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Abstract
Agriculture in South Africa sustains about 70% of the region’s population for food, income and employment, playing an
important role for food security and the local economy. The focus of the study was the commercial maize farms of the Free
State Province given their importance in the National economy. The Regional Integrated Assessment (phase I) was implemented
to assess climate change and adaptation that links climate, crops, economic data and tools developed by the Agricultural Model
Intercomparison and Improvement Project (AgMIP). In this context, the “system” is defined as a whole of agronomic and socio-
economic factors. Within that framework three core questions were being evaluated: (i) Impacts of climate change under current
system; (ii) Impacts of climate change under future system; (iii) The role of adaptation under climate change and the future
system. Maize production will decrease between 10% to 16% as a result of projected climate impacts. Also, current agricultural
production systems are negatively affected by climate change with an increase in poverty rates between 2% to 3%. The projected
adoption of the adapted technology would result in positive increased net returns and a decrease in poverty rate of between 12%
and 22%. The results of this study show that implementing adaptation measures and other strategies as indicated by the local
stakeholders will have positive impacts on the agricultural production systems and can contribute to support and inform climate
change policy decision making such as the development of National Adaptation Plans.
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1 Introduction

Agriculture in South Africa sustains about 70% of the region’s
population for food, income and employment, playing an im-
portant role for food security and the local economy (Southern
Africa Development Community – SADC 2013). The country
has a unique feature having both well-developed commercial
farming systems and smallholder subsistence-based produc-
tion systems. The former, are characterized by large economic
investments on their farms, modern crop management tech-
niques with high inputs (e.g. nitrogen), and extensive use of
labour, and market-oriented production. The latter are charac-
terized by low use of inputs and minimal labour usage, with
production oriented to local markets and self-consumption.
Given the importance of the commercial farms in the economy
of South Africa for achieving self-sustaining maize produc-
tion, this study evaluates the likely impacts of climate change
and adaptation on commercial maize farms of the Bethlehem
region. We implemented the Regional Integrated Assessment
(RIA), a new approach to climate change and adaptation as-
sessment that links climate, crops, livestock and economic
data and tools developed by the Agricultural Model
Intercomparison and Improvement Project (AgMIP; www.
agmip.org, Antle et al. 2014). Further details of the protocols
and the appended technical documents are freely available
online (www.agmip.org and http://agmip-ie.alterra.wur.nl/).
The AgMIP-RIA assessment has been applied to numerous
case studies in different regions of the South East Asia and
Sub Saharan Africa (Freduah et al. 2019).

Most of the agricultural production in South Africa is
rainfed which means that farmers rely on rainfall to grow
crops and produce marketable yields, and climate projections
suggest that there will be serious threats to agricultural pro-
duction affecting both commercial and smallholder farmers
(Tadross et al. 2005; Schulze 2007; Davis 2011; Engelbrecht
et al. 2013). Climate projections indicate that South Africa
will likely experience moderate decreases of rainfall and
higher inter-annual variability, increased probability of
drought events, increase in minimum and maximum temper-
atures, and a decrease of water availability due to the changes
in land-use towards industrial and urban usage (Meadows
2006; Ruane et al. 2015a). A recent study by Zampieri et al.
(2019) confirmed that global maize production will be nega-
tively impacted by a 1.5C increase in temperature as early as
the next decade. Commercial farmers are vulnerable to climate
change due to the size of their operations and the capital
invested. Negative impacts of climate change can be offset
by changes in crop management (e.g. planting dates, crop
rotations), development of new genotypes, investment in in-
frastructure and agricultural policies (Claessens et al. 2012;
Antle et al. 2017).

The impacts of climate change on crop production and the
effects of changing management practices have been

simulated using crop simulation models (CSMs) (Challinor
andWheeler 2008). CSMs integrate the temporal and multiple
interactions of stresses on daily crop growth under different
environmental and management conditions (Jones et al.
2003). However, these commodity-specific types of assess-
ments are not enough to properly assess the impacts of climate
change on farmers livelihoods. Thus, an approach that informs
policy decision-making and support long-term planning and
investment on adaptation strategies is needed.

Different approaches have been proposed to address as-
sessments of climate change impacts on agriculture. AgMIP
has developed the RIA, a protocol-based approach to link
climate, crop, and economic data andmodelling tools to assess
the impacts of climate change and adaptation strategies on
agricultural systems (Rosenzweig and Hillel 2015). This
trans-disciplinary and system-based approach for evaluating
regional impacts on agricultural systems captures climatic,
biophysical, and socio-economic interactions using rigorously
documented protocols and methodologies (see Antle et al.
2014, for details). A key feature of the approach is the stake-
holder engagement to identify the research priorities by iden-
tifying key indicators, co-design adaptation strategies that are
locally relevant, and co-developed future development path-
ways and scenarios.

In this study we use the AgMIP RIA to evaluate the maize-
based commercial agricultural systems in the north eastern
part of the Free State Province of South Africa under current
and future climate, bio-physical and socio-economic condi-
tions using data and analyses of the first phase (Phase I) of
the AgMIP’s RIA. The approach used in this study allowed
capturing the high degree of variability in each region and
obtain distributional outcomes, such as the proportion of
farms that are vulnerable to climate change (i.e. farms at risk
of losing due to climate change) and changes in farm net
returns and poverty rate, defined here as the Foster-Greer-
Thorbecke (FGT) headcount poverty index.

Since its inception the RIA protocol has evolved from its
original form and the application of the new protocol (Phase
II) is documented elsewhere (http://agmip-ie.alterra.wur.nl/).
In this context, the “system” is defined as a whole of
agronomic and socio-economic factors; and for this study
the focus is Maize system. Within that framework three core
questions were being evaluated:

1. Impacts of climate change under current system: The im-
pacts of climate change are evaluated with the assumption
that the production system does not change from its cur-
rent state under current biophysical and socio-economic
conditions. While this type of analysis can provide some
insights into potential impacts, its relevance is limited
because of the use of current socio-economic conditions
to quantify impacts. This question also relates to
“Business as usual”;
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2. Impacts of climate change under future system: The im-
pacts of climate change on a projected production system
(biophysical and socio-economic) in a future world is
quantified. This type of analysis is more relevant to un-
derstanding climate impacts and thus the potential bene-
fits of adaptation, but is more challenging because all of
the relevant variables affecting the maize systems must be
projected into the future;

3. The role of adaptation under climate change and the future
system: the question addresses the design of adaptation
options for the future production systems, the degree to
which they would be likely to be adopted, and the eco-
nomic, environmental, and social outcomes that would be
associated with their use.

Therefore, the objective of this study was to use the AgMIP
RIA approach to study the sensitivity of the current and future
agricultural production system to projected climate change.

2 Materials and methods

2.1 Site description

The Bethlehem district was in the north eastern part of the Free
State Province, Republic of South Africa (28° 57’ S; 25° 53′
E; 1200 to 1640 m a.s.l.). The district was selected for a case
study because it was representative of large-scale commercial
farming systems (Fig. 1).

To perform the integrated impact assessment at regional
level, detailed descriptions of the maize-farming practices
were required for both crop and economic models’ parameter-
ization. A household survey that provided information on
each field was not available, so data were obtained from sec-
ondary sources. Field boundaries and crop classification were
obtained from Ferreira et al. (2006) and Durand (2016). This
method identified 5000 fields planted to maize of which 400
were randomly selected for crop model simulations. Crop
management inputs as to planting date, plant population, and
row widths were obtained from objective yield surveys
(Durand 2016). Information for the economic model was de-
rived from enterprise budgets (Grain South Africa - SA 2012)
and the census of commercial agriculture 2002 (Statistics SA
2005).

2.2 Climate

For this study daily weather data for the 1980–2010 period
were used. This time frame has been used in many other crop
modelling simulation studies (Asseng et al. 2013; Rosenzweig
and Hillel 2015). The daily minimum and maximum temper-
atures and rainfall were extracted from the Climate System
Analysis Group, University of Cape Town records. Data gap

filling and quality control was accomplished using the
AgMERRA approach (Ruane et al. 2015a, 2015b). Solar ra-
diation was calculated following the approach of Allen et al.
(1998). Homogenous climate areas were defined, and farm-
specific daily climate datasets were computed by geographical
bias correction (relying on the WorldClim dataset obtained
from www.worldclim.org).

Changes from the current climate (1980–2010) to near-
future (2010–2040), mid-century (2040–2070) and end-of-
century (2070–2100) were computed. Twenty global climate
models (GCMs) were used to compute twenty delta changes
in monthly temperatures and monthly rainfalls, hence produc-
ing 20 future weather scenarios per baseline. For this study,
RCP 8.5 was selected (The RCPs described the forcing effects
of atmospheric greenhouse gases to 2100), representing in-
creases in energy of 8.5 W m−2 for 2100. The RCPs are a
greenhouse gas concentration trajectory which are consistent
with the ranges of possible changes of greenhouse gas emis-
sions. For example, the RCP 4.5 assume the greenhouse gas
emission to peak around 2040 and then decline, while the
RCP 8.5 projects rises through the twenty-first century.
Additional details of the RCPs can be found on the IPCC
website regarding the methodology and additional detailed
references (IPCC 2019). A corresponding CO2 level of
571 ppm was used when simulating crop response for the
mid-century. A CO2 level of 360 ppm was used when simu-
lating the baseline period (1980–2010).

2.3 Soil

Soil physical property data (e.g. clay, silt, sand, bulk den-
sity, organic carbon) were derived for each field using the
land-type database (Agricultural Research Council 2006).
Soil hydraulic property data (e.g. lower limit, drain upper
limit, saturation) were derived using specific pedo-transfer
functions derived for South African soils (Smithers and
Schulze 1995). Land-type in this case was defined as an
area with uniform micro-climate, typical terrain morphol-
ogy, and characteristic soil-distribution pattern in the
landscape. The original land-type database with a spatial
reference to polygons was modified to a spatial land-type
database based on a 90 m STRM (The NASA Shuttle
Radar Topographic Mission) digital elevation model
(DEM). The soil properties required for crop modelling
were derived using the identified soil series suitable for
maize production within each terrain unit. The soil prop-
erties for each field were first calculated for each terrain
unit to determine the weighted averages of the soil prop-
erties. Then, the soil properties for each field (400 fields
in total) were calculated based on the percentage repre-
sentation of each terrain unit within a field using zonal
statistics. This resulted in each field having a unique soil
description.
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2.4 Crop modelling

To establish crop management input for crop modelling, the
Free State province was divided into two rainfall zones, i.e.,
above and below 500 mm rainfall per annum. 1542 samples
obtained from objective yield surveying over a 6-year period
(2008–2013) were used to calculate the proportion of fields
with certain row widths, planting dates and plant populations
for maize in each of the two zones. The same proportion was
used to assign the management strategies to all the fields with-
in the Free State and subsequently the Bethlehem district
using the “Sample Features” command of Geospatial
Modelling Environment (Beyer 2012). The planting window
was between 30 September and 30 December, row width be-
tween 75 and 280 cm, plant population 0.5–5.5 plants per m2,
and fertilizer 20–90 kg N ha−1. Fertilization was based on the
average modelled 50-year yield potential of each field using
the 50-year Quaternary Catchments Database (QCDB) cli-
mate data (Schulze et al. 2007). The rule of 15 kg Nitrogen
(N) per hectare for each ton of grain produced was used
(Maize Information Guide 2014). A summary of the crop

management is shown in Supplemental Material Tab. S1. On
this basis, N fertilization applications ranged from 20 to
90 kg N ha−1.

Two crop simulation models, Decision Support System for
Agrotechnology Transfer (DSSAT v4.5; Hoogenboom et al.
2012) and Agricultural Production Simulation Model
(APSIM v7.5; Keating et al. 2003) were used. The two crop
models’ input were soil physical and hydraulic properties,
daily weather data, crop genetic characteristics, and agronom-
ic management such as row width, planting population, fertil-
izer application, and planting date.

The maize models were calibrated using data from a range
of field experiments by Du Toit (1996), Du Toit et al. (1994a,
b, c, 1997, 1998), Du Toit and Prinsloo (2000). These datasets
represent a range of different locations, varieties, plant densi-
ties, planting dates, row widths and years. The genetic
coefficients for maize in APSIM v7.4 were derived using the
experimental work of Ncube et al. (2007, 2009) and Dimes
and Du Toit (2009). Although PAN6479 is not a new hybrid,
this medium-maturing maize hybrid was selected because it
was commonly grown during the baseline simulation period.

Fig. 1 Map of the Bethlehem district (Free State, South Africa). Mean annual rainfall is represented by the colors, while the grey areas are the
commercial maize fields
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The resulting genetic coefficients for the maize genotypes
used are reported in Supp. Material Tab. S2 for DSSAT and
APSIM.

Common modelling practices suggest that once calibrated
a model should be evaluated on an independent dataset to test
its ability to reproduce a given trend or a yield level. In this
study, the crop models were evaluated using district-level ob-
served data for large-scale farmers for 18 years of recorded
yields (1981–1999). A measure of models’ accuracy was the
root mean square error (RMSE) between observed and simu-
lated yields was calculated as:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n
∑
i¼l

yi−yið Þ2
s

ð1Þ

where yi are the measurements, yi the simulations, and n is the
number of comparisons.

Crop yields were simulated for each field for the current
period (1980–2009) and the future (2040–2070) using climate
scenarios from the 20 GCMs described in Supp. Material Tab.
S3.

2.5 Designing future development pathways

Agriculture is a complex system where biophysical, econom-
ic, policy and social factors interact to determine farmers’
production each season. These factors will likely change un-
der future policies, biophysical, and socio-economic condi-
tions. To assess the likely impacts of climate change and ad-
aptation strategies under future conditions, defined scenarios
that characterize and define likely future conditions were de-
veloped. These scenarios, called Representative Agricultural
Pathways (RAPs) were developed in a series of meetings be-
tween scientists and stakeholders. A RAPs defined as
storylines with qualitative and quantitative information that
describe possible trends of key drivers into the future was
developed for South Africa. Information on drivers such as
future farm and household size, costs of production, cropman-
agement, prices and policy can be translated into economic
and crop model parameters (Claessens et al. 2012; Valdivia
et al. 2012). RAPs are consistent with new scenario concepts
being developed by the international climate modeling and
impact assessment communities with inputs from
stakeholders. Methods developed by Valdivia et al. (2015)
within the AgMIP approach were used to develop a
“Business as Usual” RAP for South Africa. Meetings with
stakeholders were held between 2012 and 2014 with the par-
ticipation of farmers, farmer-unions’ representatives, econo-
mists, and agriculture experts. Interaction with stakeholders
continued after the meetings on an individual basis to refine
specific aspects of the RAPs (Table S3). Their feedback was
useful in gaining information for developing the RAP narra-
tives and to gain information about current conditions and on

future trends of the Free State Region (and South Africa) in
terms of future governmental agricultural policy implementa-
tion and its impact on the agricultural sector.

The RAP developed was consistent with the ‘Business as
Usual’ trend and the final narrative for South Africa was de-
scribed as “South Africa will follow a more positive economic
development pathway in line with the National Development
Plan; Vision 2030 (National Planning Commission 2012)
characterized by higher rates of economic growth, increased
agricultural technology development and use, and increased
access to productive commercial agricultural land. Increased
investments in implementing agricultural and land reform
policies provide a positive environment for increased agricul-
tural production of commodities such as maize, improved eco-
nomic performance and associated reductions in poverty en-
hance social cohesion and facilitate investments in commer-
cial agriculture production such as maize production (20%
increase in variable costs; 10% increase in output price;
15% decrease in farm size and 5% increase in productivity
growth due to technology change)”.

The key drivers identified by the team of stakeholders and
scientists is presented in Fig. 2 where the arrows represent the
direction of change (increase, decrease, no change) and the
magnitude of that change (from small to large change). The
results of the RAPs process showed future conditions with
increased soil degradation that might be compensated by the
use of improved varieties, and higher fertilizer use. These
drivers were used as input to crop simulation models. Other
aspects like the change in farm size, input and output prices
and off-farm income were used as input to the economic
model.

2.6 Co-design of future adaptation strategies

Engagement with stakeholders was also needed to co-design
possible adaptation strategies that were of interest to stake-
holders and that could be tested using our modeling approach
for this region. The resulting adaptation package included:

i) an increase of 30% of fertilizer: such increase was jus-
tified by the feedback received by the stakeholders and
was based on the assumption that current N manage-
ment system is inefficient in commercial maize farm-
ing. Such mismanagement is causing low NUE and
non-optimal application amounts and timing (Nel and
Bloem 2006; Van Biljon et al. 2008). An increase with
N amount with a better strategic and tactic management
is therefore planned. In the near-future, precision agri-
culture could help to optimize the agronomic manage-
ment so that crops will be responsive to the an addition-
al 30%.

ii) a change of maize variety from a medium to a long
season: The switch to long season variety is justified

Integrated assessment of climate change impacts on crop productivity and income of commercial maize farms in northeast South Africa



by the projected temperature trends. An increase in
growing season temperature means that crop develop-
ment will be accelerated causing less accumulated bio-
mass and lower yields. To offset such negative impacts
of temperature on crop development a longer season
cultivar is considered as part of the adaptation package.

2.7 Economic modelling

The Trade-Off Analysis Model for Multi-Dimensional Impact
Assessment (TOA-MD; Antle 2011; Antle et al. 2014) was
used to evaluate the impacts climate change on farm income
and poverty rates and assessing sustainable alternatives in

mixed farming systems for the commercial farmers. The
socio-economic data for the model input were obtained from
the Census of agriculture 2002 and 2007 (Statistics SA 2005,
2010), the 2011 census (Statistics SA 2012a) and enterprise
budgets from Grain South Africa (Statistics SA 2012b). The
enterprise budgets were used to calculate net returns (mean
and standard deviation), and variable cost for maize, based on
each individual field’s production (Table S4).

TOA-MD provides the capability to go beyond the analysis
of averaged or aggregated data, by representing the distribu-
tions of economic, environmental and social outcomes in het-
erogeneous populations of farm households. In the case of
climate impact assessment, the TOA-MD model can be used
to show how the distributions of outcomes are affected by

Fig. 2 Representative
Agricultural Pathways for South
Africa maize-based systems in
Bethlehem. Key drivers identified
by stakeholders and scientists
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climate and by adaptations farmers adopt to offset the impacts
of climate change. In the TOA-MD model, farmers are pre-
sented with a simple binary choice: they can continue operat-
ing their farming system with a current or base production
system 1, or they can switch to an alternative (e.g. ‘adapted’)
system 2. The model simulates the proportion of farms that
would adopt the new or alternative system, as well as the
impacts of the new system by simulating impact indicators
such as poverty rates, farm net returns, per-capita income
and others. The TOA-MD simulates impacts that are statisti-
cally associated with adoption, using the standard statistical
framework for econometric policy evaluation in which eco-
nomic “agents” – in our context, farms – self-select into “treat-
ment”, i.e., choose to adopt or not adopt. The model can be
used to estimate the so-called “treatment effects” or the im-
pacts associated with technology adoption. Thus, the model is
able to estimate the proportion of farms that would adopt the
alternative technology (i.e. those who would self-select).
Likewise, the TOA-MD is used to assess climate impacts by
using a simple analogy to technology adoption. Farms cannot
choose whether to have climate change or not, but if farms had
such a choice, those that would choose to “adopt” climate
change are those who would gain from it; farms that would
prefer not to “adopt” climate change are those who would lose
from it. The impacts of climate change estimated by the TOA-
MD model are the “treatment effects” of climate change.

In this case the TOA-MD estimates the proportion of farms
that would gain and the proportion that would lose from it. In
this context, we define vulnerability as the proportion of farms
that are at risk of losing from climate change. The phenome-
non of losers and gainers from climate change can be ex-
plained (at least in part) by the heterogeneity in the conditions
in which the farms operate, such as soils, water resources,
topography, climate, the farm household’s socio-economic
characteristics, and the broader economic, institutional and
policy setting. For a detailed description of the TOA-MD
model readers are advised to check the work of Antle et al.
2017.

The change in revenue of the crops under current condi-
tions and not simulated was derived from the Free State
Province Census of commercial agriculture (2007) and by
interacting with different stakeholders (reported in Table S3)
that have direct knowledge of the market (Table S5).

3 Results

3.1 Climate

Historical daily average temperatures, rainfall and projected
changes from baseline (1980–2010) to the mid-century 2050s
(2040–2070; RCP8.5 and 20 GCMs) are shown in Fig. 3.
Mean monthly temperatures (black line and stars, Fig. 3a)

were projected to increase consistently with little variability
across the GCMs (boxplots, Fig. 3a). The projected mean
annual temperature (“ann” in the right box of Fig. 3a) showed
an increase of mean temperature between 2.8 and 4.8 °C in-
crease respect to the baseline (11.05 °C). Overall, the GCMs
boxplots did not show high variability, with the range of
projected winter mean temperature (defined as the June,
July, and August) being the smallest, suggesting a greater
confidence in projection for that season. While for the mean
temperature the GCMs agreed in terms of the direction
(warming), for the rainfall (Fig. 3b) there was higher uncer-
tainty in both the amount and the direction of change, espe-
cially during summer (December, January, and February).

Figure 4 shows the mean growing season temperature and
rainfall distribution of the 20 GCMs respect to the baseline.
Among the 20 GCMs, 5 of them were selected to give a
representation of full range of temperature changes.
Including all GCMs x RCPs x Crop models x adaptation
packages x RAPs would lead to an impractical number of
combinations for full integrated assessment. The 5 GCMs
chosen for this study were the CCSM4; GFDL_ESM2,
HADGEM2_ES, MIROC5, MPI_ESM as documented in
Ruane et al. (2015a, 2015b). In addition, the GCMs subset
was selected to be consistent cross all the different case-
study of the AgMIP-RIA so larger patterns of change on a
continental scale can be detected. However, this meant that
not all possible climate change types were included in all
locations. These 5 GCMs were chosen to have higher resolu-
tions, prominence in the literature, participation in CMIP ac-
tivities, and an adequate performance in the monsoon regions.
It is also important to note that the selected GCMs included a
range of climate sensitivities (2.4–4.6 °C equilibrium global
mean warming for a doubling of CO2; Flato et al. 2013).

3.2 Crop modelling

The models were evaluated for their ability of simulating phe-
nology (anthesis and maturity) and grain yield. The average
simulated maize grain yield for commercial farmers using
baseline weather data (1980–2010) was 3155 kg ha−1 with a
CVof 49% between farms. The RMSE for yield was 1360 and
748 kg ha−1 for DSSAT and APSIM, respectively.

Figure 5 showed variation of simulated maize yield due to
the spatial variability of tested fields and management prac-
tices combinations. The mean simulated yield with DSSAT
was about 1000 kg ha−1 higher than the one simulated by
APSIM over the 30 years period. The shape of the yield dis-
tribution was different between the two models with APSIM
showing less variability between the 400 simulated fields.

Simulated grain yield using projected climate from the 5
GCMs declined for both crop models, with the APSIM model
estimating lower yields compared with DSSAT (Fig. 6). The
variability and the simulated yield by APSIM (boxplots) were
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lower among the 5 GCMs, especially for the GDFL,
HADGEM2, and MPI_ESM (Fig. 6). However, the overall
simulated median yield decline respect to the baseline was
estimated to be about 10% and 16% with DSSAT and
APSIM, respectively.

The simulated impacts of climate change and the benefit of
agronomic adaptations (included in the adaptation package)
for the simulated maize yields were summarized in Fig. 6 for
future systems under projected climate. Simulated maize
yields without adaptation was decreased between 2425 to
2375 kg ha−1 due to the changes in climate, while adaptations
increased simulated yields for both baseline and projected
effects of climate.

3.3 Economic modelling

3.3.1 Current farming systems

The likely impacts of climate change to the current production
system to climate change is shown in Table 1. Overall, the

current system was negatively affected by the projected chang-
es in climate under all the 5 GCMs. Grain yield decreased
between 9 and 28% while net returns decreased between 10
and 28%. The proportion of farms that are vulnerable to loss
due to climate change is high and ranges between 62% to 80%.
Poverty rates increased between 2 and 5%, however it is im-
portant to note that current poverty rates among the commercial
maize farms is already very low at about 8%. The current
poverty rate for South Africa was estimated considering the
different definitions of poverty lines that are officially used in
the country and represented here as of 2014 statistics: (a) Food
poverty line: R305 per capita per month, i.e. R3660 per capita
per year; (b) Lower-bound poverty line: R416 per capita per
month, i.e., R4992 per capita per year; and (c) Upper-bound
poverty line: R577 per capita per month i.e., R6924 per capita
per year. For this study we used the Lower-bound poverty line
(R4992 per capita per year). This includes the food poverty line
(R305) plus the average amount derived from non-food items
of households whose total expenditure is equal to the poverty
line (Statistics SA 2012). Commercial farms that make large

Fig. 3 Current (black line and stars) and projected (box-and-whiskers)
monthly and seasonal mean temperature (a) and precipitation (b),
projected by 20 CMIP5 global climate models for Bethlehem, Free

State, South Africa in the 2050s under RCP8.5. ann = Annual; JFM =
January, February, March; AMJ =April, May, June; JAS = July, August,
September; OND =October, November, December
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investments on capital, inputs, and manage the farms intensive-
ly are at risk of larger loses.

3.3.2 Future farming systems

The results suggest that if this region in South Africa follows
the Business As Usual pathway, represented by the conditions

set by the RAPs, climate change will have a negative impact
on commercial maize farms. The proportion of vulnerable
farms (i.e. farms at risk of losing due to climate change) ranges
between 53 and 80%.Mean farm net returns decrease between
8% and 30% (Table 2). These negative impacts are mostly due
to the decline in crop yields due to climate change. Increase in
output prices and other future conditions (e.g, increase in off-

Fig. 4 Mean (October to March)
temperature and precipitation
projected by 20 CMIP5 global
climate models (diamonds) and
the 5 GCMs selected for this
study (letters E, I, K, O and R) for
Bethlehem, South Africa in the
2050s under the high-emissions
RCP8.5 scenario. The black star
represents the current conditions.
The vertical and horizontal
dashed lines indicate the bound-
aries of statistical significant de-
viation expected from the
31 years baseline period for tem-
perature and rainfall, vertically
and horizontally respectively

DSSAT APSIMa) b)Fig. 5 Probability of exceedance
plots showing the effects of
climate simulated maize yields
using (a) DSSAT (D_) and (b)
APSIM (A_). Each line represents
the simulated yields for 400 fields
and averaged over the 30-years
period, for the baseline (1980–
2010; B) and the five GCMs
CCSM4 (E); GFDL_ESM2 (I);
HADGEM2_ES (K); MIROC5
(O); and MPI_ESM (R)

Integrated assessment of climate change impacts on crop productivity and income of commercial maize farms in northeast South Africa



farm income), combined with the increased production costs
(e.g. increased use of fertilizer) resulted on low farm net
returns and are not enough to offset the bio-physical effects
of climate change on yields. This suggests that assessing pos-
sible adaptation strategies that can offset the effects of climate
change is important. In particular, as Fig. 2 showed, the dif-
ferent stakeholders when designing the RAP indicated that the
off-farm income will be a major component.

The adaptation analysis projected that between 58% and
65% of the farmers would adopt the proposed package. This
would increase average farm net returns in the population
increase between 20% and 26%. This was due to the increased
maize yields (between 13% and 21%). Therefore, poverty
rates decrease about 20% across the different scenarios (Tab.
3).

4 Discussion

The combination of stakeholders’ interactions and the scien-
tific methods for using their information as input to crop and
economicmodels allowed the assessment of the likely impacts
of climate change and adaptation of commercial maize-based
farm systems in South Africa. Our results show that climate
change will likely have negative impacts on these maize farm-
ing systems. Poverty rate in this population of farms (i.e. com-
mercial farms) is already very low and the estimated impacts
are small. The reason for this is that we have used the head
count ratio, which estimates the proportion of people that live
below the poverty line. If the changes in net farm returns or
per-capita income are not enough to bring more people below
the poverty line, then the poverty rate change is small. A better
indicator that could be used in future analysis is the FGT
poverty gap that measures the intensity of poverty.

Another point worth highlighting from our results is that
although mostly negative, not everybody loses from climate
change and this is, in part, explained by the bio-physical and
socio-economic heterogeneity that characterizes the farming
system. Under both current and future conditions, there is a
proportion of the farms that may actually gain from climate
change. This has important implications for policy making,
the design of adaptations or policies need to be tailored to
those who actually would benefit from them. Blanket inter-
ventions have the risk of failure (e.g. low adoption or early dis-
adoption).

One of the key features of this study is the interaction
between stakeholders and scientists since the beginning of
the project for the development of the RAPs and the co-
design of the adaptation package. This was achieved through
a series of multi stakeholder interactions with different insti-
tutions (Table S3). Some of the stakeholder gave feedbacks on
the current crop management systems in each region that
helped considering the regional variability of crop manage-
ment practices, while others provided useful feedback for un-
derstanding on how governments’ future policies agenda will
affect the agricultural sector. The RAP developed with the
stakeholders was positive and based on the government
“National Development Plan 2030” (NPC 2012), but it was
only one of the plausible trends that could happen in the next
20 years. Development of other plausible futures, for example
one RAPwith better development conditions (i.e. better future
socio-economic and technological conditions) will increase
the value of this approach but were not considered in this
phase of the project.

Changes in farm income and the poverty rates in popula-
tion indicated that in addition to climate there are other factors
that could contribute to offset the negative effects of climate
change like increased income from other sources external to
agriculture, better future prices, and improvement in

Climate scenario
ah
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Fig. 6 Interannual variability of
the simulated maize yield in
Bethlehem district for DSSATand
APSIM and the 5 chosen global
climate models (CCSM4, GFDL_
ESM2, HADGEM2_ES,
MIROC5, and MPI_ESM). For
each boxplot the horizontal lines
from the top to the bottom
represent the 90th, 75th, 25th, and
10th percentiles, the middle line
represents the median value
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technology. However, these may not be enough in farming
systems where losses from climate change can be large.
Furthermore, the interaction of projected changes in climate
with natural and socio-economic factors such as increasing
rainfall variability, decreasing soil fertility, reduction of farm
sizes due to land reform will exacerbate the impacts on crop
production systems in Bethlehem area. Our results demon-
strate the need for designing adaptation strategies to face the
impacts of climate change. Our study focuses on an adaptation
package based on two agronomic practices: increased use of
mineral fertilizer and change in crop variety. However, there
was consensus among stakeholders and scientists at the end of
the project that a more comprehensive adaptation package that
includes policies aimed to facilitate the implementation of the
adaptation package is needed. Hence, increased government
support for improving agricultural technologies and extension
will contribute to increase and maintain adoption of the adap-
tation package.

The choice of the 5 GCM based on the approach described
above meant that some peculiar climate patterns (e.g. decrease
in precipitation) was not well represented (Zampieri et al.
2019). In addition, Galmarini et al. (2019) concluded how
the delta-method approach might not be the best way to rep-
resent the climate models outputs. In fact, the next phase of
this AgMIP-RIA activity (Phase II) saw the modification of
the GCM selection in terms of model selection and the inclu-
sion of extreme characteristics in the scenario generation pro-
cess using an approach described in detail in Ruane and
McDermid (2017).

The evaluation of the two crop models showed some dis-
crepancies between the simulated and observed values (in
terms of RMSE). This is caused by the approach used for
calibration and evaluation. The former was done using de-
tailed experimental data. The latter was done at district level
using observed data aggregated over a large area. Therefore,
the calibration and evaluation datasets have a different spatial
scale. At district level (evaluation dataset) themodels were run
with a range and a combination of management factors, soil
and weather to depict the regional variability of the 400 fields
simulated. As a result, the combination of these two factors
contributed to such discrepancies during the evaluation.
Maize crop models have been systematically compared
against observed data under different environmental condi-
tions (Bassu et al. 2014). Among 23 maize simulation model
it was found that the simulated yield and phenology were
reduced by higher air temperature due to the acceleration in
development and the increase of CO2 concentration could not
offset it. Their simulated response was in line with the Free-
Air CO2 enrichment (FACE) experiments on maize (Long
et al. 2006). However, two recent studies using the same
maize models compared their ability to simulate yield and
water use against other FACE with treatments of water stress
and against evapotranspiration data (ET) from an 8-years long

experiment (Durand et al. 2018; Kimball et al. 2019). In both
cases there was a significant divergence in simulated yield and
water use, and the main source of variability was in the sim-
ulation of potential evapotranspiration. However, all these
three studies concluded that the models’ ensemble was able
to reproduce the mean experimental changes. This was con-
firmed on wheat by Asseng et al. (2013) and Martre et al.
(2014) where ensemble with two models were also compared.
In this study the two crop models used (DSSAT and APSIM)
were part of that original study and their simulated yield var-
iability is in line to the one reported in the abovementioned
study. In addition, each model was run with 5 different GCM
which also contributed in increasing the variability among
models. The overall higher values of DSSAT with respect to
APSIM can be the result of the way the two models simulate
the water balance and the biomass accumulation, and the way
water deficit impacts expansive growth process (Saseendran
et al. 2008).

5 Conclusions

Climate projections for South Africa indicated an increase in
temperature and an increased variability in rainfall, increasing
the food insecurity in the region. The results from the crop
models and the five different climate scenarios show that cur-
rent maize production in Bethlehem will be reduced by 10%
to 16% due to climate change. Also, the economic modelling
results showed that current agricultural production systems are
negatively affected by climate change with decreased net
returns per hectare and per capita, and an increase in poverty
rates between 2% to 3%. Future agricultural production sys-
tems are likely to be negatively impacted by climate change if
no adaptation measures are applied. The proportion of farms
vulnerable to climate change under current and future condi-
tions is high, between 53 to 80%. The projected adoption of
the adapted technology would result in increased net returns
and a decrease in poverty rate of between 12% and 22%.
Overall, the results of this study show that implementing ad-
aptation measures and other strategies like the ones included
in the RAP and suggested by the stakeholders will have pos-
itive impacts on the agricultural production systems and
would offset the negative impacts of climate change. This
proof-of-concept study demonstrated how the integration be-
tween scientific fields together with the stakeholder engage-
ment gave many “reality-checks” in terms of technology
trends, crop management practices, and policy The approach
used, can contribute to support and inform climate change
policy decision making such as the development of National
Adaptation Plans. Future work should be expanded to differ-
ent regions, agricultural systems (e.g. with a focus on small-
holder farmers), and time-frame for aiding future planning of
the agricultural sector in South Africa.
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