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ing similar physical processes and underlying uncertainties18
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Abstract19

There is strong evidence climate change will increase drought risk and severity, but these20

conclusions depend on the regions, seasons, and drought metrics being considered. We21

analyze changes in drought across the hydrologic cycle (precipitation, soil moisture, and22

runoff) in projections from Phase Six of the Coupled Model Intercomparison Project (CMIP6).23

The multi-model ensemble shows robust drying in the mean state across many regions24

and metrics by the end of the 21st century, even following the more aggressive mitiga-25

tion pathways (SSP1-2.6 and SSP2-4.5). Regional hotspots with strong drying include26

western North America, Central America, Europe and the Mediterranean, the Amazon,27

southern Africa, China, Southeast Asia, and Australia. Compared to SSP3-7.0 and SSP5-28

8.5, however, the severity of drying in the lower warming scenarios is substantially re-29

duced and further precipitation declines in many regions are avoided. Along with dry-30

ing in the mean state, the risk of the historically most extreme drought events also in-31

creases with warming, by 200–300% in some regions. Soil moisture and runoff drying in32

CMIP6 is more robust, spatially extensive, and severe than precipitation, indicating an33

important role for other temperature-sensitive drought processes, including evapotran-34

spiration and snow. Given the similarity in drought responses between CMIP5 and CMIP6,35

we speculate both generations of models are subject to similar uncertainties, including36

vegetation processes, model representations of precipitation, and the degree to which model37

responses to warming are consistent with observations. These topics should be further38

explored to evaluate whether CMIP6 models offer reasons to have increased confidence39

in drought projections.40

Plain Language Summary41

Drought is an important natural hazard in many regions around the world, and there42

are significant concerns that climate change will increase the frequency or severity of drought43

events in the future. Compared to a world before anthropogenic climate change, the lat-44

est state-of-the-art climate model projections from CMIP6 show robust drying and in-45

creases in extreme drought occurrence across many regions by the end of the 21st cen-46

tury, including western North America, Central America, Europe and the Mediterranean,47

the Amazon, southern Africa, China, Southeast Asia, and Australia. While these changes48

occur even under the most aggressive climate mitigation pathways, the models show sub-49

stantial increases in the extent and severity of this drying under higher warming levels,50

highlighting the value of mitigation for reducing drought-based climate change impacts.51

Given the significant response to even modest warming, however, and evidence that cli-52

mate change has already increased drought risk and severity in some regions, adapta-53

tion to a new, drier baseline will likely be required even under the most optimistic sce-54

narios.55

1 Introduction56

Shifts in hydroclimate, especially drought, are some of the most important regional con-57

sequences of climate change for people and ecosystems (Breshears et al., 2018; Gosling58

& Arnell, 2016; Humphrey et al., 2018; Vicente-Serrano et al., 2019). Analyses of climate59

model experiments are especially useful for evaluating how climate change affects drought,60

including multi-model efforts such as those organized as part of the Fifth Phase of the61

Coupled Model Intercomparison Project (CMIP5) (Taylor et al., 2012). Studies using62

CMIP5 simulations have advanced our understanding of regionally heterogeneous hy-63

droclimate responses to warming (Cook et al., 2014; Dai, 2013; Hessl et al., 2018), high-64

lighted areas where increases in drought risk and severity will be especially pronounced65

(Cook et al., 2015; Seager et al., 2019), investigated mechanisms that may explain why66

different drought variables respond differently to warming (A. Berg et al., 2017; Lemor-67

dant et al., 2018; Mankin et al., 2019; Milly & Dunne, 2016; Swann et al., 2016), and quan-68
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tified the detection and attribution of climate change signals in observed hydroclimate69

trends and drought events (Kelley et al., 2015; Marvel et al., 2019; Williams et al., 2015).70

Analyses of the CMIP5 simulations have revealed an array of drought responses71

showing strong and consistent agreement across models in response to anthropogenic forc-72

ing, while also highlighting important, and sometimes irreducible, uncertainties (Cook73

et al., 2018; Knutti & Sedlacek, 2013; Mankin, Smerdon, et al., 2017; Mankin, Viviroli,74

et al., 2017). Precipitation responses to climate change, for example, are highly uncer-75

tain for many regions and seasons (Knutti & Sedlacek, 2013), especially over land where76

the classic “wet-get-wetter/dry-get-drier” expectations do not hold (Byrne & O’Gorman,77

2015; Greve et al., 2014; Held & Soden, 2006). This contrasts sharply with soil moisture78

and runoff, which generally show much more intense and widespread drying patterns (A. Berg79

et al., 2017; Cook et al., 2018), in part because of warming-induced increases in evap-80

orative demand and total vegetation water use (Dai et al., 2018; Mankin et al., 2019).81

At the same time, plant physiological responses to rising atmospheric CO2 concentra-82

tions also increase plant water use efficiency in models (Swann et al., 2016), potentially83

modulating surface drying while also emphasizing the important, but often complex and84

uncertain, role of vegetation processes (Lemordant et al., 2018; Trugman et al., 2018).85

Even in cases where models may strongly agree on the sign and magnitude of the drought86

response, however, overreliance on consistency as a metric to guide model interpretations87

may lead to over-confidence if the strong multi-model agreement arises from systematic88

errors across models (Tierney et al., 2015). Thus, while the CMIP5 projections provide89

some of the most comprehensive information on how drought will respond to climate change,90

it is important to reassess the state of knowledge as new datasets and research tools be-91

come available.92

Recently, new simulations from the latest, state-of-the-art climate models partic-93

ipating in Phase Six of the Coupled Model Intercomparison Project (CMIP6) have be-94

come available (Eyring et al., 2016). This provides a new opportunity to analyze hydro-95

climate and drought responses to climate change in the projections and revisit conclu-96

sions from previous community modeling efforts. Using a multi-model ensemble (MME)97

drawn from CMIP6, we investigate changes in precipitation, soil moisture, and runoff98

across a range of 21st-century development and radiative forcing scenarios (Shared So-99

cioeconomic Pathways; SSPs) developed for ScenarioMIP (O’Neill et al., 2016). We fo-100

cus our analyses around three primary research questions: (1) How do changes in drought101

risk and severity compare across different CMIP6 forcing scenarios?; (2) How different102

is the extent and intensity of changes in meteorological (precipitation) drought versus103

agricultural (soil moisture) and hydrological (runoff) drought?; and (3) How do results104

from CMIP6 compare to those from CMIP5?105

2 Materials and Methods106

2.1 CMIP6 Multi-Model Ensemble107

We downloaded diagnostic output from climate models in the CMIP6 database (https://108

esgf-node.llnl.gov/search/cmip6/), using the “historical” (1850–2014) simulations109

conducted as part of the core DECK experiments (Eyring et al., 2016) and four SSPs110

(2015–2100) from ScenarioMIP (O’Neill et al., 2016). The historical simulations are forced111

with estimates of natural (e.g., volcanic eruptions, solar and orbital variability) and an-112

thropogenic (e.g., greenhouse gas emissions, aerosols, land use change) climate forcings,113

with the goal of simulating climate change and variability over the time period covered114

by the observational record. The SSPs represent a range of future greenhouse gas emis-115

sion and land use change scenarios estimated from integrated assessment models and based116

on various assumptions regarding economic growth, climate mitigation efforts, and global117

governance. Using these assumptions, the SSPs are used to generate different radiative118

forcing pathways, and associated warming, out to the end of the 21st century. To con-119

sider a range of possible futures, we use simulations from four SSPs, drawn from Tier120
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Table 1. The number of ensemble members from each model and SSP scenario used to con-

struct the multi-model CMIP6 ensemble, along with each model’s equilibrium climate sensitivity

(ECS; K/2xCO2) and reference for submission to CMIP6. ECS values taken from Pendergrass

(2019) and https://www.carbonbrief.org/cmip6-the-next-generation-of-climate-models

-explained.

Ensemble Members

Model SSP1-2.6 SSP2-4.5 SSP3-7.0 SSP5-8.5 ECS Reference

BCC-CSM2-MR 1 1 1 1 3.1 Wu et al. (2018)
CanESM5 9 9 9 9 5.6 Swart et al. (2019)
CESM2 1 1 2 2 5.2 Danabasoglu (2019a)
CESM2-WACCM 1 1 1 1 4.7 Danabasoglu (2019b)
CNRM-CM6-1 6 6 6 6 4.8 Voldoire (2018)
CNRM-ESM2-1 5 5 5 5 4.8 Seferian (2018)
GFDL-CM4 NA 1 NA 1 3.9 Guo et al. (2018)
GFDL-ESM4 1 1 1 NA 2.7 Krasting et al. (2018)
IPSL-CM6A-LR 3 2 10 1 4.5 Boucher et al. (2018)
MIROC-ES2L 1 1 1 1 2.7 Tachiiri et al. (2019)
MIROC6 3 3 3 3 2.6 Tatebe and Watanabe (2018)
MRI-ESM2-0 1 1 1 1 3.2 Yukimoto et al. (2019)
UKESM1-0-LL 5 5 5 4 5.3 Good et al. (2019)

1 of ScenarioMIP: SSP1-2.6 (+2.6 W m-2 imbalance; low forcing sustainability pathway),121

SSP2-4.5 (+4.5 W m-2; medium forcing middle-of-the-road pathway), SSP3-7.0 (+7.0122

W m-2; medium- to high-end forcing pathway), and SSP5-8.5 (+8.5 W m-2; high-end forc-123

ing pathway).124

We selected specific models and ensemble members (listed in Table 1) that provided125

the following diagnostics from continuous (1850–2100) historical+SSP simulations: tas126

(2-m near surface air temperature; K), pr (precipitation rate, all phases; mm day-1), mr-127

sos (surface, top 10 cm, soil moisture content, all phases; kg m-2), mrso (total soil mois-128

ture content, all phases summed over all layers; kg m-2), mrros (total surface runoff leav-129

ing the land portion of the grid cell, excluding drainage through the base of the soil model;130

mm day-1), and mrro (total runoff, including drainage through the base of the soil model;131

mm day-1). These variables cover the full range of traditional physical drought categories:132

meteorological (precipitation), agricultural (soil moisture), and hydrological (runoff). The133

simulations represent an “ensemble of opportunity”, constrained by the requirement that134

each simulation must provide all of the variables outlined above. While not all models135

provided theses variables for all SSPs, 11 of the 13 models are represented in each of the136

4 SSPs, and 8 of these models have a consistent number of ensemble members across all137

four SSPs.138

2.2 Analyses139

For most analyses, we calculate anomalies and changes for the end of the 21st century,140

2071–2100, relative to a baseline climatology of 1851–1880. This baseline is most rep-141

resentative of pre-industrial conditions in the historical simulations, allowing us to eval-142

uate the full-scale of changes in climate and drought resulting from anthropogenic forc-143

ing. To test the sensitivity of our conclusions to our choice of baseline, and assess the144

potential for greenhouse gas mitigation to reduce future drought responses, we also eval-145

uate end of 21st century changes relative to a more modern baseline representing the last146

30 years of the historical simulations, 1985–2014. To improve legibility of the figures show-147
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ing changes in individual seasons, which have a large number of subplots, the most ex-148

treme warming scenario (SSP5-8.5) is omitted from these figures.149

Drought responses to warming can be highly seasonally dependent, so all analy-150

ses are conducted separately for different seasonal composites. For precipitation, we break151

the analysis into four 3-month seasons: December–February (DJF), March–May (MAM),152

June–August (JJA), and September–November (SON). For all the soil moisture and runoff153

fields, we use six-month averages: April–September (AMJJAS) and October–March (OND-154

JFM). To facilitate comparisons across models, all models are linearly interpolated to155

a new uniform 1.5o spatial resolution. When constructing the MME, all individual en-156

semble members within each model are averaged together first, and then the MME av-157

erage is calculated across models to ensure that each model is weighted equally. Ensem-158

ble average changes are expressed in units of either percent change (precipitation, sur-159

face runoff, and total runoff) or standardized z-scores (surface soil moisture and total160

column soil moisture), calculated by subtracting the mean and dividing by the standard161

deviation of the time series from the baseline period. Z-scores are used for soil moisture162

variables that represent large pools of moisture, where significant changes may be small163

on a percentage basis, but still represent large changes relative to natural variability. All164

other calculations (e.g., robustness, changes in return frequency) are applied to the vari-165

ables in their native units.166

The relative agreement across models in the ensemble is assessed using the robust-167

ness metric R, described in detail in Knutti and Sedlacek (2013). This robustness indi-168

cator incorporates information on the magnitude and sign of the MME change, variabil-169

ity within each simulation, and the spread across models in the MME. A value of R =170

1.0 indicates perfect agreement across models. A higher model spread or smaller signal171

will decrease R, while R will increase if the shape of the distribution or variability changes172

between time periods, even if the MME mean does not change. For our analyses, we use173

a threshold of R ≥ 0.90 to determine whether our MME responses are robust, repre-174

senting an intermediary value between the R = 0.80 (“good agreement”) and R = 0.95175

(“very good agreement”) thresholds used by Knutti and Sedlacek (2013).176

We also calculate changes in the risk, or likelihood of occurrence, of extreme single-177

year drought events. Extreme single-year droughts are defined as years with values, for178

any variable, equal to or below the 10th percentile of all years during the 1851–1880 base-179

line. We then calculate the percentile of equivalent or drier extreme drought events for180

2071–2100, and use this information to determine the relative change in risk of these droughts.181

To avoid distorting or damping variability because of averaging across simulations, these182

drought frequency calculations are conducted at each grid cell for each variable and sea-183

son by pooling all years from all available models and ensemble members together (re-184

sults are similar if only one ensemble member from each model is used).185

3 Results and Discussion186

3.1 Warming Across the SSP Scenarios187

All four SSP scenarios show strong warming over the full period of simulation from 1850–188

2100 (Figure 1; left panel). Temperature trajectories across the SSPs diverge most strongly189

after 2050, as emissions begin to slow or plateau in the more aggressive mitigation sce-190

narios, SSP1-2.6 and SSP2-4.5. For 2071–2100, median warming (Figure 1, right panel)191

across the ensemble for each SSP is: +2.1 K (SSP1-2.6), +3.0 K (SSP2-4.5), +3.9 K (SSP3-192

7.0), and +4.9 K (SSP5-8.5). Even within each SSP, however, the spread in warming across193

models can be large (black dots, right panel in Figure 1), resulting in some significant194

overlap between adjacent scenarios, especially SSP3-7.0 and SSP5-8.5.195
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Global Surface Air Temperature Anomalies

K

2071-2100

Figure 1. Global, annual average surface air temperature (SAT) anomalies (baseline 1851–

1880) for the four SSP scenarios in our CMIP6 ensemble. Left panel: ensemble time series,

showing the ensemble median (solid lines) and the interquartile range calculated across models

(colored shading). Anomalies from observations in an updated version of the HadCRUT (version

4) global temperature dataset (Morice et al., 2012) are shown in black, using the same 1851–1880

baseline. Light grey shading is 2071–2100, the time interval used for construction of the box and

jitter plots. Right panel: box and jitter plots for all models (median SAT anomaly, 2071–2100) in

each SSP scenario. Individual model values are indicated by the black dots.

3.2 Precipitation196

Increases in precipitation are widespread and robust across large land areas of North Amer-197

ica, Asia, northern and eastern Africa, and the Middle East (Figure 2). During boreal198

winter (DJF) and spring (MAM), the largest anomalies occur across the mid- and high-199

latitudes of the Northern Hemisphere. This robust response is consistent with the pre-200

cipitation response in the CMIP5 models (Knutti & Sedlacek, 2013), likely occurring as201

a consequence of increased atmospheric humidity in regions and seasons of mean mois-202

ture convergence, rising motion, and storm track activity. Similarly, precipitation also203

increases in extra-tropical South America east of the Andes Mountains and also major204

monsoon regions around the world, including West Africa, India, and Southeast Asia.205

Increases in monsoon regions are likely indicative of a warming-induced intensification206

of the monsoons in the mid- to late- wet season (e.g., SON in Southeast Asia), a pat-207

tern also previously documented in CMIP5 (Lee & Wang, 2014; Seth et al., 2013).208

By contrast, drying patterns in precipitation are not as robust and are much more209

localized. The largest declines occur in Mediterranean-type climate regions, including210

the Mediterranean, southwest Australia, and along the western coasts of South Amer-211

ica and southern Africa, in line with observations and analyses of previous generations212

of climate models (Hoerling et al., 2012; Seager et al., 2019). Declines also occur dur-213

ing the early part of the rainy season in many monsoon regions (e.g., MAM in South-214

east Asia), indicative of delayed monsoon onset also shown in CMIP5 models (Lee & Wang,215

2014; Seth et al., 2013). Other regions where widespread drying occurs include Central216

and Northern Europe (JJA), Central America (all seasons except SON), the Amazon (all217

seasons, intensified during JJA and SON), southern Africa (all seasons, intensified dur-218

ing JJA and SON), and southeast Australia (JJA and SON). Over the western United219

States, the main precipitation declines occur over the southwest in spring (MAM) (Ting220

et al., 2018) and the Pacific Northwest in summer (JJA).221
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ΔPrecipitation

%

SSP2-4.5 SSP3-7.0SSP1-2.6

Figure 2. Three-month seasonal average total precipitation changes (% change, 2071-2100

versus 1851–1880) in the multi-model ensemble mean in the SSPs. Areas where changes are

non-robust (R<0.90) are indicated by hatching.

3.3 Soil Moisture222

Surface soil moisture drying (Figure 3, top panels) is more robust and widespread com-223

pared to precipitation, especially over North America, Europe and the Mediterranean,224

South America outside of Argentina, southern Africa, and in southwestern and south-225

eastern Australia. Notably, this drying extends into regions where precipitation is in-226

creasing or where changes in precipitation are non-robust, including northern and east-227

ern Europe and the Central Plains in North America. This highlights the importance228

of other processes that can reallocate moisture away from the surface towards evapotran-229

spiration, including increased evaporative demand in the atmosphere (Dai et al., 2018)230

and greater vegetation water use (Mankin et al., 2019). The impact of even the most con-231

servative warming scenarios is apparent in the soil moisture changes, where, under SSP1-232

2.6, much of western North America and Europe still experience a one to two standard233

deviation shift towards drier mean conditions, especially during the warm season (AMJ-234

JAS). The few regions where robust surface soil moisture increases occur are mostly aligned235

with areas where the strongest precipitation increases are projected, including East Africa,236

Central Asia, Argentina, and and monsoonal regions of West Africa and India.237

Drying in the total column soil moisture is also more widespread (Figure 3, bot-238

tom panels) compared to precipitation, but not as extensive as the surface soil moisture239

drying, a pattern also observed in CMIP5 (A. Berg et al., 2017; Cook et al., 2015, 2018).240

This may be indicative of a longer seasonal memory deeper in the soil column, where an-241

tecedent moisture anomalies can more easily carry over from previous seasons, even as242

near-surface soil moisture is more sensitive to concurrent seasonal changes in evapora-243

tive demand and precipitation (A. Berg et al., 2017; Cook et al., 2015). It may also re-244
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SSP2-4.5 SSP3-7.0

ΔSoil Moisture

(surface)

ΔSoil Moisture

(column)

SSP1-2.6

z-score

Figure 3. Six-month seasonal average surface (top panels) and total column (bottom panels)

soil moisture changes (z-score, 2071-2100 versus 1851–1880) in the SSPs. Areas where changes

are non-robust (R<0.90) are indicated by hatching.

flect a reduced sensitivity of deeper soil moisture pools to increases in evaporative de-245

mand because of stronger controls by vegetation processes (e.g., increases in water use246

efficiency with higher atmospheric CO2 concentrations) (A. Berg et al., 2017). Analy-247

ses in some models, however, suggest that divergent trends in shallow versus deep soil248

moisture responses are not a universal response to warming (Mankin, Smerdon, et al.,249

2017). Additionally, it should be noted that soil columns across models in our ensem-250

ble do not all extend to the same maximum depth, making standardized comparisons251

of this metric across models more difficult. For example, the bottom of the deepest soil252

layer in BCC-CSM2-MR extends to 3.57 meters, while in the CNRM family of models253

the bottom of the deepest layer is 12 meters below the surface (although only hydrolog-254

ically active down to 8 meters). Regardless, the more extensive drying in both the sur-255

face and total column soil moisture diagnostics highlights the importance of processes256

other than precipitation for understanding future agricultural drought.257

3.4 Runoff258

In the Northern Hemisphere, runoff declines occur primarily during AMJJAS and are259

generally associated with increases in runoff over the same regions during ONDJFM, es-260

pecially at high northern latitudes and in high elevation areas of the mid-latitudes (e.g.,261

montane regions of western North America) (Figure 4). These are regions where, much262

like in CMIP5, snow dynamics are important, and where the projected seasonal shifts263

in runoff likely reflect warming impacts on total precipitation (Knutti & Sedlacek, 2013),264

snow versus rain partitioning (Krasting et al., 2013), and the surface snowpack (Shi &265

Wang, 2015). Warming increases total precipitation at mid- to high-latitudes in the North-266

ern Hemisphere during the cold season (Figure 2), with an increasing fraction of this pre-267

cipitation falling as rain rather than snow. At the surface, warming also reduces the wa-268

ter stored in the snowpack (e.g., through lower snowfall inputs and increased losses from269
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SSP2-4.5 SSP3-7.0

ΔRunoff

(surface)

ΔRunoff

(total)

SSP1-2.6

%

Figure 4. Six-month seasonal average surface (top panels) and total (bottom panels) runoff

changes (%, 2071-2100 versus 1851–1880) in the SSPs. Areas where changes are non-robust

(R<0.90) are indicated by hatching.

sublimation and melting) and also shifts the timing of snowpack melt earlier in the sea-270

son. Through these processes, more direct runoff occurs in the winter and early spring,271

less moisture is stored in the snowpack, and less water is therefore available during the272

subsequent growing season.273

Elsewhere, runoff changes are tied closely to changes in total precipitation. Robust274

runoff increases occur over most monsoon regions, consistent with the intensification of275

the monsoons and increases in total monsoon-season precipitation. Runoff also declines276

in the Mediterranean and other regions with Mediterranean-climates, like southwestern277

Australia and Chile, as well as over Central America, the Amazon, and southern Africa.278

As with soil moisture, robust runoff reductions still occur for many regions even under279

SSP1-2.6 (e.g., western North America, Europe and the Mediterranean, South America,280

southern Africa), highlighting the strong sensitivity of the terrestrial hydrologic cycle to281

even modest warming. However, while robust declines in runoff (surface and total) are282

generally more widespread compared to precipitation, this drying is not as extensive as283

the soil moisture declines noted previously.284

Somewhat paradoxically, certain regions show divergent trends in soil moisture and285

runoff. For example, over the southeastern United States, Southeast Asia, and south-286

eastern Australia, soil moisture declines under most SSP scenarios while, at the same287

time, runoff either increases or does not change in a robust manner. This is perhaps not288

surprising, given the myriad of different processes affecting soil moisture and runoff (Mankin289

et al., 2019; X. Zhang et al., 2014), but it does further highlight important differences290

in surface moisture responses across different drought variables.291
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3.5 Comparisons To CMIP5292

To quantify differences between the CMIP6 ensemble and the previous generation of mod-293

els in CMIP5, we compare the sign of the MME responses in SSP5-8.5 (CMIP6) and RCP294

8.5 (CMIP5) (Figure 5). Here, we focus on differences in the sign of the MME ensem-295

ble responses, rather than magnitude or robustness, because of the challenges inherent296

in accounting for potentially important differences in the two ensembles that are unre-297

lated to advances in model physics or process representations (e.g., number of models298

or ensemble members, specific models included, etc). Disagreements on the sign of the299

MME response between CMIP5 and CMIP6 are indicated by the colored hatching: red300

hatching highlights regions where CMIP6 shows drying and CMIP5 is wetting, while blue301

hatching shows areas where CMIP6 shows wetting and CMIP5 shows drying.302

Precipitation

Soil Moisture

(surface)

Soil Moisture

(column)

Runoff

(surface)

Runoff

(total)

CMIP6 (SSP5-8.5) versus CMIP5 (RCP 8.5)
(red=CMIP6 dry/CMIP5 wet, blue=CMIP6 wet/CMIP5 dry)

%

z-score

Figure 5. Six-month seasonal average changes (2071–2100 versus 1851–1880) in precipi-

tation (%), surface and total runoff (%), and surface and total column soil moisture (z-score)

for SSP5-8.5 in our CMIP6 ensemble. Colored hatching indicates regions where the sign of the

MME response (drying or wetting) is different between CMIP6 and a similar ensemble from the

RCP 8.5 scenario in CMIP5: red=areas where CMIP6 indicates drying and CMIP5 shows wet-

ting; blue=areas where CMIP6 indicates wetting and CMIP5 shows drying. The 17 Models in

the CMIP5 ensemble are: BCC-CSM-1.1, CCSM4, CNRM-CM5, CSIRO-MK3-6.0, CanESM2,

GFDL-ESM2G, GFDL-ESM2M, GISS-E2-R, INMCM4, IPSL-CM5A-LR, IPSL-CM5A-MR,

IPSL-CM5B-LR, MIROC-ESM, MIROC-ESM-CHEM, MIROC5, MRI-CGCM3, and NorESM1-

M.

For most regions, the large-scale patterns of wetting and drying are consistent be-303

tween CMIP5 and CMIP6, and areas where the two ensembles disagree are primarily in304
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transitional regions between robust drying and wetting responses (e.g., ONDJFM pre-305

cipitation and surface soil moisture in northern Africa), or in areas where the CMIP6306

response is non-robust (e.g., AMJJAS precipitation over the western United States). Over307

some areas, however, differences between CMIP5 and CMIP6 are spatially extensive, es-308

pecially in cases where the sign of the change switches to drying in CMIP6: total col-309

umn soil moisture over Alaska, the Northern Plains of the United States, and northeast-310

ern Asia; runoff over the Amazon and southern Africa; and AMJJAS precipitation in east-311

ern Europe. Fewer areas with robust responses see a sign reversal to wetting in CMIP6:312

runoff in the eastern United States and parts of China; total column soil moisture in north-313

ern Africa, the Middle East, and southwestern Asia; and surface soil moisture in north-314

ern China, and northern Africa. At present, it is impossible to definitively attribute these315

differences to any specific reason. More broadly, however, the most robust regional pat-316

terns of wetting and drying in CMIP6 are largely consistent with CMIP5.317

Fractional Land Area w/ Robust Drying
ONDJFM

AMJJAS

Figure 6. For all drought variables and SSP scenarios, the fractional land area, excluding

Antarctica and Greenland, with robust drying responses (defined as areas where R≥0.90 and the

sign of the change is negative) during ONDJFM and AMJJAS.

3.6 Extent of Robust Drying Over Global Land Areas318

Excluding Antarctica and Greenland, the global land area that experiences robust dry-319

ing is sensitive to both the SSP scenarios and drought variables being considered (Fig-320

ure 6). Within each SSP, the spatial extent of drying is larger for soil moisture and runoff321

compared to precipitation. During AMJJAS under SSP3-7.0, for example, robust dry-322

ing in precipitation affects only 25.1% of the land area, increasing to 58.1% for surface323

soil moisture, 43.4% for total column soil moisture, 35.5% for surface runoff, and 32.3%324
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for total runoff. To a lesser degree, the spatial extent of drying also increases with the325

level of forcing in the SSP scenarios, especially in surface soil moisture where drying dur-326

ing AMJJAS increases from 47.7% of the global land area in SSP1-2.6 to 62.1% in SSP5-327

8.5. Changes in the extent of drying across SSPs is much more muted in precipitation328

and runoff, however, and effectively zero in the case of total column soil moisture. In-329

creases in the spatial extent of drying with SSP forcing are also relatively small compared330

to the increasing intensity of drying within regions as warming increases (e.g., Figures331

2–4). Over the Mediterranean, for example, the intensity of declines in AMJJAS surface332

runoff is between 10–20% in SSP1-2.6, but exceeds 30–60% for much of the region un-333

der SSP3-7.0 and SSP5-8.5.334

SSP2-4.5 SSP3-7.0SSP1-2.6

Soil Moisture

(surface)

Soil Moisture

(column)

Runoff

(surface)

Runoff

(total)

Extreme Drought Risk, 2071-2100 (ONDJFM)
15% 20% 25% 30% 35% 40% 45%10%5%0%

Precipitation

Δfreq.

freq.

Figure 7. For ONDJFM during 2071–2100, the risk or likelihood of extreme single-year

drought events (top numbers, bold text) and the change in risk relative to 1851–1880 (bottom

numbers, plain text). Extreme single-year droughts are defined as years, for each variable, with

single-year magnitudes equal to or drier than the 10th percentile of all years from the baseline

1851–1880. Hatching indicates areas of non-robust changes in the MME mean, identical to Fig-

ures 2–4.

3.7 Changes in Extreme Drought Risk335

Shifts in extreme drought risk, defined as years with event magnitudes below the 10th336

percentile from the 1851–1880 baseline, broadly follow changes in the MME mean (OND-337

JFM, Figure 7; AMJJAS, Figure 8). The most intense and widespread declines in drought338

risk occur across high northern latitudes, India, East Africa, and Argentina, all regions339

that experience some of the largest and most robust increases in MME mean precipita-340

tion. Ensemble mean drying in western North America, southern Africa, the Amazon,341

and Europe causes some of the largest increases in extreme soil moisture and runoff drought342

risk, as high as +200-300%, equivalent to a x3 to x4 times increase in the likelihood of343

occurrence of these events. Increases in risk can also be seen in regions that experience344

either robust wetting in the MME mean (e.g., runoff in East Africa) or where the MME345
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mean response is not robust (e.g., runoff in eastern Australia). While somewhat coun-346

terintuitive, this implies that for some regions drought risk may increase even if the mean347

state does not get drier because the underlying variability increases or becomes increas-348

ingly skewed towards the drier tail, a phenomenon also documented in CMIP5 (Pendergrass349

et al., 2017). As expected, increases in drought risk are largest in the higher warming350

SSP3-7.0 and SSP5-8.5 scenarios. However, increases in extreme drought risk are large351

for some variables and regions, even under the lowest warming scenarios. For example,352

drought risk under SSP1-2.6 increases by over +100% (x2) over western North Amer-353

ica, the Amazon, southern Africa, Europe, and the Mediterranean.354

SSP2-4.5 SSP3-7.0SSP1-2.6

Soil Moisture

(surface)

Soil Moisture

(column)

Runoff

(surface)

Runoff

(total)

Extreme Drought Risk, 2071-2100 (AMJJAS)
15% 20% 25% 30% 35% 40% 45%10%5%0%

Precipitation

Δfreq.

freq.

Figure 8. For AMJJAS during 2071–2100, the risk or likelihood of extreme single-year

drought events (top numbers, bold text) and the change in risk relative to 1851–1880 (bottom

numbers, plain text). Extreme single-year droughts are defined as years, for each variable, with

single-year magnitudes equal to or drier than the 10th percentile of all years from the baseline

1851–1880. Hatching indicates areas of non-robust changes in the MME mean, identical to Fig-

ures 2–4.

355

3.8 Annual Average Changes356

Despite often divergent trends across seasons, annual average precipitation increases across357

most regions in the Northern Hemisphere with warming (Figure 9, left column). At mid-358

to high-latitudes, this is indicative of large increases during the cold season that over-359

compensate for any declines or marginal responses during the rest of the year (Figure360

2). Similarly, intensification of mid- to late-season monsoon rainfall over regions like In-361

dia and extratropical South America drives increases in total annual precipitation, de-362

spite delays in monsoon onset. Robust precipitation declines are still apparent in the same363

regions from the seasonal plots, including the Amazon, Central America, Mediterranean,364

southern Africa, and southwest and southeast coastal Australia. Broadly, however, an-365
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%

Changes in Drought (annual, 1851-1880 baseline)

SSP2-4.5

SSP3-7.0

SSP5-8.5

SSP1-2.6

ΔRunoff
(total)

ΔPrecipitation ΔRunoff
(surface)

Figure 9. Annual average, multi-model ensemble mean changes (percent) in precipitation

and runoff for 2071–2100, using the 1851–1880 baseline. Areas where changes are non-robust

(R<0.90) are indicated by hatching.

nual terrestrial precipitation responses are dominated by robust wetting or non-robust366

responses, with net drying much more localized in specific regions.367

Increases in total annual precipitation, however, does not directly translate to in-368

creases in total annual runoff for many regions (Figure 9, center and right columns). For369

example, despite widespread precipitation increases across the mid- to high-northern lat-370

itudes, annual surface runoff declines across Europe, western Russia, much of Canada,371

and the western United States. This is likely attributed primarily to large-scale shifts372

in precipitation from snow to rain, resulting in a redistribution of runoff from the warm373

to cold season (see Figure 4) and net declines in the annual average. Over these same374

regions, annual average declines are not as widespread in total runoff, though they are375

more intense and extensive over western North America and Europe than would be ex-376

pected from annual precipitation changes alone. Elsewhere, annual runoff changes gen-377

erally closely follow the sign of precipitation changes.378

Compared to precipitation and runoff, robust declines in soil moisture are much379

more widespread, affecting large areas of every continent (excluding Antarctica), even380

in regions with robust increases in total annual precipitation (Figure 10). As noted pre-381

viously, this likely reflects the myriad of other important processes affecting soil mois-382

ture that also change with warming, including increased evaporative demand in the at-383

mosphere and plant water use. The few localized regions experiencing robust increases384

in annual soil moisture are those areas with some of the strongest increases in precip-385

itation, including extra-tropical South America, northern and eastern Africa, India, and386

Central Asia.387
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Changes in Drought (annual, 1851-1880 baseline)

SSP2-4.5

SSP3-7.0

SSP5-8.5

SSP1-2.6

ΔSoil Moisture
(surface)

ΔSoil Moisture
(total column)

z-score

Figure 10. Annual average, multi-model ensemble mean changes (z-score) in surface and to-

tal column soil moisture for 2071–2100, using the 1851–1880 baseline. Areas where changes are

non-robust (R<0.90) are indicated by hatching.

388

3.9 Baseline Sensitivity and Future Mitigation Potential389

All of our results presented to this point use a near pre-industrial baseline, 1851–1880,390

for calculation of the anomalies, allowing us to evaluate the full scale of changes in drought391

associated with anthropogenic climate change. To assess the potential for greenhouse gas392

mitigation to reduce future drought impacts from climate change, we recalculate the an-393

nual average anomalies using a modern baseline from the last 30 years of the historical394

simulations, 1985–2014. Comparing these anomalies with those using the pre-industrial395

baseline highlights how the changes in drought associated with warming are distributed396

between the historical and future intervals, as well as the potential future mitigation ben-397

efits for drought from shifting towards lower warming pathways.398

In the case of precipitation, it is clear that much of the drying in the SSP1-2.6 and399

SSP2-4.5 projections is driven by changes during the historical period (Figure 11, left400

column). For example, many of the regions (e.g., Central America, the Amazon, the Mediter-401
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%

Changes in Drought (annual, 1985-2014 baseline)

SSP2-4.5

SSP3-7.0

SSP5-8.5

SSP1-2.6

ΔRunoff
(total)

ΔPrecipitation ΔRunoff
(surface)

Figure 11. Annual average, multi-model ensemble mean changes (percent) in precipitation

and runoff for 2071–2100, using the 1985–2014 baseline. Areas where changes are non-robust

(R<0.90) are indicated by hatching.

ranean) with robust annual precipitation declines using the 1851–1880 baseline (Figure402

9) are non-robust when using 1985–2014. This suggests that, in terms of meteorologi-403

cal drought, further declines can likely be prevented by following these pathways over404

the higher warming scenarios of SSP3-7.0 and SSP5-8.5, where continued precipitation405

reductions in many regions are likely.406

Following these lower forcing pathways would also substantially diminish future de-407

clines in runoff (Figure 11, center and right columns) and soil moisture (Figure 12) com-408

pared to SSP3-7.0 and SSP5-8.5. However, unlike with precipitation where additional409

future drying is mostly prevented in these low warming scenarios, there are still substan-410

tial and robust future declines in runoff and soil moisture, even in regions where precip-411

itation responses are non-robust (e.g., the western United States). This again highlights412

the importance of non-precipitation processes for agricultural and hydrological drought.413

Furthermore, this suggests that, even under the most optimistic forcing pathways, mit-414

igation will be insufficient to completely address drought responses to climate change,415

and some degree of adaptation will be necessary to increase resiliency in a drier future.416
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Changes in Drought (annual, 1985-2014 baseline)

SSP2-4.5

SSP3-7.0

SSP5-8.5

SSP1-2.6

ΔSoil Moisture
(surface)

ΔSoil Moisture
(total column)

z-score

Figure 12. Annual average, multi-model ensemble mean changes (z-score) in surface and to-

tal column soil moisture for 2071–2100, using the 1985–2014 baseline. Areas where changes are

non-robust (R<0.90) are indicated by hatching.

4 Conclusions417

Understanding how drought dynamics will change in a warming world is an area of ac-418

tive research involving a complex range of processes (e.g., precipitation, evapotranspi-419

ration, plant physiological responses) that transcend traditional disciplinary boundaries420

(e.g., hydrology, ecology, climatology) (A. Berg et al., 2017; Cook et al., 2018; Dai et al.,421

2018; Mankin et al., 2019; Milly & Dunne, 2016; Swann, 2018). Much of our current knowl-422

edge and expectations for how drought will change over the coming decades originates423

in analyses of large climate model ensembles, including those simulations organized as424

part of CMIP5 during the most recent Fifth Assessment Report from the Intergovern-425

mental Panel on Climate Change (IPCC) (IPCC, 2013). In anticipation of the upcom-426

ing Sixth Assessment Report from the IPCC, we investigated drought responses to warm-427

ing across different drought variables, seasons, and future forcing scenarios at the global-428

scale in the latest, state-of-the-art climate model projections in CMIP6. We found that:429
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• The sign and magnitude of drought responses to warming depends heavily on the430

region, season, and indicators being considered.431

• Robust drying responses in soil moisture and runoff are more widespread compared432

to precipitation, especially during AMJJAS in the Northern Hemisphere. For runoff,433

this is mostly likely a consequence of warming effects on snow that cause a redis-434

tribution of runoff from the warm to cool season. In the case of soil moisture, it435

is likely connected to increases in evaporative demand mediated by surface veg-436

etation responses and water use.437

• The spatial extent of robust drying increases under the higher forcing and warm-438

ing scenarios in most variables, with surface soil moisture showing the strongest439

response. Compared to the spatial extent of the drying, however, the response within440

robustly drying regions is much more sensitive, with drying increasing sharply un-441

der higher warming scenarios.442

• At the same time, some regions are likely to see reductions in drought, especially443

areas where total annual precipitation increases, including the high northern lat-444

itudes and monsoon regions on all continents. This robust wetting is more intense445

and widespread in the precipitation and runoff response compared to soil mois-446

ture.447

• Beyond changes in the mean state (Figures 2–4), the CMIP6 models also show changes448

in the risk or likelihood of the historically most extreme drought events (Figures449

7–8). The risk of these events generally increases in areas of robust mean drying450

and decreases in regions of robust mean wetting, suggesting that increases in these451

extreme events are largely driven by shifts in the mean. However, certain regions452

(e.g., East Africa, eastern Australia) show increased extreme drought risk despite453

either non-robust mean moisture responses or even shifts toward wetter average454

conditions, indicating changes in variability or the shape of the underlying distri-455

butions.456

• Results from CMIP6 are broadly consistent with CMIP5, at least in the sign of457

the response. This suggests that many of the same physical processes and under-458

lying uncertainties will remain important for interpreting the latest model pro-459

jections. Understanding areas where there is divergence between CMIP5 and CMIP6,460

however, will require more detailed investigations to determine the most likely rea-461

sons (e.g., structural changes in the models, differences in the underlying climate462

sensitivity, internal variability, etc.).463

• Even with differences across drought variables and seasons, major hotspots of con-464

sistent drying with warming are apparent in CMIP6, including western North Amer-465

ica, Europe and the Mediterranean, Central America, South America (outside of466

Argentina), southern Africa, and southwestern and southeastern Australia. En-467

couragingly, because the severity of future drying in most regions is strongly con-468

nected to the forcing scenario, there are substantial mitigation benefits to follow-469

ing a lower emissions pathway. Even under SSP1-2.6 and SSP2-4.5, however, ro-470

bust increases in drought relative to the present-day can still be expected for many471

regions.472

Despite major developments in land surface models between CMIP5 and CMIP6 (e.g.,473

Li et al., 2019), regional drought responses are remarkably consistent between the two474

ensembles (Figure 5). At the same time, it remains important to determine whether the475

increased sophistication in CMIP6 models represents a meaningful improvement over CMIP5,476

and whether these improvements and the consistency between CMIP5 and CMIP6 of-477

fers a case for increased confidence in these results. Preliminary results from the Inter-478

national Land Model Benchmarking Project (ILAMB, https://www.ilamb.org/results/)479

show that the CMIP6 ensemble improves performance, relative to observations, over CMIP5480

in a number of drought-related processes, from ecosystem processes like prognostic leaf481

area index, to hydrologic processes like runoff, terrestrial water storage, and surface en-482

ergy partitioning. Relative to observations, however, there is not yet a clear CMIP6 im-483
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provement in temperature and precipitation. With these improvements in CMIP6, is it484

reasonable to expect drought risks to be better-constrained, or their uncertainties reduced?485

Given the critical role of internal variability and other irreducible uncertainties in drought486

risk assessments (Coats & Mankin, 2016), it is unlikely. Model improvements and bet-487

ter representations of drought processes, while important, therefore should not be ex-488

pected to directly translate to reduced uncertainties in drought risk projections.489

Due to the consistency between the two model generations, our CMIP6 analysis490

largely reaffirms conclusions from studies using CMIP5 (as reviewed in Cook et al. (2018)),491

highlighting many of the same regions likely to be most at risk for increased drought in492

a warmer future and areas where hydroclimate responses are either non-robust or shift493

towards wetter conditions. Our results underline the importance of considering both the494

seasonality of drought responses, and the differences in sign, magnitude, and robustness495

of changes across different drought variables. Such details are especially important when496

trying to connect drought in the hydrologic cycle to the actual effect of these moisture497

deficits on people and ecosystems. Runoff, for example, encompasses the main sphere498

of active human water resources management, the primary source for reservoirs, hydropower,499

and irrigation. Conversely, soil moisture is the most critical variable for supplying ecosys-500

tems and rainfed agriculture. As is apparent in the SSP projections, however, soil mois-501

ture and runoff show substantially different responses to climate change. These variables502

therefore cannot substitute as proxies for each other, underscoring the necessity of con-503

sidering the full hydrologic cycle response to warming.504

Confidence in drought projections requires validating drought dynamics, variabil-505

ity, and trends within climate models, an often difficult task. One major limitation is506

the lack of long-term, high quality instrumental drought observations. Precipitation data507

is often only sparsely available for many regions outside of Europe and the United States,508

especially prior to 1950, and other variables (e.g., soil moisture, runoff) are typically un-509

available at scales comparable to the typical resolution of climate model grid cells. Ad-510

ditionally, many of the important processes affecting drought variability and trends in511

climate models are only weakly constrained. This includes evapotranspiration (Lian et512

al., 2018; Y. Zhang et al., 2016), vegetation responses to drought and climate (Green et513

al., 2019; Mankin et al., 2019), the fidelity of simulated precipitation and associated tele-514

connections (Allen & Anderson, 2018; Coats et al., 2013; Tierney et al., 2015; B. Zhang515

& Soden, 2019), and regional feedbacks and interactions that may amplify or ameliorate516

drought responses (A. Berg et al., 2016; Zhou et al., 2019). In part because of these im-517

portant uncertainties, numerous studies have highlighted the limitations of climate mod-518

els in their ability to adequately simulate drought and raised concerns regarding their519

utility for climate change applications (Huang et al., 2016; Lehner et al., 2019; Nasrol-520

lahi et al., 2015; Orlowsky & Seneviratne, 2013; Padrón et al., 2019; Ukkola, De Kauwe,521

et al., 2016; Ukkola et al., 2018).522

Despite these weaknesses, there is evidence that observed drought trends and events,523

and the associated climate change mechanisms, are consistent with the trends and mech-524

anisms simulated within climate models. In terms of precipitation, the most robust dry-525

ing in the CMIP6 projections occurs in Mediterranean-type climate regions around the526

world, the same regions where long-term precipitation declines and increases in mete-527

orological drought have been observed (Seager et al., 2019). This includes the Mediter-528

ranean and southern Europe (Gudmundsson & Seneviratne, 2016; Hoerling et al., 2012;529

Kelley et al., 2015), southern Africa (Otto et al., 2018), Chile (Garreaud et al., 2020),530

and southwest Australia (Delworth & Zeng, 2014). Despite strong drying over Central531

America and the Caribbean in CMIP6, however, recent precipitation trends in this re-532

gion cannot be currently separated from natural variability (Anderson et al., 2019; Jones533

et al., 2016), even as warming may be amplifying soil moisture drought over the Caribbean534

(Herrera et al., 2018). Similarly, there is strong evidence for the western United States535

that warming temperatures and increased atmospheric evaporative demand have con-536

tributed to soil moisture and runoff drying (Griffin & Anchukaitis, 2014; Hoell et al., 2019;537

McCabe et al., 2017; Williams et al., 2015; Xiao et al., 2018) and declining snowpacks538
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(Barnett et al., 2008; N. Berg & Hall, 2017; Mote et al., 2016, 2018), even as the recent539

precipitation declines have been attributed primarily to natural variability (Delworth et540

al., 2015; Lehner et al., 2018; Seager et al., 2015). Model responses indicating that warm-541

ing will increase vegetation water use and help drive surface drying (Mankin et al., 2019)542

are also broadly supported by observations (Trancoso et al., 2017; Ukkola, Prentice, et543

al., 2016). Further, concurrent wetting and drying trends in soil moisture across regions544

are also consistent between climate models and observations at the near-global scale, and545

in line with the expected responses to warming over the 20th century (Gu et al., 2019;546

Marvel et al., 2019). Thus, despite the documented weaknesses and uncertainties in the547

climate models, the broad consistency between models and observations over many re-548

gions provides some increased confidence in their value for investigating drought and cli-549

mate change.550

Finally, the clear increase in the magnitude and extent of drying as the forcing and551

warming increases across the SSPs demonstrates the clear benefits of greenhouse gas mit-552

igation for reducing climate change forced increases in drought risk and severity, a re-553

sult also demonstrated in CMIP5 (Ault et al., 2016). However, we find that robust and554

large-magnitude drying is not isolated to the higher-end scenarios of SSP3-7.0 and SSP5-555

8.5, but exists even under the more aggressive SSP1-2.6 and SSP2-4.5 mitigation path-556

ways, similar to results found by Lehner et al. (2017) using CMIP5. This includes re-557

gions like western North America, the Mediterranean, southern Africa, and the Ama-558

zon (Figures 11 and 12). Furthermore, even though the SSP1-2.6 drying in the MME559

mean may appear modest, these relatively small changes in the mean state still trans-560

late to large shifts in tail risks. For example, over much of western North America un-561

der SSP1-2.6, the frequency of extreme soil moisture and surface runoff droughts dur-562

ing the warm season (AMJJAS) increases by 100–200% (a factor of x2 to x3) (Figures563

7 and 8). Thus, even in the scenario that limits end of the 21st century warming to +2564

K above pre-industrial, these mitigation efforts will still result in substantial increases565

in drought risk and severity, indicating that adaptation measures will still be required566

to ensure adequate resiliency in the future.567
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