the rolling ball in bearing 4 took 35 days to mature from a
healthy state to complete failure. Since bearings are rolling
components, it is evident that any damage in the bearing
shows up as a periodic pattern in the vibration signal which
can be extracted from its frequency spectrum. Vibration sig-
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Table 1. FMEA of motors in Ibis UAV flight experiments at UMN [5].

Fig. 2. Schematic of bearing test rig from IMS [14].

nals from the accelerometer attached to bearing 4 obtained
at the 5th, 15th, 25th and 35th days are depicted in Fig. 3
(a)- (d). The corresponding power spectral density (PSD) at
different frequency components, shown in Fig. 3 (e)- (h) in-
dicates clear distinction between the bearings at the different
stages of degradation.

In order to study the damage propagation over the entire
35 days, the PSD of the vibration signal was computed and
then the 7 frequencies with highest PSD values were plot-
ted in Fig. 4. It can be observed that the most damage
growth signatures are captured by the 5th, 6th and 7th fre-
quencies and not by the highest PSD frequencies since the
defect information is suppressed by the natural modal com-
ponents of the bearing in them. A weak degradation trend is
observed for the majority of bearing life, and damage grows
abruptly towards the end-of-life (EOL), as noted in previ-
ous studies [8, 12]. As a result, although peak frequencies
and associated PSD values may be sufficient features to dis-
criminate bearing health at the beginning and end of its life,
classification using these features during shorter time periods
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Fig. 3. Vibration signal from bearing 4 and its power spectral density
at different stages of failures (a) Day 5 (b) Day 15 (c) Day 25 and (d)
Day 35.

within the life cycle becomes challenging.
Fig. 5 (a) represents the feature space formed by 5th −

10th highest PSD values and the associated frequencies at the
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ing 4 vibration data.

four different stages of the bearing life as denoted in Fig. 3.
Similarly, Fig. 5 (b) represents the same feature space for
signals collected at one hour intervals in the period from 6 to
3 hours before EOL of the faulty bearing. It can be observed
that the features in Fig. 5 (b) highly overlap and the PSD
values are not indicative of the damage growth. Thus, the
ranked PSD representation of signals collected at 5 day inter-
vals (Fig. 5 a) reveals clustering which correlates with bear-
ing age, but is otherwise undiagnostic. Since in this paper
we are interested in detecting bearing failure in UAV flights
of 1-2 hour duration, PSD features of the vibration signal are
deemed unsuitable for in-flight diagnosis. Hence, it is nec-
essary to develop discriminatory features that can track any
anomaly in motor bearings over a short time course which
can produce a fault diagnostic within minutes.

3 Vibrational Anomaly Detection in Experimental UAV
flights
The goal of this study is to detect vibrational anoma-

lies in UAV motors using existing sensors from commer-
cial UAVs without having prior information of the motor’s
state of health at the beginning of the flight. This section
describes the acceleration data obtained from experimental
UAV flights and the challenges of implementing existing
methods on such data. Further, the proposed approach of
generating an vibrational anomaly indicator based on non-
unique frequency tracking is presented.

3.1 Experimental flight set-up
UAV flight experiments were performed at the NASA

Langley Research Center on a DJI S1000 octocopter, as
shown in Fig. 6. The vehicle was equipped with Pixhawk
autopilot hardware (http://pixhawk.org/) and com-
manded with Ardupilot software (http://ardupilot.
org/). For some of the flight tests, the octocopter was flown
with a faulty bearing on one of the UAV motors and stopped
before the bearing reached total failure to avoid an incident
or damage to the vehicle. Data from the Pixhawk IMU pack-
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Fig. 5. Feature space for classifying bearing’s state-of-health (a) For
day 5, 15, 25 and 35 (b) for 6 hours, 5 hours, 4 hours and 3 hours
before EOL.

age (tri-axial accelerometer, gyroscopes and magnetometer),
filtered to 25 Hz, was analyzed later in playback mode to
obtain diagnostic features indicative of bearing faults. The
vibration data along x-direction has been analyzed and re-
ported in this paper. It was found that acceleration data in
either x or y direction could be used to detect vibrational
anomalies. However, data in z-direction had higher noise es-
pecially since IMU measurements were significantly affected
during landing and take-off of the UAV, and were not rep-
resentative of any vibrational anomalies. This observation
aligned to previous findings reported in [15].

Table 2. Experimental flight dataset for bearing fault detection.
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Fig. 6. DJI S1000 octocopter used for flight tests.

IMU accelerometer data from a total of five flights
F1,F2,F3,F4,F5 were studied in this experiment. Data from
F1−F4 were used to extract relevant features, develop the di-
agnostic methodology and train the algorithm, whereas IMU
data for flight F5 was used to test the proposed method. The
duration of each flight along with the health status is reported
in Table 2.

3.2 Methodology
Before presenting the proposed diagnostic framework,

the evaluation of existing features as described in Section 2,
is implemented on the UAV dataset. Fig. 7 depicts vibration
signals along the x-direction as measured by the accelerom-
eter for (a) a healthy UAV from F1 and (b) a UAV with faulty
bearings F3. No significant differences can be observed in
the two time series. Features similar to those used in the IMS
data analysis, consisting of peak frequencies and PSD values,
were extracted from the accelerometer data. For generating
the feature space in Fig. 8, the entire flight of 2500 seconds
was divided into 5 sections of 500 seconds each whose fea-
tures are respectively denoted by red, blue, green, black and
pink colors starting from beginning to end of flight. Each
500 seconds section is further segmented into 4 windows of
125 seconds each. The PSD was computed for each of these
windowed signals and the 5th−10th frequencies with highest
PSD values were plotted with a set of symbols of a particu-
lar color, defined in Fig. 7. The red markers indicate fea-
tures from the first 500 seconds ( ≈ 8 min) of the UAV flight
whereas the pink markers indicate features from the last 8
minutes of the UAV flight.

No feature discrimination can be observed between
healthy and faulty bearings in the PSD representation. Sim-
ilar to the laboratory dataset depicted in Fig. 5 (b), a trend
correlated to age is expected, for example between the early
red (0-500 sec epoch) and black or pink symbols in the fea-
ture plot in the case of faulty bearings, since the PSD for
faulty bearings is high relative to the PSD of a healthy state.
While, some of the black and pink symbols are separated
in Fig. 8 (b), many of those symbols overlap with the fea-
ture points with low PSD values. Moreover, the PSD values
for the peak frequencies in the healthy bearing signal lies in

the same range as those of the faulty bearing. This is due
to the fact that (unlike laboratory conditions) the signal is
recorded by an accelerometer within the IMU which is lo-
cated at the central frame of the UAV. The signal is attenu-
ated, due to sensor placement far from the motor with faulty
bearings, vibrations from several sources including external
turbulence, imbalanced propellers and possibly other com-
ponent anomalies. With such signal attenuation and inter-
mixing, it is not surprising that no useful health information
could be extracted from these feature plots.

Fig. 7. Experimental flight dataset for vibrational anomaly detection.

Thus, we present a novel approach for extracting vi-
brational anomaly information based on tracking non-unique
frequency components generated from IMU data on a UAV
with faulty bearings. From Fig. 8 (a), it is seen that the
features are aligned in separate unique bins unlike the fea-
ture space in Fig. 8(b). This signifies that even if PSD val-
ues of IMU data from healthy flights lied in the same range
as those with faulty bearings, the frequency components
matched with the natural or previously encountered frequen-
cies recorded by the IMU during the UAV flight. No new
frequency components showed up even when they exhibited
high PSD values. On the other hand, in the IMU signal for a
faulty bearing, newer frequency components are generated
which do not match with previously observed unique fre-
quencies. This observation can be explained by the change
in modal properties of a mechanical structure in the presence
of a crack [16]. Based on this observation, the features com-
prising peak frequencies and PSD values from the windowed
signals are plotted in the feature space and then assigned in
a total of Nt unique frequency bins. As more windowed sig-
nals are analyzed and their features are plotted, the number
of non-unique frequency components are counted, denoted
by N f . A normalized health diagnostic feature named as Vi-
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Fig. 8. Feature space from IMU data for classifying state-of-health
of UAV flight with (a) Healthy bearing (b) Faulty bearing.

brational Anomaly Indicator (VAI) is then defined as:

VAI =
N f

Nt
(1)

The entire process of tracking unusual vibration status in
the UAV during its flight is summarized in a flowchart in Fig.
9. In Fig. 8 (a), the bins consisting of features with unique
frequencies have been marked with straight lines. IMU data
from flights F1 −F4 with known health status were used to
generate the ’threshold’ parameter or the value of bin count
less than which a frequency bin would be identified as a non-
unique frequency. In this study, the parameter value was
threshold = 3. The bins which have at least greater 3 fea-
tures are assumed to represent its modal characteristics and
are denoted with black dashed lines whereas the bins with
fewer than 3 features are identified as the non-unique com-
ponents, denoted with red dashed lines. Here, the modal fre-
quency indicates the frequency components of signal in nor-
mal condition. As observed, the number of non-unique fre-
quency components are higher in the case of faulty bearings
and hence it is associated with a high VAI metric.

4 Results and Discussion
The proposed approach was trained using the ac-

celerometer data from flights F1 −F4. The feature plots gen-
erated from the IMU data in the healthy flights F1 −F2 are

Fig. 9. Proposed algorithm for in-time tracking of vibration anoma-
lies in UAV flights.

shown in Fig. 10 (a-b) whereas those for flights with anoma-
lous vibrations f3 −F4 are shown in Fig. 10 (c-d) . The PSD
values of flight data F3 −F4 are not distinct from those of the
healthy flights and hence not indicative of any faulty bearing.

However, as observed from Fig. 10 (a-b), in the ab-
sence of faults, no new frequency components appeared dur-
ing the entire flight. Assuming that the flights began with
healthy bearings, the frequency components generated from
the first signal window represents the modal frequencies of
the healthy bearings. When fault either appeared or degraded
in one of the motor bearings during the flight, the peak fre-
quencies did not align in unique frequency bins representing
frequency components other than the modal frequencies, as
depicted in Fig. 10 (c-d). The VAI computed for the four
flights were as follows: (a) 0.04 for F1 (b) 0.08 for F2 (c)
0.65 for F3 and (d) 0.84 for F4.

For validation, the proposed diagnostic feature VAI was
computed for a UAV flight with unknown bearing status.
The flight F5 was scheduled to be operating within line-
of-sight and no bearing issues were identified during pre-
inspection. However, after 1500 seconds from the beginning
of the flight, abnormal noise was heard from one of the UAV
motors which lead to its forced termination. The IMU data,
shown in Fig. 11 was then analyzed in a playback mode
to generate its frequency-PSD feature plot (Fig. 12(a)) and
compute the associated VAI. As shown in Fig. 12(b) gradual
increase of VAI can be observed starting from 0 at the begin-
ning of flight. This confirms that the modal frequencies did
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Fig. 10. Feature space from IMU data of UAV flights (a) F1(b) F2 (c)
F3 and (d) F4.

not show anomalies at the beginning of the flight. However,
at around 600 seconds the VAI begins to increase and con-
tinues increasing till the end of the 1500-second long flight.
Additional investigation revealed that F5 was one of the flight

tests conducted with the bearing fault on the motor. Hence
it was verified that VAI can be used as a potential in-time
diagnostic feature of state-of-health of the UAV exposed to
vibration anomalies caused by faulty bearings. However, it
should be noted that although the current results are based
on acceleration data obtained from UAV flights with faulty
bearings, IMU measurements restricts fault diagnosis only to
vibrational anomalies which may or may not originate from a
faulty bearing. Additional information, particularly accelera-
tion data collected at higher frequencies, should be analyzed
to isolate the source of such anomalous vibrations.
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Fig. 11. IMU accelerometer signal for test flight F5.

(a)

(b)

Fig. 12. (a) Feature space from IMU data in test UAV flight F5 (b)
VAI computed in-time from the feature plot.
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5 Conclusion
In this paper, criticality of in-flight diagnostics for UAV

motors was studied. Comparison of bearing fault diagnosis
methods on a laboratory dataset and from flight experiments
on commercial UAVs were performed. Vibration data from
the IMU located at the central frame of a UAV was analyzed
and utilized in the development of a vibration anomaly in-
dicator (VAI). The VAI was defined based on counting the
non-unique frequency components in the feature space of the
UAV vibration data.

Although the health indicator was demonstrated on
flights designed with faulty bearings, one of challenges of
the proposed method is that the health indicator can detect
an anomaly but not isolate the source of it. Data from central
IMU contains other information inherent to the vehicle, thus
other sensors such as temperature or current measurements
should be used in addition to the IMU to refine the diagnos-
tic results and identify which motor or bearing failed. Fur-
ther, it is important to integrate the physics of bearing failures
and degradation with the IMU measurement data in order to
improve diagnostics and extend to in-flight prognostic appli-
cation. Finally, the proposed approach shall be demonstrated
on additional flight test data to verify its benefit and extend
the development.
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