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Key Points 

- Landslide mapping across the U.S. is extensive, but data are also variable and incomplete 
- Known landsliding is largely consistent with prior national susceptibility maps 
- Further resources would improve confidence in a national-scale landslide assessment  
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Abstract 

Detailed information about landslide occurrence is the foundation for advancing process 
understanding, susceptibility mapping, and risk reduction. Despite the recent revolution in digital 
elevation data and remote sensing technologies, landslide mapping remains resource intensive. 
Consequently, a modern, comprehensive map of landslide occurrence across the United States 
(U.S.) has not been compiled. As a first step towards this goal, we present a national-scale 
compilation of existing, publicly available landslide inventories. This geodatabase can be 
downloaded in its entirety or viewed through an online, searchable map, with parsimonious 
attributes and direct links to the contributing sources with additional details. The mapped spatial 
pattern and concentration of landslides are consistent with prior characterization of susceptibility 
within the conterminous U.S., with some notable exceptions on the West Coast. Although the 
database is evolving and known to be incomplete in many regions, it confirms that landslides do 
occur across the country, thus highlighting the importance of our national-scale assessment. The 
map illustrates regions where high-quality mapping has occurred and, in contrast, where 
additional resources could improve confidence in landslide characterization. For example, 
borders between states and other jurisdictions are quite apparent, indicating the variation in 
approaches to data collection by different agencies and disparity between the resources dedicated 
to landslide characterization. Further investigations are needed to better assess susceptibility and 
to determine whether regions with high relief and steep topography, but without mapped 
landslides, require further landslide inventory mapping. Overall, this map provides a new 
resource for accessing information about known landslides across the U.S.  

 

1. Landslide Occurrence, Impacts, and Assessments in the United States  

In the United States (U.S.), landslides are a geologic hazard known to occur in every state. Some 
estimates suggest that they cause an average of 25-50 fatalities each year and contribute to 
billions of U.S. dollars in economic losses annually (National Research Council, 1985; Schuster, 
1996). Landslide fatalities vary considerably from year to year and more recent estimates report 
that 93 landslide-related fatalities occurred within the U.S. between 2004-2016 (Froude and 
Petley, 2018). Two notable events include a large, deep-seated landslide near Oso, Washington, 
in March 2014, which resulted in 43 fatalities (Iverson, 2015; Collins and Reid, 2019), and 
widespread debris flows in Montecito, California, in January 2018, which resulted in 23 fatalities 
(Kean et al., 2019). In contrast to fatalities, the estimates of economic losses related to landslides 
involve considerably more uncertainty. Initial calculations were based in part on landslide-
related losses to private dwellings in southern California, which were subsequently extrapolated 
across the country (Krohn and Slosson, 1976), resulting in projected private losses of 
approximately $400M in 1971 U.S. dollars, or $2.5B in 2019 U.S. dollars (based on 
www.usinflationcalculator.com). This extrapolation seems more than justified considering that 
recent estimates of losses in just the city of Portland, Oregon (a mid-sized city with population 
~650,000 in a landslide-prone area), indicate that landslides result in direct economic losses 
between $1.5M-3M U.S. dollars during typical winters and upwards of $64M-84M in more 
extreme weather years (Burns et al., 2017). Similarly, estimates of the direct costs to repair roads 
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and private residences damaged by landslides for the state of Kentucky are approximately $10M-
20M U.S. dollars annually (Crawford, 2014). However, the indirect losses due to reduced 
economic productivity and other landslide-related costs are exceedingly difficult to estimate and 
have not been reported. Updated estimates of both direct and indirect losses are sorely needed for 
the range of typical and severe landslide weather conditions across the U.S., particularly since 
the impacts of landslides are expected to grow with ongoing climate change, increasing 
disturbances such as wildfire, and populations expanding into landslide prone terrain 
(Leshchinsky et al., 2017; Mirus et al., 2017).  

Recently, several landslide-related tragedies and disasters in the U.S. (Coe et al., 2014; Iverson et 
al., 2015; Gibbons et al., 2017; Bessette-Kirton et al., 2019; Collins and Reid, 2019; Kean et al., 
2019) have further increased public attention and focused additional resources towards landslide 
research and mapping. These changes in priorities and recent technical advances have 
contributed to concerted efforts to map landslides within certain administrative areas, often by 
state or county (e.g., Slaughter et al., 2017). Landslide inventories have long provided the 
foundation for research and various types of hazard assessments designed to reduce losses. For 
example, inventories that include the timing of slope failures are critical for optimizing empirical 
and deterministic criteria for landslide early warning systems across various scales (e.g., Caine, 
1980; Keefer et al., 1987; Guzzetti et al., 2008, 2019; Baum and Godt, 2010; Mirus et al., 2018). 
Similarly, spatial distributions of landslide occurrence are used to develop susceptibility maps, 
which typically define areas with different classes of potential landslide occurrence (see review 
by Reichenbach et al., 2018 and references therein). Both the precise timing and exact locations 
of landslides are needed to test distributed models of landslide initiation (e.g., Brien and Reid, 
2008; Baum et al., 2010), and the spatial extent of landslide deposits are needed to test 
simulations of runout behavior (e.g., Iverson et al., 2015; Reid et al., 2016). Multi-temporal 
landslide inventories are critical for evaluating processes such as landslide recurrence (Samia et 
al., 2017, 2019; Temme et al., 2020). Furthermore, it has long been recognized that detailed 
landslide inventories can improve hazard assessments used to inform development planning and 
emergency management (e.g. Nilsen et al., 1979, Fell et al. 2008), as well as encourage public 
engagement on critical issues surrounding exposure to landslide risk. Thus, compiling landslide 
inventories over broad regions or even entire continents—such as the European inventory 
initiative (Herrera et al., 2018)—can provide great utility for landslide risk reduction at national 
or multi-national scales.  

 

1.1 Previous Attempts at a National Scale Landslide Map 

The U.S. Geological Survey (USGS) has a long history of coordinating efforts for landslide 
hazard assessment and risk reduction (see USGS 1982; Weiczorek and Leahy 2008). One of the 
earliest assessments of landslide hazards across the contiguous U.S. was the USGS landslide 
overview map (Radbruch-Hall et al., 1976, 1982), which shows landslide incidence and 
susceptibility. These classifications were based on the authors’ interpretation of a 1:2,500,000 
scale geologic map (King and Beikman, 1974), though the final map was reduced to 1:7,500,000 
scale, which was eventually digitized for publication (Godt and Radbruch-Hall, 1997). Geologic 
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formations or groups of formations were assigned a high, medium, or low landslide susceptibility 
and/or a high, medium, or low landslide incidence. Their incidence assignments were based on 
the percent area of the given formation that was mapped as landslides, whereas their landslide 
susceptibility assignment was based on unspecified subjective criteria (due to insufficient data on 
mapped landslide areas). Ultimately, the published map (Figure 1a) shows six distinct 
classifications of landslide potential (incidence and susceptibility), which were not explicitly 
ranked by the authors. However, based on the colors they selected for each category and our own 
understanding of landsliding across the U.S., we interpret these from highest to lowest potential 
for landslides as: high incidence (HIGH), high susceptibility with moderate incidence (HIGH-
MOD), moderate incidence (MOD), high susceptibility with low incidence (HIGH-LOW), 
moderate susceptibility with low incidence (MOD-LOW), and low incidence (LOW). Their 
qualitative and somewhat subjective classification system, as well as the overlap between 
incidence levels of these six classes, reflects both an incomplete knowledge of landsliding across 
the country, and the relatively coarse scale topographic and geologic maps available at the time 
of publication. Around the same time, Wiggins et al. (1978) developed an alternative landslides 
map by combining the analysis of Krohn and Slosson (1976) with the preliminary efforts of 
Radbruch-Hall et al. (1976), though the details of how these two maps were combined are not 
specified. This hybridized map included four simpler and more intuitive classifications of (1) 
high, (2) medium (3) apparently low (based on limited data), and (4) low. Regrettably, the 
Wiggins et al. (1978) map is only available in its original printed format with very coarse 
resolution (see two-page composite figure in USGS, 1982).  

After digitization of the original USGS landslide overview map (Godt and Radbruch-Hall, 1997), 
it was noted that debris flow hazards in the arid Southwest were not considered in the 
susceptibility and incidence classifications, which prompted the compilation of limited inventory 
of debris flows in combination with a national map of slope angles greater than 25 degrees 
(Brabb et al., 1999).  

The next published national-scale assessment of landslide hazards was completed over a decade 
later (Godt et al., 2012). This more recent assessment developed a simple susceptibility model 
informed by topographic slope and relief gleaned from the National Aeronautics and Space 
Administration’s (NASA) 30-arc-second Shuttle Radar Topography Mission (SRTM). The 
model was calibrated using landslide inventories from New Jersey, New Mexico, North 
Carolina, Oregon, and the San Francisco Bay region, then applied to map susceptibility across 
the conterminous U.S. The map (Figure 1b) indicates two susceptibility classes: negligible 
hazard from landslides (NONE), and some hazard from landslides (SOME). This two-class 
model was largely conceived to distinguish, in the most general sense, which areas are expected 
to pose essentially no landslide risk versus others that could potentially have some risk. The 
authors suggested that such a model could be used to inform an initial category of landslide 
insurance policies offered by U.S. postal code, with considerable room for future improvement. 
Given that other applications such as infrastructure and development planning benefit from the 
additional information provided by multiple different levels of landslide susceptibility, the earlier 
landslide overview map (Radbruch-Hall et al., 1982) has been more widely used. However, to 
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date no formal assessment of its validity has been published, due in large part to a lack of 
suitable data.  

The most recent susceptibility model with coverage over the entire U.S. was developed by 
NASA (Stanley and Kirschbaum, 2017) as part of their global Landslide Hazard Assessment for 
Situational Awareness (LHASA) (Kirschbaum and Stanley, 2018). It relies on a series of “fuzzy 
logic” operators based on topographic slope, geologic formation ranking, proximity to roads and 
faults, and recent forest loss. It distinguishes five levels of susceptibility to landsliding including 
very low (VL), low (L), moderate (M), high (H), and very high (VH), where the performance of 
the highest susceptibility (VH) was evaluated using receiver operating characteristics for a 
selection of eight localized landslide inventories in Afghanistan, El Salvador, Guatemala, Italy, 
the Himalaya (Nepal-India-China), Nicaragua, Oregon (USA), and Utah (USA). The implication 
of this evaluation is that the other four lower susceptibility classifications (VL, L, M, H) are 
considered locations where landslides are not expected. However, since the NASA model 
considers both geology and topographic slope (albeit not relief), its expression for the 
conterminous U.S. (Figure 2a) compares favorably to a combination of the prior USGS landslide 
overview map developed by Radbruch-Hall et al. (1982) and susceptibility model developed by 
Godt et al. (2012) (Figure 2b). The NASA model has been applied uniformly across most of the 
globe (56° South to 72° North latitudes) to help inform disaster planning, situational awareness, 
and decision support (Kirschbaum and Stanley, 2018). 

 

1.2 Better Tools to Increase Awareness and Evaluate Current Understanding  

The emergence of satellite remote sensing, machine learning, and other computational 
technologies has introduced new tools for landslide mapping efforts (Guzzetti et al., 2012). High 
resolution aerial imagery and topographic data, such as lidar, have accelerated the revolution in 
landslide mapping techniques (Schulz, 2004, 2007; Van Den Eeckhaut et al., 2006; Ardizzone et 
al., 2007; Petschko et al., 2016), and machine learning processes have facilitated automated or 
semi-automated approaches to detect and classify landslide features (Bunn et al., 2019). 
However, a national-scale understanding of landslide hazards in the U.S. still predates the digital 
data revolution (i.e., Radbruch-Hall et al., 1982; Brabb et al., 1999). With the increase in 
landslide mapping facilitated by various technological advances and the lack of a rigorously 
tested susceptibility assessment, the USGS identified the need for an updated national-scale 
database of landslide occurrence with the following objectives:  

- Provide a centralized portal to explore and access existing landslide data across the U.S.;  
- Facilitate landslide research within broader geologic or geographic contexts that 

transcend jurisdictional boundaries;  
- Enable general hazard assessments and disaster management plans at the national scale; 
- Identify areas where additional landslide mapping may be needed; and 
- Promote awareness of landslide occurrence across the country. 

Here, we present the results of our initial efforts to compile available geodatabases of landslide 
occurrence across the U.S., and then compare these integrated data with the three previously 
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digitized products of landslide potential with national-scale coverage (Godt and Radbruch-Hall, 
1997; Godt et al., 2012; Stanley and Kirschbaum, 2017).  

 

2. Compilation of Local-Scale Data into a National-Scale Product 

Landslide mapping and classification are typically addressed at local scales or during post-event 
response efforts, often with very different objectives and resources allocated. In the U.S., several 
state geological surveys or agencies have established clearly defined protocols for landslide 
mapping (Burns et al., 2009; Slaughter et al., 2017; Wills et al., 2017), which has paved the way 
towards comprehensive catalogues of landslide occurrence within their various jurisdictional 
boundaries. However, given the limited guidance for standardized data acquisition and 
management, the formats of landslide data can vary considerably between inventories, which 
poses a challenge for developing a uniform national-scale product. Our initial progress towards 
establishing an inventory of known landslide occurrence within the U.S. compiles existing, 
publicly available geodatabases, but reduces these data to a uniform subset of attributes that we 
deemed essential to developing a broad understanding of landslides and their impacts across the 
country. Furthermore, we identified the need to develop consistent criteria to characterize the 
variability in confidence between different sources and types of landslide information. We note 
here that the landslide inventories include both pre-historical landslides identifiable via mapping 
and field studies, as well as recent or historical landslides that have been directly observed and/or 
mapped following a landslide event. While there is considerable variability in data quality and 
confidence, any and all characterization of landslides are potentially useful for future hazard 
assessments.  

 

2.1. Existing Products and Data Sources 

The large spatial extent of the U.S. (~ 9.1 million km2 of land area) combined with the 
geographic and topographic diversity (subaerial elevations ranging from -86 m to 6,194 m) and 
variety of landslide-prone terrain (including nearly all forms of landslides—rockfalls, rock 
avalanches, earth flows, debris flows, among others) have previously presented considerable 
obstacles to a comprehensive national landslide inventory. Additionally, the range of resources 
allocated to landslide assessments and research varies considerably from state to state. There are 
several prominent global-scale landslide information products, albeit with a somewhat narrower 
scope. The USGS hosts an open repository for seismically triggered ground-failure inventories 
(Schmitt et al., 2017), which includes combined incidences of both liquefaction and landsliding 
linked to specific earthquakes. Those inventories are contributed by authors of technical reports 
and scientific journal articles, but access is maintained by the USGS in a centralized location. 
Academic researchers in England have compiled a global database of fatal landslides from media 
and other reports dating back to 2004 (Froude and Petley, 2018). Additionally, NASA maintains 
the Global Landslide Catalogue (GLC) of selected rainfall-triggered landslides across the world 
(Kirschbaum et al., 2015). The GLC includes only those that occurred since 2007 that are 
gleaned largely from NASA’s periodic analysis of selected media outlets and citizen scientist 
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reports. Despite these limitations, the landslides compiled in the GLC are perhaps the most 
comprehensive for rainfall-triggered slope failures globally. However, within the U.S., agencies 
at the state and local level often maintain more precise and comprehensive maps of landslide 
occurrence, including historical landslides that predate 2007 or do not necessarily include 
specific information on the date of occurrence. These inventories are derived by qualified geo-
professionals using a variety of robust investigative techniques ranging from lidar-based 
identification and subsurface investigations, to regional geologic mapping of extensive 
Quaternary landslide deposits. A subset of landslides from these state and local records with 
known dates were compiled by NASA and combined with the GLC into a database of dated 
rainfall-triggered landslides (Kelkar et al., 2017), which served as our motivation and starting 
point for the more comprehensive database compiled herein.  

Although statewide landslide inventories are not available for all 50 states, many states with 
frequent landslides support an advanced landslide mapping program, often with online maps and 
databases available to the public (e.g., Arizona, California, Kentucky, North Carolina, Oregon, 
Vermont, Washington, West Virginia, and Wyoming). Some Federal Agencies also support 
localized landslide mapping efforts within defined jurisdictional boundaries, such as for specific 
National Forests or National Parks (e.g., Stock et al., 2013). Additionally, the USGS is regularly 
tasked with mapping landsliding events that are of national significance, including the most 
widespread, damaging, and deadly instances (e.g., Baum et al., 2000; Coe and Godt, 2001; Coe 
et al., 2014; Collins et al., 2018; Collins and Reid, 2019; Kean et al., 2019). These generally 
overlap with the relatively few recent landslide fatalities within the U.S. (see Froude and Petley, 
2018), but include more specific information and detailed documentation. Landslide impacts to 
U.S.  Territories are also common (e.g., Harp et al., 2004; Bessette-Kirton et al, 2019), but 
landslide information is generally less available in these regions.  

For our national-scale compilation, we attempted to include all publicly available geodatabases 
collected by researchers and local, state, and federal agencies, with the understanding that more 
data may exist or ultimately become available and can be added to this database periodically. 
Digital geodatabases of landslide occurrence range from scanned and georeferenced images of 
geologic maps that include pre-historical landslides, to information-rich GIS data or maps of 
historical events that include a host of different attributes and organizational schemas. These all 
require presentation in a uniform format and database structure with some context to distinguish 
between the various data types.  

 

2.2. Disparate Data, Simplified Attributes, and Confidence Metric     

Precise characterization of the location, extent, and nature of landsliding benefit both planning 
efforts and research advances. At the same time, the quality of data and supporting information 
to characterize landslides varies widely between different local-scale inventories. For example, 
sometimes landslides are mapped as point locations and sometimes as polygons; sometimes 
landslide features such as head-scarps or runout deposits are delineated explicitly and other times 
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not. Landslides are often mapped at different scales with different attributes depending on their 
intended use and the resources that were devoted to mapping them.  

The disparate existing datasets present a substantial data integration and management challenge 
for developing a national-scale product with a common set of attributes and simplified database 
structure. The vastly different mapping techniques and scales of these inventories lead to 
considerable variability in the confidence in landslide position. Thus, it could be misleading to 
compile a uniform database without distinguishing between which composite data have high 
confidence in the nature and extent of landsliding versus those that may represent only the 
approximate location of a possible landslide. To address these dual concerns, we identified a 
limited selection of attributes in addition to the geolocation, that are critical to a national scale 
picture of landslide occurrence, which we include in the database: (i) an object identification 
(ID) number assigned for the USGS data compilation, (ii) date of landsliding (if known), (iii) 
number of fatalities (if any), (iv) confidence classification in landslide attributes and location, (v) 
source inventory name (and its associated identifying label used in the original source database), 
(vi) links to the source information and to the source inventory (often the same), and (vii) notes 
to include any additional relevant information or qualifiers. With the exception of (iv) and (vii), 
we selected these attributes because they are generally common across most inventories, are 
simple to interpret, or are potentially critical for national-scale assessments. For example, 
landslide timing is very important for developing landslide warning systems (Baum et al., 2010; 
Guzzetti et al., 2019) even though landslide age is often unknown or only known very roughly 
(e.g., post-glacial landslide, Quaternary landslide deposit, etc.). Thus, except for recent 
landslides and historical events with detailed documentation, the landslide date attribute (ii) is 
often null but included anyway. Similarly, comparatively few of the world’s fatal landslide 
events occur within the U.S. (Froude and Petley, 2018), so the fatalities attribute (iii) is typically 
null, but we include this information in our database due to the major significance of landslide-
related deaths. The notes attribute (vii) allows inclusion of other potentially important 
information that is not readily classified into the same attributes across all inventories (e.g., 
landslide material, movement type, field notes, mapping technique, damages or other impacts), 
which might help users decide whether to seek more data from the original source (v) and (vi). 
Different methods to characterize data quality have been used by various state agencies (e.g., 
Wills, 2017), but here we develop a standardized confidence attribute (iv) that allows a uniform 
classification of the relative accuracy of the information available for each landslide. This metric 
illustrates, in a general sense, that not all landslide information can be used with equal 
confidence for hazard assessment, and that even in areas where landslides have been 
characterized, more resources could lead to substantial improvements in understanding the 
location, nature, age, or extent of landsliding.  

We rank confidence with a semi-quantitative classification ranked one “1” (low) through eight 
“8” (high) to reflect the relative value of different data for landslide research and hazard 
assessments (Table 1). Using decision-tree scripts, we automatically assigned confidence level 
for each individual landslide, based on logical rules related to how the data were collected (see 
metadata for our inventory compilation in Jones et al., 2019). For example, inclusion in Oregon’s 
SLIDO inventory requires a relatively good degree of confidence in the occurrence and location 
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of a given landslide, thus the default is set to “3.”  However, for those landslides that are based 
on lidar analysis or detailed field investigations, a higher value of between “5” and “8” would be 
assigned. In contrast, the GLC includes numerous media reports, which may include imprecise 
point location and descriptions of landsliding by non-geo-professionals, thus leading to a lower 
range of confidences between “1” and “5” depending on the source of information and self-
reported location accuracy. Regardless, a point indicating the accurate location of a known 
landslide is still representative of a larger landslide body that could ultimately be identified. 
Conversely, in Colorado, vast areas of Quaternary landslide deposits are mapped without 
distinguishing between individual failures or source areas, thus leading to a lower confidence 
rating of “1” or “2” to reflect this uncertainty. 

Some landslide geodatabases, including several of the composite inventories in our compilation, 
are rich in information and complex in structure (e.g., Wooten et al., 2007; Crawford, 2014; 
Wills et al., 2017; Napolitano et al., 2018; Piacentini et al., 2018), whereas the physical structure 
of our database is quite simple: it is stored in ArcGIS Online with only the seven parsimonious 
attributes listed above, including an unstructured notes section. The complete database and 
description of our confidence classification can be accessed via the USGS ScienceBase data 
release (Jones et al., 2019), or can be viewed online through an interactive map: 
https://www.usgs.gov/maps/national-landslides-map-and-data. The individual composite 
databases with links to their original sources are listed in Table 2. 

 

3. Evaluating Previous Understanding of Landsliding with Current Data   

We compare our integrated landslide inventory database to three previously digitized landslide 
products with continuous coverage over the conterminous U.S.: (1) the USGS landslide overview 
map with six classes of low, moderate, and high susceptibility and/or incidence (Radbruch-Hall 
et al., 1976, 1982; Godt and Radbruch-Hall, 1997), (2) the USGS topographic susceptibility 
model (Godt et al., 2012) that distinguishes between areas that are prone to potential landsliding 
from those that are not, and (3) the NASA fuzzy logic susceptibility model that distinguishes five 
classes from very low to very high (Stanley and Kirschbaum, 2017). Although we identified two 
other maps of landslide susceptibility across the conterminous U.S. (Krohn and Slosson, 1976; 
Wiggins et al., 1978), we could not locate adequate copies to digitize for sake of comparison to 
our inventory. Whereas the Radbruch-Hall et al. (1982) map reflects interpretation of landslide 
occurrence by geologic formation and terrain (Figure 1a), the Godt et al. (2012) model reflects 
topographic characteristics of steep slopes and high relief (Figure 1b), and the Stanley and 
Kirschbaum (2017) model considers only topographic slope, as well as geologic classifiers, 
proximity to roads and faults, and recent forest loss (Figure 2a). These three previous products 
are shown overlaid with the landslide database in Figure 3. Although the new USGS database 
does include some landslides in Hawaii, Alaska, and Puerto Rico, those states and territory are 
not represented in two of these three maps, thus for simplicity we only consider the conterminous 
U.S. for the present study.  
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3.1 Visual Comparison to Susceptibility Maps  

Initial visual comparisons across the country reveal that the mapped landslides in the database 
generally fall within areas modeled as potentially susceptible to landslides, or SOME, by Godt et 
al. (2012) due to their steeper slopes and higher relief (Figure 3b). Additionally, the areas with 
substantial concentration of mapped landslides with higher confidence ratings (3-8), typically 
coincide with landslide-prone geologic terrains that are classified as HIGH or HIGH-MOD by 
Radbruch-Hall et al. (1982) (Figure 3a) or among the VH or H susceptibility classes of Stanley 
and Kirschbaum (2017) (Figure 3c). Conversely, our new compilation includes very few 
landslides across the vast Midwest and central regions of the country that were modeled as 
SOME (Figure 3b,c). Furthermore, considerable areas that were also classified as either HIGH or 
HIGH-MOD in the landslide overview map or as VH or H in the NASA model do not include 
any mapped landslides (Figure 3a,c). On the other hand, the regions where the greatest number 
of landslides have been mapped vary considerably, which is apparent where jurisdictional 
boundaries such as state borders or topographic quadrangles are clearly visible features in the 
data. Obviously, these are not linear boundaries between different landslide processes, but rather 
highlight differences in methodology, such as the way landslides are mapped (corresponding to 
the confidence rating), whether landslides are mapped as points or polygons, and in some cases 
whether landslides are even mapped at all.  

 

3.2 Quantitative Evaluation of Susceptibility Classes   

The visual comparisons above are supported by a straightforward quantitative analysis, in which 
we calculate the percentage of the 294,454 individual landslides in the conterminous U.S. (Table 
2) that fall within each of the susceptibility classes for the three national-scale products we 
considered (Figure 4). Given the different nature and number of classes in each of the three 
products and the incompleteness of the national database, a direct comparison of their accuracy 
is not possible. However, these quantitative metrics of landslide occurrence by susceptibility 
classes do facilitate some interesting observations and reveal potential issues with each of these 
three products, as well as with the compiled landslides database.  

The landslide overview map includes 59% of landslides within the three highest classes HIGH, 
HIGH-MOD, and MOD, but 37% are within the LOW class, which is the greatest number of 
landslides in any class. The NASA fuzzy logic model includes 51% of landslides in the top two 
VH and H classes and only 1% in the lowest VL class, but 42% fall within the M class, which is 
the greatest number of landslides, and 7% of landslides are in the L class. Thus, the landslide 
overview map and NASA fuzzy logic model do correctly identify many high susceptibility areas 
where the majority of the landslides are mapped, but we also conclude that both substantially 
underestimate the potential for landsliding in the more moderate and lower susceptibility classes.  

The USGS topographic susceptibility model achieves its objective of broadly distinguishing 
between areas that do and do not include mapped landslides, since 98% are correctly classified as 
SOME and only 2% of landslides fall within the NONE class. However, the NASA fuzzy logic 
model is even more effective at this objective and includes only 1% of landslides in the lowest 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65



11 
 

VL class. Whereas both these models that consider slope and involve calibration against 
landslide inventories can correctly identify areas of low susceptibility, the landslide overview 
map greatly underestimates landslide potential with 37% of our landslides falling within the 
LOW class. This highlights the substantial and potentially catastrophic errors that can result from 
not only ignoring topography, but also by mis-interpreting the hazards posed by certain 
landslide-prone geologic units. For example, numerous rockfalls have been documented in the 
intrusive igneous rocks of the Sierra Nevada in eastern California (e.g., Stock et al. 2013) and the 
fatal landslide near Oso occurred in particularly landslide-prone glacial outwash deposits that are 
common throughout western Washington (Iverson et al., 2015; Collins and Reid, 2019), yet both 
these geologic terrains were classified as LOW by Radbruch-Hall et al. (1982).  

To fully explain why numerous documented landslides in the conterminous U.S. occur within the 
moderate susceptibility classes of the USGS landslide overview map and the NASA fuzzy logic 
model is difficult (i.e., MOD has 36%, M has 42%). In the case of the landslide overview map, 
this observation could be related to the large area of the western states classified as MOD, which 
coincides with the very thorough and systematic mapping of landslides that has been established 
in Washington, Oregon, and California. Indeed, 67% of the mapped landslides in our inventory 
are found in these three West Coast states (Table 2). For the NASA fuzzy logic model, it could 
simply be that the M susceptibility class covers very large areas of the country, including much 
of the Pacific Northwest, Rocky Mountains, and Appalachian Mountains, whereas a much 
smaller area of the country falls within the higher H and VH classes. However, neither 
susceptibility map accounts for the temporal component of landslide occurrence, and our 
database includes both pre-historical and recent landslides, without consideration for landslide 
frequency. Thus, in both the landslide overview map and the NASA fuzzy logic model, the large 
number of landslides in the moderate categories could be due to a reporting bias. Population 
centers, roads, and infrastructure tend to be less concentrated in the areas that are the most 
susceptible to landsliding (or more concentrated in areas that are less susceptible); at the same 
time, landslides tend to be reported and recorded more frequently when human activities are 
impacted. Therefore, reports of landslide occurrence tend to be more common in lower to 
moderate susceptibility zones.  

In addition to the different number and type of susceptibility classifications used in these three 
products, the disparate input data and variability within the landslide database complicate any 
objective or quantitative comparison of their performance at the national scale. The USGS 
landslide overview map is based solely on geologic formations at the 1:2,500,000 scale (and then 
reduced to 1:7,500,000 for publication); the simplified USGS topographic susceptibility model is 
based on topographic slope and relief at roughly 30 m resolution; and the NASA model uses the 
same topographic data considering only the slope angle, but also includes geology, roads, faults, 
and forest loss in the fuzzy logic calibration. Of course, topography and geology are not 
completely independent, particularly when viewed at such coarse resolutions. However, despite 
the disparate data inputs, our interpretation of Figures 3 and 4 indicates that more work is needed 
both to improve all these existing susceptibility models and to compile a complete and more 
comprehensive landslide inventory database.  
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3.3 Regions of Interest and Areas for Improvement  

The general qualitative and quantitative inferences of variability and incompleteness that we 
observe at the national scale (Figures 3 and 4), are also apparent within the three broad regions 
that display the highest concentration of mapped landslides (Figure 5): (a) the Pacific Northwest, 
(b) the southern Rocky Mountains, and (c) the Appalachian Mountains. To differing degrees, 
these three regions also tend to coincide with areas on the landslide overview map that include 
the higher susceptibility and incidence classes. The combination of high landslide concentration 
with higher confidence data are found in areas classified as high susceptibility and incidence on 
the landslide overview map, but these may be directly adjacent to other areas that had been 
similarly classified that exhibit no mapped landslides. This apparent contradiction further 
reinforces the reality that the current inventory database is far from complete. For example, in 
northwestern California (Figure 5a), a high concentration of landslides abruptly stops at 
topographic quadrangle boundaries. Similarly, this occurs at the borders between states such as 
Kentucky and Ohio or North Carolina and Georgia (Figure 5c). These situations clearly indicate 
that further mapping is needed to perform consistent analyses. Thus, the map of our landslide 
database can be used to identify areas with dense data coverage and high-confidence mapping, 
which would be suitable for development of various types of landslide hazard assessments, 
including quantitative susceptibility modeling, as well as subjective landscape-driven methods to 
derive the important factors that influence landslide occurrence.  

The areas where high-confidence data coincide with previous assessments of high susceptibility 
indicate that other areas that were designated as higher susceptibility or even modeled as 
potentially susceptible should be examined more closely. These other areas with steep 
topography and high relief designated as potentially susceptible to landslides by the calibrated 
USGS (Figure 3b) or the NASA (Figure 3c) susceptibility models likely do incur landslides, but 
those may not have been identified yet due to incomplete mapping or features that have been 
obscured by vegetation growth or other changes over time. Such areas that are potentially 
hazardous may also include landslides that have been mapped, but information is not readily 
accessible in online or public databases. In contrast, landslides were identified in areas not 
recognized by the landslide overview map, such as California’s Sierra Nevada or the area 
surrounding Oso, Washington (Figure 3a), but these areas do reflect the importance of slope and 
relief (Figure 3b). Sparse landslides identified throughout the Midwest and Central States are 
also in areas previously classified as low susceptibility and incidence, or even modeled as 
unlikely to be prone to landslides. While landsliding is certainly more prominent in areas with 
steeper topography and higher relief that are already recognized as potentially hazardous (i.e., 
Pacific Northwest, Rocky Mountains, and Appalachia), the previous low-susceptibility 
classifications across much of the country do not necessarily indicate that landsliding is 
improbable (see also Figure 4). Indeed, the landslides across the central U.S. are all integrated 
from NASA’s GLC (Kirschbaum et al., 2015), which means they are recent (since 2007). In 
contrast, many regions with higher concentration of mapped landslides include low-confidence 
geologic mapping of Quaternary landslide deposits, such as large portions of western Colorado.  
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Differences in data availability and quality across the country reflect the contrasting approaches 
to landslide mapping, which are a product of the regulatory environment, the limited resources 
available, and whether development has expanded into landslide-prone terrain. In some cases, 
such as New Mexico, numerous landslides were mapped as points, albeit with lower confidence 
methods, whereas in neighboring Arizona, selective mapping of fewer landslides as polygons 
with greater confidence is more prevalent (Figure 5b). On the West Coast, lidar and high-
resolution aerial imagery are being used to systematically map landslides within counties in 
Washington State and by topographic quadrangles in California, but in between them Oregon 
stands out for an even greater coverage of high confidence and likely landslides (Figure 5a). In 
the eastern U.S., Kentucky, North Carolina, and Vermont stand out from neighboring states, 
even though steep topography, high relief, and landslide-prone geologic units are consistent 
across state boundaries throughout the sub-ranges of the Appalachian Mountains (Figure 3b and 
Figure 5c). These are just a few very broad examples that illustrate where further landslide 
mapping is likely needed.   

 

4. Potential Utility and Future Opportunities 

Our current map of landslides within the U.S. and its associated database are the result of a broad 
community effort, which highlights the importance of working together towards the set of 
common and overlapping objectives and outcomes described in section 1.2. While certainly not 
comprehensive, these products represent a successful collaboration between numerous state and 
federal agencies to characterize landslide occurrence at the national scale. Additionally, the 
centralized public access has already encouraged further data sharing, new research, and 
awareness about landslide occurrence.  

The parsimonious database structure is inclusive of even the most basic landslide inventories, but 
at the same time our confidence metric allows users to isolate the highest quality data for novel 
research applications, such as training landslide detection and mapping algorithms. The database 
still includes critical information on whether fatalities were incurred, if the date of occurrence is 
known, and unstructured notes on the failure mode, damages, impacts, or whatever other 
information is available. Thus, the database can not only be used to map the geographic location 
of landslides, but researchers could identify those events that have resulted in extraordinary 
losses to refine models for quantifying landslide risk. Similarly, researchers can easily select the 
events with precise timing information needed to develop and evaluate thresholds for landslide 
warning systems. The interactive, searchable map of landslide occurrence has prompted general 
inquiries from both the media and public about landslide studies and the inconsistency of 
landslide mapping across the U.S. Overall, the database is successfully meeting our objectives of 
providing open access to landslide data, facilitating a variety of new research activities, and 
promoting awareness about landslide occurrence across the country. 

Even landslide inventories developed with high-quality lidar data and rigorous analyses are 
rarely complete; the lack of landslide points or polygons at any given point does not guarantee 
the lack of landslides, but rather it points to the lack of a publicly available geospatial database 
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that can confirm either the absence or occurrence of landslides. Although individual states are 
leading the way in developing comprehensive and high-confidence landslide catalogues within 
their boundaries (Wooten et al., 2007, 2017; Burns and Madin, 2009; Crawford, 2014; Slaughter 
et al., 2017; Wills et al., 2017), providing these data in the context of national-scale 
understanding to identify regions that have likely received less attention or resources to assess 
landslide hazards and associated losses is important. Our semi-quantitative confidence metric 
and comparisons to previous national-scale susceptibility maps (Figures 3 and 5) point to areas 
where landslide mapping may be lacking or where data are not accessible, which could inform 
future work and funding decisions. Such comparisons can not only guide further mapping, but 
also help us to develop improved susceptibility models and disaster management plans that 
account for the broader geologic and geographic contexts across state borders or other 
jurisdictional boundaries.  

In summary, the database allowed the first objective evaluation of previous national-scale 
landslide susceptibility products presented herein. The compilation can ultimately inform other 
research and more general hazard assessments for disaster management plans, transportation 
routes, and potentially insurance or other private industries. Finally, it is our intention that the 
openly accessible format will continue to motivate ongoing contributions to further improve 
landslide characterization and awareness across the country.  
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Table 1. Semi-quantitative metric and associated description used to characterize relative 
confidence in landslide occurrence and position. 
____________________________________________________________________________ 

8 – High confidence that the nature and/or spatial extent of the landslide is well characterized 

This highest confidence level is typically based on detailed field observations and/or expert 
analysis of high-resolution topographic data or aerial imagery to characterize the landslide.  

5 – Confident that a consequential landslide took place at the specified location  

This level of characterization still involves high confidence that a landslide took place at 
the specified location as evidenced by fatalities and/or damage to infrastructure, but 
detailed observations of landslide features are not described in the geodatabase.  

3 - Landslide likely at or near the specified location 

This middle confidence level reflects a known landslide occurrence with lower certainty on 
the exact position or nature of the slope failure. These typically include verified landslides 
on lower resolution topographic maps or aerial imagery and landslide data that predate 
digital topography and precise global positioning systems.  

2 - Probable landslide in the area 

Although the exact location and extent of the landslide is not documented, a landslide 
probably did occur within close proximity to the specified location. This includes geologic 
mapping of landslide deposits that may correspond to multiple landslides as well as 
individual landslides mapped with low-resolution topographic data.  

1 - Possible landslide occurred in the area 

The lowest confidence level reflects the uncertain nature of some media reports and the 
lack of expert classification and characterization of the location and nature of landsliding. 
Typically, these represent unverified media reports without precise location attribution.  

______________________________________________________________________________ 

 



SOURCE ABBREVIATION
Arizon Geological Survey AZ GS
California Geological Survey CA GS
Colorado Geological Survey CO GS 24k
Colorado Geological Survey CO GS 250k
Kentucky Geological Survey K GS
National Aeronautics and Space Administration NASA
New Jersey Geological Survey NJ GS
North Carolina Geological Survey NC GS
Oregon Department of Geology and Mineral Industries DOGAMI - SLIDO
U.S. Forest Service USDA-FS Tongass (Alaska)
National Aeronautics and Space Administration NASA Hawaii
U.S. Geological Survey USGS 2013 CO Front Range
U.S. Geological Survey USGS 1998 DF98CL2
U.S. Geological Survey USGS 1998 DFALB
U.S. Geological Survey USGS 1998 LS98SL2
U.S. Geological Survey USGS CO 2007
U.S. Geological Survey USGS Conterminous
U.S. Geological Survey USGS pre 1998 DFP98CL2
U.S. Geological Survey USGS pre 1998 LSP98CL2
U.S. Geological Survey USGS WA PS
U.S. Geological Survey USGS WA PS Historical
U.S. Geological Survey USGS WA PS Railway
Utah Geological Survey UT GS
Utah Geological Survey UT GS Hist
Vermont Geological Survey VT GS
Washington Department of Natural Resources WA DNR
TOTAL

West Coast State Surveys
Conterminous U.S. 



NUMBER OF LANDSLIDES PERCENT OF TOTAL LINK
8481 2.73% http://data.azgs.az.gov/hazard-viewer/#
80764 26.02% https://maps.conservation.ca.gov/cgs/lsi/app/
11694 3.77% https://cologeosurvey.maps.arcgis.com/apps/webappvie
8135 2.62% https://cologeosurvey.maps.arcgis.com/apps/webappvie
2692 0.87% https://kgs.uky.edu/kgsmap/kgsgeoserver/viewer.asp
2881 0.93% https://maps.nccs.nasa.gov/arcgis/apps/webappviewer/i
298 0.10% https://www.state.nj.us/dep/njgs/geodata/dgs06-3.htm
9298 3.00% http://data.nconemap.gov/geoportal/catalog/search/res
57975 18.68% https://gis.dogami.oregon.gov/maps/slido/
15886 5.12% https://data.fs.usda.gov/geodata/
52 0.02% https://maps.nccs.nasa.gov/arcgis/apps/webappviewer/i
1350 0.43% http://www.geosociety.org/gsatoday/archive/24/10/artic
2558 0.82% https://pubs.usgs.gov/sim/2004/2859/
565 0.18% https://pubs.usgs.gov/mf/2002/mf-2384/
952 0.31% https://pubs.usgs.gov/sim/2004/2859/
806 0.26% https://pubs.usgs.gov/of/2007/1237/
6297 2.03% https://pubs.usgs.gov/mf/1999/2329/
240 0.08% https://pubs.usgs.gov/sim/2004/2859/
309 0.10% https://pubs.usgs.gov/sim/2004/2859/
298 0.10% https://pubs.usgs.gov/mf/2000/mf-2346/
24 0.01% https://pubs.usgs.gov/mf/2000/mf-2346/
132 0.04% https://pubs.usgs.gov/mf/2000/mf-2346/
2383 0.77% https://gis.utah.gov/data/geoscience/landslides/
25589 8.24% https://gis.utah.gov/data/geoscience/landslides/
1861 0.60% http://geodata.vermont.gov/datasets/3bd6e48efd30496
68872 22.19% https://www.dnr.wa.gov/geologyportal
310392 100%
207611 67%
294454 95%
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