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Long and short term geomagnetic prediction

Prediction of geomagnetic variability depends on the accuracy of geo-

magnetic field modeling, dynamical modeling of source regions that con-

tribute to geomagnetic signals, and advanced assimilation algorithms

that combine effectively the results of geomagnetic field and dynamic

models to make accurate estimates of the dynamic states of the sources

and, therefore, accurate forecast of geomagnetic variations. In this chap-

ter we provide an overview of recent research efforts in these three re-

search areas, focusing primarily on geomagnetic variations from the dy-

namic outer core and from solar and lunar tidal effects, but also includ-

ing a review of relevant research results and developments. Prediction

of weak but periodic tidal phenomena, and of strong but chaotic secular

variation (SV) showcases two very important new developments which

will lead to new opportunities in geomagnetic research and application.

19.1 Introduction

Geomagnetic data measured on the Earth’s surface and in the low Earth

orbits (LEO) show contributions from various sources within the Earth

system and of external origins. Several examples can be found in other

chapters of this book. These contributions depend on chemical and dy-

namical properties of the source regions. Therefore, observed geomag-

netic variations provide important information for understanding the

Earth system, and thus a means to monitor magnetically changes of the

Earth system in space and in time.

Generally speaking, prediction and forecast of geomagnetic variations

from a particular source region, e.g. the Earth’s outer core, requires

assimilation of observations into relevant dynamical models. Thus it in-
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volves parallel efforts in dynamical models of the source region, geo-

magnetic field models to extract contributions of the source region from

surface observations, and efficient assimilation algorithms (in both infor-

mation acquisition and computational need). But they also complement

each other: for example, results from the field models are used to con-

strain the dynamical models so that they can make better estimation

of the “true” state (more accurately, the partial truth specified by the

observations); and the improved dynamical models can be also used to

assist the field models for more accurate source separations. This very

simple description of geomagnetic prediction should therefore be fully

explored for future geomagnetic research and application.

In this chapter, we focus on prediction of geomagnetic variation from

two very different systems: geomagnetic secular variation (SV) from the

convective outer core, and magnetic anomalies from tidal effects. They

represent two extreme cases of geomagnetic variability: the former is

dominantly strong (over 95% of energy) in the geomagnetic measure-

ments, but is chaotic (and difficult to predict) in nature; while the latter

is extremely weak but highly regular (thus predictable) in its temporal

variation patterns. In particular, prediction of SV from the core, and

of geomagnetic fluctuations from ocean tidal flow are new developments

in geomagnetic studies and applications, and therefore deserve special

attentions of IAGA community.

Observed SV plays a crucial role in understanding the core dynamics:

small changes observable at the surface are the manifestation of varia-

tions in the outer core dynamic state, such as the fluid velocity field (e.g.

Kuang and Tangborn, 2015). Therefore, its complex spatial/temporal

variation patterns are not predictable over extended periods of time

(e.g. Kuang et al, 2009; Hulot et al, 2010). By relative contrast, geo-

magnetic fluctuations due to tidal phenomena are approximately 10−5

order in magnitude of that of the core field. They are very predictable

since they are generated at phase-locked astronomical periods. How-

ever, it is expected or observed that solar heating effects (also included

as ”tidal” geomagnetic variations) are much less stationarity. Their con-

trasting variation patters require very different approaches in analyzing

and interpreting the observed signals.

Prediction of SV could greatly help our understandings of fundamen-

tal dynamical properties for interpretation of the SV observable at the

surface, the geodynamo and the dynamic state in the outer core, and

the properties of in the deep interior. The principle of geodynamo is

very simple: the core field is generated and maintained by the outer core
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fluid motion, most likely the convection driven by gravitational energy

released from secular cooling and differentiation of the Earth over ge-

ological time scales. But the dynamic details are still very unresolved.

Numerical geodynamo simulation can provide a partial depiction of the

core dynamics (Christensen et al, 2010), but is hampered by lack of reso-

lution (due to limited computing resource) to reach Earth-like parameter

regimes. On the other hand, geomagnetic observations provide direct ev-

idences of complex spatial and temporal variation of the intrinsic field.

But the observational evidence is also partial, limited by short measure-

ment records and long distances to the outer core (the source region of

SV). As suggested by recent research results (Aubert and Fournier, 2011;

Aubert, 2014; Kuang and Tangborn, 2015), geomagnetic data assimila-

tion can integrate partial information from both studies to obtain better

estimates of the core state, and thus improving our understandings of

the core dynamics and its implications for interactions and responses

between the outer core and other components of the Earth.

Predictability of global geomagnetic signals due to ocean tides is sup-

ported by the agreement shown in independent descriptions derived from

theoretical forward models and field models of observations (Tyler et al,

2003; Sabaka et al, 2015, 2016). These studies have recently opened an

opportunity for using the tidal magnetic signals to probe ocean electrical

conductivity, variability in ocean tidal processes, and mantle conductiv-

ity (Schnepf et al, 2015; Grayver et al, 2016, 2017; Tyler et al, 2017).

This chapter is organized as follows: an overview of geomagnetic field

modeling is given in the next section, followed by sections discussing the

tidal magnetic signals, geodynamo and geomagnetic data assimilation

using an ensemble Kalman filter, SV prediction on decadal and longer

time scales, and finally a concluding discussion.

19.2 Source separation in geomagnetic field
modeling

This chapter concerns the forecasting of long and short time-scale geo-

magnetic fields. Provided with initial conditions, the partial differential

equations (PDEs) and boundary conditions (BCs) governing a partic-

ular constituent of the geomagnetic field would produce a time series

of magnetic fields that would likely diverge from what could be or is

observed. This is due to several reasons including the inadequacy of the

PDEs and BCs to properly describe reality, and the sensitivity of these
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to initial conditions. If realistic forecasting is to be achieved, then the

PDEs and BCs must interact with actual observations, which is the basis

of data assimilation described in Section 19.4. However, near the Earth

one finds a rich variation of current systems and any measurement of

the magnetic field will be composed of a superposition of these sources.

It should be clear that if one is interested in predicting the Earth’s core

field, then any geomagnetic data assimilation system (GDAS) should be

presented with measurements of the core field, not, for example, with a

measurement of the nightside ionospheric induced field. It is crucial then

that some type of source separation mechanism be developed before any

meaningful forecasting can take place.

This section will present a particular philosophy and methodology of

field modeling that provides separation of field sources in an optimal

way. The general classification of these models is of the “inverse” vari-

ety, which is to say that the geophysical parameters of a numerical model

are inferred from measurements of the magnetic field. Furthermore, these

models are mostly “empirical” in that they describe the variations and

patterns of the observed magnetic field with generic mathematical func-

tions while abiding by some physical restrictions. This is in contrast to

the usual “forward” models, which are composed of the PDEs and BCs

alluded to above and run in free form given some initial conditions, in-

dependent of measurements. The fusing of inverse and forward models

provides the basis for GDAS.

There are two concepts of field modeling that should be understood:

correlation and bias. The first occurs when the mathematical functions

corresponding to each parameter or coefficient can describe some portion

of the measurements or data space that other functions do. If the part

of the data space described by the function, or its span, can also be

described by a combination of the spans of all other functions, then the

model is ill-posed and does not possess a unique solution. If the other

extreme occurs where no other function can describe any part of the data

space described by any other function, then the functions are orthogonal

over the data space with a zero correlation and each parameter may

be estimated independently. Usually there is a non-empty intersection

between each pair of spans, but there is also part of each span that is

unique, thus rendering a unique solution. This non-empty intersection of

spans leads to correlation between the associated parameters. Bias, on

the other hand, is a discrepancy between the estimated and true values of

a parameter that cannot be eliminated by resampling and averaging over

the data space and is usually due to errors of omission or commission.
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A successful estimation approach will attempt to mitigate bias while

taking correlation into account.

Two major methodologies have emerged in dealing with correlation

in geomagnetic field modeling. For discussion purposes, consider the fol-

lowing simple linear model consisting of two sets of parameter vectors,

x and y, associated with basis functions that comprise the columns of

matrices A and B, respectively, describing the data vector of measure-

ments d in the presence of a vector of additive error ν whose mean is

zero and covariance is the identity matrix, such that

d = Ax + By + ν. (19.1)

The first method, “sequential estimation”, attempts to estimate the pa-

rameters in an arbitrary order, say x followed by y, where x is estimated

directly from d followed by y estimated from the residuals d−Ax̃, where

the tilde indicates the estimate of x. It can be shown that if the cycle

is repeated with subsequent x being estimated from the latest residuals

d − Bỹ and y estimated from the latest residuals d − Ax̃, then this

constitutes a dual-block Gauss-Seidel method that converges as long

as the entire system is non-singular. However, there are pitfalls with

this method in that 1) in practice, only a single iteration is often per-

formed, 2) convergence can be very slow, and 3) the method can mask

co-linearities between basis functions that lie in separate blocks.

The second method is “co-estimation” which attempts to estimate all

parameters in a single inversion. This method can be understood by

considering a data space D and the spans of the columns of matrices

A and B within this space. The regions of intersection between the

spans of A and B, denoted “A ∩ B”, represent areas of dispute where

both sets can describe the data and thus lead to non-uniqueness. In

co-estimation, these regions are eliminated from consideration and the

x and y parameters are rather determined from the unique regions of

“A \B” and “B \A”, respectively.

The error between a true model state x and its estimate x̃ as measured

by the mean-squared error (MSE) may be decomposed into two terms,

as shown in the following equation, one involving bias b and the other

involving variance C

MSE (x̃) = E
[
(x̃− x)

T
(x̃− x)

]
, (19.2)

= bTb + Tr [C] ,

where E [·] is the expectation operator, Tr [·] is the trace operator,
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b = x− x̄, and x̄ and C are the expected value and covariance of x̃, re-

spectively. These two terms represent orthogonal contributions over the

space of all estimates. In the case of least-squares estimation, the bias

term is assumed zero and thus the model error is often reported only as

the variance term. However, when modeling real magnetic fields this is

surely never the case and in fact the bias term may actually dominate.

As with correlation, basically two approaches are used to minimize

the effects of bias. The first is data selection in which subsets are cho-

sen that do not contain an undesirable field constituent. For example,

external fields exhibit a range of intensities and their presence can be

detrimental to the resolution of fields from the core and lithosphere (see

Finlay et al, 2017; Olsen and Stolle, 2017). Therefore, most models will

use data from so-called “quiet times” when external fields are relatively

weak. In another example, since the primary ionospheric field is mostly

absent during the night sector, most models interested in the core and

lithosphere will choose data during this time. However, because of the

complexities of the magnetic environment, it is difficult to make data

selections that eliminate all unwanted contaminates. For instance, when

night sector data is chosen to filter out primary ionospheric signals, it

turns out that the associated secondary or induced field is still present

and this indeed biases estimates of the core field. This particular con-

taminate affects the odd, low-degree zonal terms of a spherical harmonic

expansion of the core field.

The second approach entails co-estimating the biases, or nuisance pa-

rameters, along with the nominal parameters. The assumption is that

there exists a subset of measurements whose signal-to-noise ratio is large

enough to accurately resolve a particular subset of parameters. All other

data subsets are not used to resolve these parameters. If this holds true,

then a functional representation of the actual contaminate is not needed

since only its projection onto the nominal basis functions comes into

play leaving only nuisance versions of the nominal parameters of inter-

est to be estimated. Using the example of night sector contamination by

induced ionospheric fields, if day sector data is introduced, then a repre-

sentation of this induced field may be estimated from the data. However,

since the day sector data will be contaminated with respect to core and

lithospheric fields, it is used to estimate nuisance versions of these. The

result is that core and lithospheric field derived from night sector data

are now not contaminated by ionospheric induction.

Some level of the co-estimation approach is followed by all modeling

efforts, including the very successful POMME (Maus et al, 2006; Maus,
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2017), GRIMM (Lesur et al, 2008, 2015a,b), and CHAOS (Olsen et al,

2014; Finlay et al, 2016) suites. However, the suite of “Comprehensive

Models” (CMs) (Sabaka et al, 2002, 2004, 2015, 2016) in general attempt

to co-estimate more sources. Aside from the usual core and lithospheric

fields, these models have been able to simultaneously resolve the Solar

Quiet (Sq) fields as well as the oceanic M2 tidal field. As for biases,

the CMs use limited data selection and employ the “Selective Infinite

Variance Weighting” (SIVW) scheme of Sabaka and Olsen (2006) and

Sabaka et al (2013), which essentially treat the biases in the manner

described above. It is envisioned that an estimation scheme like that used

in the CMs will be combined with geodynamo simulation algorithms as

a front-end filter to provide a GDAS algorithm for improved long term

geomagnetic forecasting.

19.3 Predictability of tidal phenomena in the
geomagnetic record

When considering rapid temporal fluctuations around the slowly chang-

ing main field, one may anticipate high predictability resulting from phe-

nomena driven by the Sun and Moon. The spin/orbits and gravitational

potentials of the Earth, Moon, Sun, and even the radiation from the

Sun, are all highly predictable. Modulations in the associated geomag-

netic fluctuations may be expected then to primarily reflect temporal

variations in the Earth’s response to these ”tidal” driving forces.

To describe the predictability of the tidal effects in the geomagnetic

field, one can consider the long record of observations from the Hon-

olulu (station HON) geomagnetic observatory. Specifically, the hourly-

sampled records are differenced in time to produce the Eastward (E),

Northward (N), and radial (R), vector-component time series.

In Figure 19.1 the power spectral density is shown (the spectrum is

produced using the Welch averaging method on 24×1024-hour Hamming

windowed segments). While one sees a red spectrum for periods longer

than about a week, shorter-period power density increases and shows

narrow spectral peaks. The larger of these peaks appear to be multiples

of the Earth’s rotation frequency with respect to the Sun, as well as

frequencies derived from adding or subtracting pairs of such frequencies.

This suggests that the variability may be predominantly due to solar

radiation and gravity tidal forces under amplitude and phase modulation

by the parameters involved in the Earth’s response.
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Empirical Orthogonal Functions (EOFs) compactly describe the vari-

ability in these time series in terms of statistical modes. The EOF analy-

ses can be applied to the data matrix created as follows. Start by regard-

ing [E, N , R] as a 3-column matrix, each column representing a time

series of hourly samples. It is then replaced with a 72-column matrix in

which each row presents one day of data (the 1 · · · 24 hourly samples of

the E, N , R, sequentially). In this case, the data matrix presents 72 time

series of daily samples. While simply averaging this data matrix along

the columns would give a 1×72 row vector describing the time-averaged

behavior of E, N , R over the course of the solar day, such averaging

could remove, or even cancel, components of regular signals with strong

modulations due to seasons or other factors. The EOF analyses removes

this limitation.

In the EOF analysis, the original 72 time series are linearly combined

to produce 72 new time series. Each linear combination is referred to

as an EOF mode, and the associated time series modulating the mode

is referred to as the expansion coefficient series. The EOF modes and

expansion coefficients are both orthogonal sets and have the useful prop-

erty that the amount of total variance explained decreases monotonically

from mode 1 to the higher modes. They are statistically most efficient

at compactly describing the variance presented in the data matrix de-

scribed above. The construction of the data matrix implicitly imposes a

request for regular structures organized with respect to the solar day, as

is the proximate goal.

In Figure 19.2 the results of the EOF analysis are shown. Remarkably,

the first mode explains a fraction 0.48 of the variance and the second

mode explains 0.14 such that more than half of the variance is cap-

tured in only two of the 72 EOF modes. Also important, there is a large

drop and gradual decline in the variance explained by the higher modes,

suggesting that other fluctuations in the data that are not particularly

organized with respect to the solar day are simply being represented

through this remaining part of the orthonormal expansion.

The EOF spectra, on its own, suggests much of the solar daily vari-

ability is captured in two modes. This is further supported by the EOFs

shown in the upper right panels of Figure 19.2. The first two modes show

well studied “solar-quiet” type curves with larger amplitudes during the

local day time, and larger amplitudes in the horizontal components con-

sistent with large-scale sheet currents overhead. The first two modes

also appear in quadrature, suggesting one common process with phase

migration.
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The associated expansion coefficients (which modulate the EOF struc-

tures shown in the upper right panels) are also highly intuitive. Mag-

nification shows a strong seasonal cycle in modes 1 and 2, which also

appear in quadrature, suggesting again a common process with phase

modulation. The low-pass curves show more clearly that there is also

amplitude modulation with the solar cycle in modes 1 and 2. EOF mode

3 appears to also include influences due to the seasonal and solar cycles

but the correspondence is less clear and other influences are also present.

While solar influences appear to dominate the spectral peaks, lunar

periodicities are also clear on closer examination of the spectra. The

M2 semi-diurnal tide with a period of 12.42 hours is an example that

can be seen to the left of the 1/2-day peak in Figure 19.1. Love and

Rigler (2014) have conducted a careful and thorough spectral study of

the HON time-differenced records using maximum-entropy and Lomb

periodogram methods. They show and discuss solar, lunar, and luni-

solar periodicities corresponding to astronomically established periods

ranging from a couple hours to a couple decades. While both the Moon

and the Sun are clearly involved in these tidal fluctuations in the mag-

netic field, from a single observatory it is not immediately clear if the

tides involved are primarily in the ocean or upper atmosphere.

In the case of the M2 constituent, comparison of observations with

forward-modeled simulations have established that the magnetic field is

primarily generated through motional induction by the ocean tidal flow.

This can be seen in Figure 19.3 which shows the first frame of a movie

(available at https://neptune.gsfc.nasa.gov/gngphys/index.php?

section=455, and see Tyler et al (2003); Sabaka et al (2015, 2016) for

further information). One may note that while the M2 map derived

from observations (middle panel) has spherical harmonic base functions

that independently attempt to separate internal and external sources,

both the ionospheric tides as well as the oceanic tides are below the

satellite observatories, and the spatial coverage of land observatories is

poor over the ocean regions. The simplest independent indication of the

oceanic origin is in the correlation of amplitudes with ocean basins, and

certainly the rough correspondence with the M2 surface displacement is

also indicative. The primary disagreement seen between the theoretical

and observational M2 fields is in the difference in spatial resolution.

Whereas the theoretical simulations are conducted using the one sixth-

degree lon./lat. resolution of the ocean tidal model data, the observations

extend only to a much coarser resolution (up to the spherical-harmonic

degree 18). With continued collection of satellite data, and improved
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modeling, it is expected that the agreements between the models will

either increase or reveal new physical effects.

Because only the gravitational (and not radiational) tidal forces by

the Moon on the Earth are expected to be important, and because the

gravitational tidal forces are known quite precisely, the lunar tidal forces

can be regarded as highly predictable. Of course the tides that respond

to these forces also depend on internal parameters and processes that

may vary in time, with effects on the predictability of the response. On

large scales, at least, the ocean fluid’s tidal response can also be regarded

as highly predictable (Egbert and Ray, 2017). Because the ocean elec-

trical conductivity is also known from observations (Tyler et al, 2017),

and is seen to have only very small temporal variations when consid-

ering offshore depth integrals, it is expected that ocean tidal magnetic

fields may have a similarly high degree of predictability. In this case, the

forward simulations such as shown in the middle panel of Figure 19.3

may be expected to reliably predict the tidal magnetic fields, including

the high-spatial variations not yet confirmed by lower-resolution obser-

vational results such as shown in the bottom panel.

The magnetic fields motionally generated by lunar tidal forces on the

ocean may present the most predictable, large-scale, naturally-occurring

geomagnetic fluctuations. In this case, it is potentially an important

source for sounding and/or monitoring the electrical conductivity of the

oceans as well as the upper mantle. But the variability or even the sta-

tionarity of the ocean tidal magnetic fields has not yet been adequately

examined, despite many observations demonstrating appreciable fluctu-

ations in at least the tides of coastal observatories. In fact, the small

observed variations in the M2 surface height amplitude at coastal obser-

vatories, notably Honolulu (Colosi and Munk, 2006), have been closely

studied as they may indicate changes in ocean parameters, processes, and

stratification. Tyler (2013) presented a corresponding description of the

history of M2 variations seen in the magnetic observations at HON and

showed that the fractional amplitude of the variability in the magnetic

field is much higher than that seen in the sea surface displacement. This

must be further studied to determine the stability of the tidal magnetic

fields used as a sounding source.
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19.4 Mathematics of geomagnetic data assimilation

Currently, there are many geodynamo models based on different physics

and numerical schemes (Christensen et al, 2001; Jones et al, 2011; Matsui

et al, 2016), and many different data assimilation algorithms (see, Kalnay

2017) . The mathematical description in this section is based on the

formulations used in our geomagnetic data assimilation system (Jiang

and Kuang, 2008; Kuang et al, 2008; Sun and Kuang, 2015). But they can

be easily adapted to other geodynamo models. Note that all variables,

unless otherwise specified, are non-dimensional in the rest of this chapter.

In our geodynamo model, the Earth’s fluid outer core is approximated

as a Boussinesq, electrically conducting fluid shell between the inner

core boundary (ICB) with the mean radius ricb, and the core-mantle

boundary (CMB) with the mean radius rcmb. The core state is described

by the velocity field v, the magnetic field B and the relative density

anomaly δρ. Since v and B are solenoidal, they can each be described

by the two independent scalar fields, e.g.

B = BT + BP ≡ ∇× (Tbr̂) +∇×∇× (Pbr̂) (19.3)

where Tb and Pb are called the toroidal and poloidal scalars, respectively.

These five scalar fields are approximated by spherical harmonic expan-

sions, with the spectral coefficients defined on discrete radial grid points,

e.g. [
Tb
Pb

]
=

L∑
0≤m≤l

[
jml (ri)

bml (ri)

]
Y m
l (θ, φ) + C.C., (19.4)

where Y m
l are the spherical harmonic functions of degree l and order

m, ri are the radial grids, and C.C. are the complex conjugate parts.

The core state can be symbolically defined by a state vector xd and is

governed by the following initial-value problem

∂xD

∂t
= M (xD,Λ) ,

xD(t0) = x0
d.

(19.5)

where Λ denotes the dynamo parameters arising from model scaling rules

and describing the outer core properties, such as the small magnetic

Rossby number Ro (for the fluid inertia) and the small Ekman number

E (for the viscous effect). For the details of (19.5) and the dynamo

parameters, we refer the reader to (Kuang and Bloxham, 1999; Kuang

and Chao, 2003, e.g.).

In geomagnetic data assimilation, the model output xD is called the



30 Long and short term geomagnetic prediction

forecast (and denoted by xf in the rest of the section). In sequential data

assimilation, the forecast xf is modified at the time ta when observations

y are made:

xa = xf + K ·
(
y −H · xf

)
, (19.6)

where K is called the gain matrix, and H is the observation operator

which projects the model space to the observation space (the two are

in general different). The modified state xa, called the analysis, is then

used as the initial state for making the forecast at t > ta via (19.5). The

gain matrix K is chosen to minimize the (weighted) differences between

xa and xf , and between xa and y, and is of the form

K = PfHT
(
HPfHT + R

)−1
, (19.7)

where Pf and R are the error covariances of the forecasts and of the ob-

servations, respectively. In the ensemble Kalman filter (EnKF) approach

(e.g. Kalnay, 2011), Pf is determined with an ensemble
{

xf
i |i ≤ N

}
of

forecasts:

Pf =
〈(

xf − xf
) (

xf − xf
)T〉

, xf =
1

N

N∑
i=1

xf
i , (19.8)

where 〈·〉 implies the ensemble average. Through repeated processes, it

is expected to pull the geodynamo model (19.5) closer to the truth, i.e.

to reduce the difference between the forecast xf and the true core state

xt (not really known) in time.

Often approximations are made to Pf to reduce computational cost or

to deal with unknown state properties, e.g. modeled (or parameterized)

Pf in the optimal interpolation (OI) approach (e.g. Kalnay, 2011). Both

approaches are used in our geomagnetic data assimilation system (e.g.

Kuang et al, 2008; Sun and Kuang, 2015; Tangborn and Kuang, 2015).

In geodynamo simulation, the truncations are typically of order 106

(or 5×106 parameters to define the core state). But surface geomagnetic

measurements can obtain the poloidal coefficients bml up to the degree

Lobs ≤ 13 (e.g. Langel, 1987), or slightly better Lobs ≤ 20 for SV (e.g.

Langel, 1987; Finlay et al, 2016), mainly due to the spatial attenuation

between the CMB and the surface, and due to the contamination of the

crustal field, leading to approximately an order 105 differences between

the coefficients from the dynamo models and from the observations.

Therefore, the observation operator H is very simple and very sparse. If
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denoting by Hij the elements of H, then,

Hij = δipδjq, (19.9)

where the index pairs (p, q) are defined by {bml (rd)|0 ≤ m ≤ l ≤ 20}.

19.5 Geomagnetic SV prediction

19.5.1 An overview

There are has been a long history of SV prediction in geomagnetic re-

search and application. Perhaps the best examples are the 5-year predic-

tive models included in the International Geomagnetic Reference Field

(IGRF). These models are defined by the SV Gauss coefficients that

are time-invariant in the forecast period. Prior to IGRF−11, they were

produced via some optimal mathematical extrapolation of the Gauss

coefficients obtained from prior geomagnetic measurements (e.g. Maus

et al, 2005). Starting from IGRF−11, the predictive models also include

contributions from two new approaches: the forecast based on the core

flow inverted from geomagnetic observations (Maus et al, 2008; Beg-

gan and Whaler, 2009; Gillet et al, 2013, 2015; Whaler and Beggan,

2015; Barrois et al, 2017), and the forecast made by assimilation of past

geomagnetic observations into geodynamo models (Kuang et al, 2010;

Fournier et al, 2015).

In the former approach, the forecast is made based on the non-diffusive

magnetic induction at the CMB, with the fluid velocity field also derived

from the observed SV. Therefore this approach can be characterized as

“data-driven” and “kinematic” (or partially dynamic) in nature. In the

latter approach, core dynamics models are determined independently

from any observations. These models and surface geomagnetic observa-

tions provide two independent estimates of the SV. And the assimilation

algorithm employed in this approach works to optimally utilize the two

independent assessments for making improved SV forecast. Therefore,

the latter is called the geomagnetic data assimilation (GDAS), and is

the focus of this section. Since the two approaches share many common

methodologies and concerns, such as the stochastic EnKF analysis, the

discussion in this section is also applicable to the first approach.
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19.5.2 Decadal SV prediction

Initial work in GDAS began with observing system simulation experi-

ments (OSSEs), in which synthetic observations are created by a model,

and are assimilated into the same model with some parameter differ-

ences. The first two were performed with very similar one-dimensional

MHD models that mimic the nonlinear geodynamo process (Sun et al,

2007; Fournier et al, 2007), with sparse observations taken from the full

system. These two experiments, one based on an ensemble Kalman-filter

algorithm (Sun et al, 2007) and the other on the variational approach

(Fournier et al, 2007), demonstrated that assimilation of the sparsely

distributed data can bring the forecasts closer to the true state of the

system. They also highlighted the differences between sequential and

variational data assimilation algorithms. The former has the advantage

of relatively simple implementation, since they do not require the con-

struction of a tangent linear model (TLM) or it’s adjoint. The latter has

the potential to improve estimates of earlier states of the core, when there

were relatively sparse observations available for assimilation. Most of re-

cent development work has involved sequential algorithms. But there has

been recent progress in variational methods as well (Canet et al, 2009;

Li et al, 2011, 2014).

Liu et al (2007) carried out OSSEs with two different fully nonlin-

ear and three-dimensional geodynamo models separated by two differ-

ent Rayleigh numbers. In their experiments, the synthetic data were

generated at the CMB (i.e. the boundary) from one dynamo solution;

while the other model was used for assimilation. Their results further

confirmed that similar conclusions can be drawn for fully nonlinear geo-

dynamo models. These experiments partially addressed a fundamental

concern on whether geomagnetic observations, only available to a por-

tion of the poloidal magnetic field at the CMB, could be used to improve

model estimation (i.e. the full geodynamo solution) of the true core state

which can then be used to make accurate geomagnetic forecasts.

Since then, numerous studies have furthered our knowledge of GDAS,

and our capabilities to probe core dynamical processes and to make accu-

rate SV forecasts. For example, Kuang et al (2009), Fournier et al (2010)

and Hulot et al (2010) worked on understanding the geomagnetic fore-

cast time limit. Aubert and Fournier (2011), Aubert (2014), Fournier

et al (2011), Kuang and Tangborn (2015), and Tangborn and Kuang

(2015) used GDAS to probe dynamical processes in deep outer core that

are consistent with geomagnetic observations and to understand statisti-
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cal properties of geodynamo solutions. In particular, Kuang et al (2010)

and Fournier et al (2015) used GDAS to provide 5−year predictive ge-

omagnetic candidate models for IGRF. More recently, efforts have been

made on prediction of longer-term geomagnetic variability, including re-

versals (Morzfeld et al, 2017; Tangborn and Kuang, 2018). It should be

pointed out, most of the GDAS systems currently in use are based on

EnKF algorithms Fournier et al (2011) (see also Section 19.4 for the

mathematical details). This approach retains covariances between dif-

ferent state variables, thus enabling corrections to unobserved variables.

Despite the progress made thus far, we are still facing many challenges

in GDAS. One is the excessive computational expense arising from large

ensemble sizes used in the EnKF, such as those computation with as

many as 500 model simulations by Fournier et al (2013), which is pro-

hibitive for experiments that might encompass thousands of years of

Earth core dynamical processes. An alternative is to develop modeled

covariances Tangborn and Kuang (2015) validated using observation mi-

nus forecast (O-F) statistics, though the changes to the unobserved are

made indirectly through the model and therefore take longer. A com-

promise approach that could utilize the best of the two is perhaps a

hybrid of the ensemble-generated and modeled covariances (Hammill

and Snyder, 2000), which would allow a much smaller ensemble size

while retaining the cross covariances. It should be also pointed out that

approaches utilizing simplified core dynamics models (e.g. Jault, 2008;

Canet et al, 2009) can also help bring down the computing expense.

But, as discussed in the following, simplified models could potentially

produce larger model biases.

Another critical issue is the sparsity of the geomagnetic data (see Sec-

tion 19.4). This will remain for a very long time. Utilization of archeo-

magnetic and paleomagnetic data (e.g. Korte and Constable, 2011; Licht

et al, 2013; Nilsson et al, 2014) will be discussed in the following sub-

section. Efforts should be also on assimilation of derived products from

geomagnetic measurements, and non-geomagnetic data relevant to core

dynamics. For example, observed SV could potentially increase the avail-

able data by an order of magnitude (Kuang and Tangborn, 2015), and

length-of-day (LOD) and polar motion variation on decadal time scales

that are from core-mantle angular momentum exchanges (Jault et al,

1988; Holme and Whaler, 2001; Gillet et al, 2010; Kuang et al, 2017)

could provide additional constraints on the (unobserved) toroidal field

BT at the CMB. Utilization of these new data will bring complex and

even nonlinear observation operator H to GDAS.
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The EnKF algorithm depends on the error statistics of geomagnetic

observations (e.g. geomagnetic field models), and of core dynamics (e.g.

geodynamo models). Geodynamo model error statistics are approxi-

mated by the forecast covariance matrix Pf in (19.7) (Fournier et al,

2013, 2015; Sun and Kuang, 2015). Similar covariances are also provided

in recent geomagnetic field models (e.g. Gillet et al, 2013; Licht et al,

2013; Nilsson et al, 2014). However, these are far from satisfactory be-

cause Pf could only provide knowledge of the distribution, but not the

bias of the ensemble. Such biases can exist in both the field modeling

(see Section 19.2) and in geodynamo models (Kuang et al, 2010), due

to different physics and mathematics employed in the models. For ex-

ample, geodynamo model biases are from different physics/hypotheses

(e.g. boundary conditions discussed by Kuang and Bloxham (1997) and

Sakuraba and Roberts (2009), different parameter regimes (e.g. Chris-

tensen et al, 2010; Aubert et al, 2017) which affect the scaling rules

(e.g. Kuang et al, 2008; Aubert, 2014) used in GDAS. Comprehensive

investigations may require large ensembles of the models with different

physics and mathematics in different parameter domains.

Rescaling numerical dynamo models for GDAS will remain for many

years since, due to computational constraint, the numerical parameters

in dynamo simulation are several orders of magnitude away from those

appropriate for the Earth’s core. Mathematically, this implies that the

scaled magnetic field B/B will be used for assimilation. The scaling

factor B can be obtained in different means. One approach, first adopted

by Aubert (2014), is to define B with the asymptotic scaling rules derived

from geodynamo solutions (Christensen et al, 2010). Kuang et al (2008)

took a much simpler approach by making B the time-averaged magnitude

of B. This approach performs surprisingly well as it is not sensitive to

model parameters (similar to the asymptotic scaling rules). To better

explain this, consider the following quantity

δB ≡ (|B| − B) /B, (19.10)

where |B| is the rms magnetic field in the outer core (and B is therefore

the time-average of |B|). As shown in Table 19.1, the mean B varies

strongly with the Rossby number Ro: it decreases by more than a factor

of 4 from Ro = 2.5× 10−6 to Ro = 3.125× 10−7. However, the standard

deviation σ(δB) remains nearly unchanged in the all Rossby numbers.

Similar properties are also found for the poloidal field BP at the CMB

(but with slightly smaller Ro).

But the time scalings are more complicated. From the power spectra
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Table 19.1 The mean B and the standard deviation σ(δB) for different

Rossby numbers Ro.

Ro 2.5× 10−5 1.25× 10−6 6.25× 10−7 3.125× 10−7

B 1.2356 0.4635 0.3225 0.2869

σ(δB) 0.0697 0.0877 0.0602 0.0767

of δB and of δBP for the poloidal field at the CMB (in Figures 19.4),

one can find that the power spectra for Ro ≥ 1.25×10−6 (green and red

curves) are significantly different from those for Ro ≤ 6.25× 10−7 (blue

and black curves). In particular, the latter two are very similar, suggest-

ing asymptotic convergences in the frequency domain in the poloidal

field at the top of the D′′−layer, bringing a hope to find a parameter-

independent, dynamical consistent time scale for all dynamo solutions

used in GDAS with Ro ≤ 6.25× 10−7. Similar properties are also shown

in the total magnetic field anomaly δB of B in the outer core (but is not

shown here). It should be pointed out that the frequency domain in 19.4

is controlled by the time steps and the output settings of our simulation.

Further numerical analysis is needed to investigate variations with even

higher frequencies. However, these figures are sufficient for our current

discussion. We should point out also that similar analysis on time scales

was done by others, e.g. Bouligand et al (2016) analyzed statistical prop-

erties of dynamo fields with different parameter values and compared to

those from observations.

19.5.3 Millennial and longer SV prediction

Many of the important physical processes in the Earth’s core take place

on time scales of thousands of years or longer. This means that in order

to capture core dynamics in any meaningful way in a geomagnetic data

assimilation system, it is essential to assimilate data from epochs dat-

ing long before direct measurements of the geomagnetic field begain. An

extreme example of this involves using a scaler stochastic model over mil-

lions of years that assimilates paleomagnetic data over this time frame.

Morzfeld et al (2017) showed that this can lead to prediction of future

dipole reversals as far as 4000 years in the future. But this type of model

does not give any insight into the physical processes within the Earth’s

core that trigger the reversals. This requires a fully three-dimensional
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geodynamo model, which is at present too computationally intensive to

be feasible on these very long timescales. But intermediate assimilation

experiments on the order of thousands of years are now possible, and

recent work has been carried out on these. For example, Sanchez et al

(2016) used a geodynamo model to produce a geomagnetic field model

over an 800 year period with archeomagnetic data as observations in

a data assimilation system. The resulting field model is constrained by

the physics of the geodynamo model rather than the regularization and

smoothing used in traditional field models.

Another approach is to assimilate traditional field model outputs into

a geodynamo model over longer periods of time. For this we need to

include the indirect paleo- and archeomagnetic measurements. These are

made from lava flows and marine sediments, as well as fired clay bricks

or other human artifacts, respectively (Donadini et al, 2009). This type

of data contains one or more of magnetic inclination, declination and

intensity values, and are relatively more frequent during the last 3000

years. All of these data sources are parametrized in terms of spherical

harmonic expansions spatially, and B-splines temporally. Field models

are generally divided by the type of data that they incorporate. The

CALS3k.4 model (Korte and Constable, 2011), which is based on both

and paleo- and archeomagnetic data available for the last three thousand

years, but is also constrained by gufm1 (Jackson et al, 2000) for the last

400 years of the model.

The information available from this early era in the CALS3k.4 model

make it valuable for the study of longer time scales changes. The more

direct measurements are incorporated into the gufm1 model (1590 to

1990), which make use of the sailing ship compass records and magnetic

observatory data starting in the mid 19th century until present. The

CM4 model (Sabaka et al, 2004) (1960 to 2002) uses satellite measure-

ments from a variety of missions, allowing it to include smaller spatial

scale structures of the field. The accuracy of these models naturally

improves during later times, which can be attributed to both a better

spatial distribution and data precision, as well as the progress in separat-

ing the different sources that contribute to the observed field. Tangborn

and Kuang (2018) have used data assimilation to connect these 3 field

models via a geodynamo model. The purpose of this work was to show

how data assimilation can be used to obtain independent estimates of

errors in the CALS3k.4 model from a long assimilation run that ends

with the CM4 model in 1990.

It presented a series of nearly 2000 year geomagnetic data assimilation
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experiments that use the CALS3k.4 field model as observations from 10

CE to 1590 CE, followed by gufm1 (1590-1950) and CM4 (1970-1990). In

each epoch, the field models were assimilated into the geodynamo model

every 20 years. The goal was to use the higher accuracy of gufm1 and

CM4 to gain additional insight (beyond the estimates provided with the

field model) into the precision of CALS3k.4, particularly as the maxi-

mum degree L assimilated is varied. These independent estimates of the

uncertainty in the field models used a simple relationship for the Gauss

coefficients. The error standard deviation, (σo)ml , in each was modeled

as being proportional to its magnitude, (σo)ml = αo||bml , where αo is

the observation error coefficient up to L =. For higher degrees, larger

errors were assigned that essentially removed the observations from the

assimilation. Smaller errors are assigned after 1590 when sailing ship

data become available, along with observatory data in the 19th century,

and satellite data after 1960.

Tangborn and Kuang (2018) carried out a series of assimilation ex-

periments that run from 10 to 1990 CE, with data from the field models

assimilated every 20 years. The goal of these experiments is to deter-

mine whether the CALS3k.4 field model can have a positive impact on

the forecasting of the later fields, particularly CM4. About 20 numerical

experiments were done, in which the maximum degree (Lassim) assim-

ilated and/or the observation error coefficient (αo) for CALS3k.4 were

varied. In all cases the assimilation is done every 20 years, and geody-

namo model parameters used are Rth = 3622 (or 30 times the critical

Rayleigh number for the onset of thermal convection), and an Ekman

number E = 1.25× 10−6.

Here we summarize some of the experimental results from Tangborn

and Kuang (2018) in the form of the RMS of the observed minus forecast

(O-F) statistics several of the simulations over 2000 years (Figure 19.5),

and the RMS O-F at the end of the simulations in 1990 for all of the

simulations (Figure 19.6). In all experiments, observations up to degree

L = 8 are assimilated after 1590 (when gufm1 begins) with much smaller

observation error estimates. Figure 19.5 shows trajectories of the RMS

(O-F) over 2000 years, for 3 different maximum degree (L) of Gauss co-

efficients assimilated (L = 2, 3, 4). And it shows that, for the observation

model used, the most accurate case is with a maximum of L = 3 assim-

ilated. This implies that there is useful information in the CALS3k.4

field model prior to 1590 that is useful in making geomagnetic forecasts

in 1990. The RMS O-F values from 1990 for the complete set of assim-

ilation experiments are shown in Figure 19.6. Here both the maximum
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degree assimilated for CALS3k.4 and the observation error coefficient,

αo, are varied. This indicates that the maximum assimilated degree of

L = 3 produces the best forecast in 1990, from the experiments carried

out, even though the gufm1 and CM4 observation errors used are the

same in all cases.

19.6 Concluding remarks

In this chapter we have reviewed recent research efforts for prediction of

geomagnetic variations on different time scales. We used the two very

contrasting examples, the weak periodic geomagnetic anomalies from

tides and the strong chaotic SV from the outer core, to explain the

physics and the mathematics used for the prediction, the progresses

made in SV forecasts, and the challenges for future development.

The observables and their error-covariance matrices in (19.6) and

(19.7) come from field modeling efforts in which the poloidal core co-

efficients are separated from other sources. This is key to provide the

assimilation algorithm with the proper data and realistic uncertainties.

There are several ways in which this field separation can interact with

GDAS. One is to parameterize the poloidal core coefficients in terms

of empirical temporal basis functions and subsequently provide the as-

similation with the resulting coefficient time series and error-covariance.

Another approach is to use magnetic measurements as the observables

and include non-core sources in the state variables. Either way helps to

mitigate bias in the core poloidal field estimates.

While tidal magnetic fluctuations are very weak in amplitude relative

to that of SV, they dominate the variability seen in the diurnal to semi-

diurnal frequencies. Agreement between theoretical forward models and

field models based in observations present at least the primary semi-

diurnal lunar tidal fluctuations as highly predictable in at least the coarse

features. It is similarly expected that forward modeling of weaker ocean

tidal magnetic fields is predictive, though this has yet to be confirmed.

The ”tidal” magnetic fields associated with solar heating of the upper

atmosphere are expected and observed to be less stationary. Despite this,

analyses of pre-whitened ground magnetic observatory data show that

much if not most of the variance is organized with respect to the solar

day and is modulated by the solar cycle. It seems then that much of the

geomagnetic variability at quasi-diurnal frequencies and the associated

harmonics can be deterministically related to astronomical spin/orbit
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parameters and solar variability. Claims in this regard must also consider

regional variations as competing unresolved signals may pose limitations

at high latitudes and equatorial regions.

As described in Section 19.5, the relative geomagnetic anomalies de-

fined in (19.10) from geodynamo simulation have displayed asymptoti-

cally convergence in both the magnitude (see the mean and the standard

deviation in Table 19.1) and the time scales (see the power spectra in Fig-

ure 19.4). These can be used to define the scaling relations between the

non-dimensional magnetic field from geodynamo simulation and the core

field derived from geomagnetic measurements. In particular, asymptotic

convergence of the spectra of the magnetic anomalies (in Figure 19.4) can

be used to estimate the time resolutions of geodynamo models, and thus

the limit of forecast shortest geomagnetic variations from the outer core,

such as occurrence of geomagnetic jerks (on sub-annual time scales).

Further improvement in SV prediction relies on improving knowledge

of error statistics of geomagnetic field models and geodynamo models,

in particular the biases than cannot be described by covariance matri-

ces. But the biases in both modeling are affected by the knowledge of

the core dynamics, which is that is only partially built into geodynamo

modeling, and partially (and empirically) implemented in geomagnetic

field modeling. The two fragments may not be consistent. And assim-

ilation of the two models could certainly lead to erroneous estimation

of the core state. An attractive approach to reduce such inconsistencies

(and therefore biases) is to integrate both modeling effort, such that the

field models are used to make initial forecasts; the forecasts are then

fed back to improve the field models, which will be used again for im-

proved forecasts. The iterations will continue, until an optimal solution

is reached. This approach is conceptually similar to the parameter ”co-

estimation” used in geomagnetic field modeling (see Section 19.2), but

on model “co-development”. Therefore we name this approach the “dy-

namic field modeling”. However, a large ensemble of field models and

geodynamo models may be needed to make this to work, thus requiring

a community effort.

The long term (2000 years) assimilation experiments point to the con-

clusion that over more than a millennium, observational information

from field models is retained in the numerical geodynamo model so as

to improve modern day geomagnetic forecasts. And because this infor-

mation is not lost from the model over these long time periods, there

remains some hope that longer term forecasts can also be made. The

work of Morzfeld et al (2017) using a simple scalar model adds to the
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evidence that this may be possible. However, this may require a numer-

ical model that lies in between these two approaches in complexity and

computational cost.



19.6 Concluding remarks 41

Figure 19.1 Eastward (E), Northward (N), and Radial (R) vector
components of the time-rate of change of geomagnetic observations
at the Honolulu observatory.
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Figure 19.2 EOF analyses of the day vs. hour data matrix of geo-
magnetic data from Honolulu. The EOF spectrum (upper left panel)
shows that more than half of the variance is explained by the first
two EOF modes; the EOFs (daily structures of E, N , R) for the
first three modes are shown in the upper right panel. The associated
expansion coefficients (lower panel) of the first two modes primar-
ily show a seasonal cycle modulated by the solar cycle (as indicated
by the thicker curves obtained by low-pass filtering the series with a
three-year moving window). Because seasons as well as the solar cycle
can be predicted, around half of the variance E, N , R is expected to
also be predictable using only the first two EOF modes.
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Figure 19.3 Movie frame of M2 tidal surface displacement (top
frame), and the radial component of magnetic field generated by the
tidal flow as calculated in a numerical model (middle frame) and as
seen in observations (bottom frame). The agreement between the bot-
tom two frames strongly supports the assumption that the observed
M2 magnetic fluctuations are primarily due to ocean tides.
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Figure 19.4 The power spectra of the time series δBP of the poloidal
field BP at the top of the D′′−layer defined in (19.10) for Ro = 2.15×
10−6 (dotted gray), 1.25×10−6 (solid gray), 6.25×10−7 (dotted black)
and 3.125× 10−7 (black). The horizontal axis is the non-dimensional
period (the unit period is equivalent to the magnetic free-decay time
τd ≈ 20000 years for the Earth).
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Figure 19.5 RMS(Vk) of 20 year forecasts for degrees up to L = 3,
for assimilation runs starting in 10 CE and finishing in 1990 CE. In all
cases the observation error is set to σo = 1.0|bmL | (so αo = 1.0), and
coefficients are assimilated up to degree Lassim = 2 (black), L = 3
(dashed) and L = 4 (dotted).
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Figure 19.6 RMS(Vk) of 20 year forecasts in 1990, for all of the as-
similation experiments starting in 10 CE and finishing in 1990 CE.
The x-axis shows the maximum degree L assimilated, and the ob-
servation error coefficient used up to 1590, σo, is indicated by the
symbols in the legend (from 0.5 to 2).
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Fournier, A., Aubert, J. and Thébaut, E. 2015. A candidate secular varia-
tion model for IGRF-12 based on Swarm data and inverse geodynamo
modeling. Earth, Planets and Space, 67, doi 10.1186/s40623-015-0245-8.

Gillet, N., Jault, D., Canet, E. and Fournier, A. 2010. Fast torsional
waves and strong magnetic field within the Earth’s core. Nature,
doi:10.1038/nature09010.

Gillet, N., Jault, D., Finlay, C. C. and Olsen, N. 2013. Stochastic modeling of
the Earth’s magnetic field: Inversion for covariances over the observatory
era. Geochem. Geophys. Geosys., doi:10.1002/ggge.20041.

Gillet, N., Barrois, O., and Finlay, C. C. 2015. Stochastic forecasting of the geo-
magnetic field from the COV-Obs.x1 geomagnetic field model, and candi-
date models for IGRF-12. Earth, Planets and Space. doi:10.1186/s40623-
015-0225-z.

Grayver, A. V., Schnepf, N. R., Kuvshinov, A. V., Sabaka, T. J.,
Manoj, C. and Olsen, N. 2016 Satellite tidal magnetic signals
constrain oceanic lithosphere-asthenosphere boundary. Sci. Adv.,
doi:10.1126/sciadv.1600798.

Grayver, A. V., Munch, F. D., Kuvshinov, A. V., Khan, A., Sabaka, T. J.
and Tøffner-Clausen, L. 2017. Joint inversion of satellite-detected tidal
and magnetospheric signals constrains electrical conductivity and water
content of the upper mantle and transition zone. Geophys. Res. Lett.,
doi:10.1002/2017GL073446.

Hammill, T. M., Snyder, C., A Hybrid Ensemble Kalman Filter3D Variational
Analysis Scheme. Mon. Wea. Rev., 128, 2905-2915.

Holme, R. and Whaler, K. A. 2001. Steady core flow in an azimuthally drifting
reference frame. Geophys. J. Int., 145, 560–569.



48 References for Chapter 19

Hulot, G., Lhuillier, F. and Aubert, J. 2010. Earth’s dynamo limit of pre-
dictability. Geophys. Res. Lett., 37, doi:10.1029/2009GL041869.

Jackson, A., Jonkers, A. R. T. and Walker, M. R. 2000. Four centuries of
geomagnetic secular variation from historical records. Phil. Trans. R.
Soc. Lond., A358, 957–990.
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