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Abstract. Since 1990, natural hazards have led to over
1.6 million fatalities globally, and economic losses are esti-
mated at an average of around USD 260–310 billion per year.
The scientific and policy communities recognise the need to
reduce these risks. As a result, the last decade has seen a5

rapid development of global models for assessing risk from
natural hazards at the global scale. In this paper, we review
the scientific literature on natural hazard risk assessments at
the global scale, and we specifically examine whether and
how they have examined future projections of hazard, expo-10

sure, and/or vulnerability. In doing so, we examine similari-
ties and differences between the approaches taken across the
different hazards, and we identify potential ways in which
different hazard communities can learn from each other. For
example, there are a number of global risk studies focusing15

on hydrological, climatological, and meteorological hazards
that have included future projections and disaster risk reduc-
tion measures (in the case of floods), whereas fewer exist in

the peer-reviewed literature for global studies related to geo-
logical hazards. On the other hand, studies of earthquake and 20

tsunami risk are now using stochastic modelling approaches
to allow for a fully probabilistic assessment of risk, which
could benefit the modelling of risk from other hazards. Fi-
nally, we discuss opportunities for learning from methods
and approaches being developed and applied to assess natural 25

hazard risks at more continental or regional scales. Through
this paper, we hope to encourage further dialogue on knowl-
edge sharing between disciplines and communities working
on different hazards and risk and at different spatial scales.

1 Introduction 30

The risk caused by natural hazards is extremely high and
increasing. Since 1990, reported disasters have led to over
1.6 million fatalities globally, and economic losses are esti-
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mated at an average of around USD 260–310 billion per year
(UNDRR, 2015a). The need to reduce the risk associated
with natural hazards is recognised by the international com-
munity and is at the heart of the Sendai Framework for Dis-
aster Risk Reduction (Sendai Framework; UNDRR, 2015b).5

The Sendai Framework adopts the conceptualisation of disas-
ter risk as the product of hazard, exposure, and vulnerability.
The hazard refers to the hazardous phenomena itself, such as
a flood event, including its characteristics and probability of
occurrence; exposure refers to the location of economic as-10

sets or people in a hazard-prone area; and vulnerability refers
to the susceptibility of those assets or people to suffer dam-
age and loss (e.g. due to unsafe housing and living condi-
tions or lack of early warning procedures). Reducing risk is
also recognised as a key aspect of sustainable development15

in the Sustainable Development Goals (SDGs) and the Paris
Agreement on climate change.

Managing disaster risk requires an understanding of risk
and its drivers, from household to global scales. This includes
an understanding of how risk may change in the future and20

how that risk may be reduced through disaster risk reduc-
tion (DRR) efforts. A global-scale understanding of disaster
risk is important for identifying regions most at risk, pro-
viding science-based information for DRR advocacy, and as-
sessing the potential effectiveness of DRR solutions. Efforts25

to assess and map natural hazard risk at the global scale have
been ongoing since the mid-2000s, starting with the natu-
ral disaster hotspots analysis of Dilley et al. (2005). This
was followed by the global risk assessments for an increas-
ing number of natural hazards in the biennial Global Assess-30

ment Reports (GARs) of the United Nations Office for Disas-
ter Risk Reduction (UNDRR) (UNDRR, 2009, 2011, 2013,
2015a, 2017).

At the same time, there have been increasing efforts in the
scientific community to develop global methods to assess the35

potential risks of natural hazards at the global scale, in order
to inform (inter)national decision makers. In 2012, the ses-
sion “Global and continental scale risk assessment for natural
hazards: methods and practice” was established at the Gen-
eral Assembly of the European Geosciences Union, in order40

to bring together people and institutes working on large-scale
risk assessment from different disciplinary communities. The
session has been held each year since 2012, leading to the
current special issue in Natural Hazards and Earth System
Sciences. One of the enduring themes of these sessions has45

been assessing future natural hazard risk. In Fig. 1, we show
the percentage of abstracts accepted to this session each year
that explicitly mentions examining future projections of risk
based on future scenarios of hazard, exposure, or vulnera-
bility projections. The number of abstracts dealing with fu-50

ture scenarios of hazard and exposure is much higher than
those dealing with future scenarios of vulnerability. Over the
8-year period that the session has run, scenarios of future
hazards have been the most common aspect amongst those
abstracts dealing with future risk projections.55

Figure 1. Percentage of abstracts accepted and presented at the
EGU session “Global and continental scale risk assessment for nat-
ural hazards: methods and practice” that explicitly mention exam-
ining future projections of risk based on future scenarios of hazard,
exposure, or vulnerability projections.

In this paper, we review the scientific literature on natural
hazard risk assessments at the global scale, and we specifi-
cally examine whether and how they have examined future
projections of hazard, exposure, and/or vulnerability. In do-
ing so, we examine similarities and differences between the 60

approaches taken across the different hazards, thereby iden-
tifying potential ways in which different hazard communities
can learn from each other whilst acknowledging the chal-
lenges faced by the respective hazard communities. First, we
review the scientific literature for each natural hazard risk in- 65

dividually. Second, we compare and contrast the state of the
art across the different hazard types. Third, we conclude by
discussing future research challenges faced by the global risk
modelling community and several opportunities for address-
ing those challenges. 70

2 Review of literature per hazard type

In this section, we review scientific literature on global-scale
natural hazard risk assessments. We limit the review to those
studies that have used a spatial representation of the risk el-
ements. Therefore, we do not include studies that use global 75

(or continental) damage functions to directly translate from
a global stressor (e.g. global temperature change) to a loss or
studies that solely use normalisation methods to assess trends
in past reported losses. The results are presented for major
natural hazards, including those that have been modelled for 80

the UNDRR Global Assessment Reports.
In carrying out the review, we focus on the aspects de-

scribed in the bullets below. For each of the reviewed stud-
ies, the information across these aspects is summarised in
Table 1. 85

– Risk elements. We indicate whether hazard, exposure,
and vulnerability are explicitly represented in the study.
If so, we indicate whether these are represented in a
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static or dynamic nature over time. By static, we mean
that no future projections are included (i.e. only current
representation is used), and by dynamic we mean that
future projections are included. In the table, no repre-
sentation is shown in white, static is in orange, and dy-5

namic is in green.

– Resolution of risk elements. We indicate the spatial res-
olution at which each risk element is represented.

– Risk indicators. We show the indicators used to express
the risk.10

– Future DRR measures. We indicate whether the study
explicitly represents future DRR measures in its mod-
elling framework, and if so we indicate whether these
are related to structural, nature-based, or non-structural
measures. We also indicate whether the costs of these15

measures are assessed and whether the impact of human
behaviour on their effectiveness is assessed.

– Risk analysis. We indicate the type of risk assess-
ment that was carried out. We have classed these as
either non-probabilistic (NP) or probabilistic (P). By20

probabilistic, we mean that expected annual impacts
are assessed either by integrating across return peri-
ods or based on a probabilistic stochastic event set.
We also indicate whether the risk assessment repre-
sents hazard using stochastic event sets (S), return pe-25

riod maps (R), maps of yearly (Y) or monthly (M) haz-
ard, past events (PE), or the radius around a specific vol-
cano (V). We also indicate the time horizon reported in
the study, the resolution at which the risk analysis is car-
ried out, and the geographical scale to which the results30

are aggregated.

In the following subsections, each hazard is reported individ-
ually.

2.1 Floods

2.1.1 River floods35

A relatively large number of studies have been carried out
to assess global risk from river floods. A description of each
study and the main findings can be found in the Supplement.
These studies are summarised in this section, and details of
the reviewed aspects for each study are shown in Table 1.40

Dilley et al. (2005) was the first study to overlay regions
that had been affected by large floods between 1985 and 2003
with population data. Güneralp et al. (2015) used the same
data to map potential changes in urban areas in flood-prone
regions. However, the flood maps used only provide a gen-45

eral impression of regions affected by floods, but not neces-
sarily actual inundated areas, and are therefore not included
in Table 1. The earliest assessments of future river flood risk

examine changes in the number of people experiencing dis-
charge flows of different magnitudes, at coarse resolutions 50

ranging from 0.5◦× 0.5◦ to “large river basins” (Kleinen and
Petschel-Held, 2007; Hirabayashi and Kanae, 2009; Arnell
and Lloyd-Hughes, 2014; Arnell and Gosling, 2016). Whilst
the numbers differ greatly between studies, they all reveal a
large increase throughout the 20th century. 55

Since then, river flood risk modelling has progressed to
examine flood hazard based on modelled inundation maps at
resolutions varying from 30′′×30′′ to 2.5′×2.5′. It should be
noted that each of the models described here has its own min-
imum catchment size (ranging from ∼ 500 to ∼ 5000 km2), 60

under which hazard (and therefore risk) are not calculated.
Several early studies only examined current risk (Ward et al.,
2013; UNDRR, 2015a) or examined either dynamic hazard
(Hirabayashi et al., 2013; Alfieri et al., 2017; Willner et al.,
2018) or dynamic exposure (Jongman et al., 2012). Several 65

of the most recent studies have used dynamic projections of
both hazard and exposure (Winsemius et al., 2016; Ward et
al., 2017; Dottori et al., 2018), whilst Jongman et al. (2015)
also added dynamic vulnerability.

In terms of hazard modelling, there has been a clear move- 70

ment from the coarse-resolution maps of extreme discharge
to approaches using inundation maps of different return pe-
riods, whereby probabilistic risk is also assessed. There has
been an overall shift from coarse exposure maps (0.5◦× 0.5◦

to large river basins) of population only to higher-resolution 75

maps with population, gross domestic product (GDP), and
land use. This has accompanied a transition from addressing
affected people only to moving towards a broader range of
risk indicators, including direct damage and, in the case of
Dottori et al. (2018), also indirect damage. In most studies 80

where vulnerability has been considered, this has been done
by using (one or a limited number of) intensity–damage func-
tions (IDFs), namely depth–damage functions, whilst Jong-
man et al. (2015) and Dottori et al. (2018) have also used
vulnerability ratios. The only study to develop dynamic vul- 85

nerability scenarios is that of Jongman et al. (2015).
There has also been a clear shift from studies using non-

probabilistic approaches focusing on impacts in a given year
or time period, or on one or several discrete return periods,
to studies using a probabilistic approach. The latter studies 90

have integrated impacts across a range of return periods to
estimate risk in terms of expected annual impacts. To date,
none of the global-scale studies use probabilistic stochastic
event sets.

Planned future DRR measures have only been considered 95

in the studies of Winsemius et al. (2016), Ward et al. (2017),
and Willner et al. (2018) and only through structural mea-
sures. Of these studies, only Ward et al. (2017) assess the as-
sociated costs and benefits. No studies to date have assessed
behavioural aspects of future DRR measures. All studies 100

project huge increases in future absolute risk, assuming no
future DRR measures, on the order of hundreds to thou-
sands of percent depending on indicator, scenario, time peri-
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Table 1. Summary of findings across the reviewed literature and across the reviewed aspects. Explanatory notes: risk elements – white if
this risk element is not included, orange if included and static, green if included and dynamic. Types of risk analysis are as follows. NP:
non-probabilistic; P: probabilistic; S: stochastic event sets; RP: return period maps; Y: maps of yearly hazard; M: maps of monthly hazard;
PE: past events; V: radius around specific volcano; IDF: intensity–damage function.
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Table 1. Continued.
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Table 1. Continued.

ods, and study. However, the increases are significantly lower
when expressed relative to population and/or GDP. More-
over, the more recent papers that include either change in
vulnerability or future DRR measures show that much of the
projected future risk could be reduced if effective DRR mea-5

sures are taken, often with the benefits of these exceeding the
costs.

2.1.2 Coastal floods

As with river floods, a relatively large number of studies have
been carried out to assess global risk from coastal floods. De-10

tails of each study can, therefore, be found in the Supple-
ment, and they are summarised in this section and in Table 1.

Pioneering work on global coastal flood risk was per-
formed in the Global Vulnerability Assessment for the In-
tergovernmental Panel on Climate Change (IPCC) (Hooze-15

mans et al., 1993). This study used empirical approaches to
derive extreme sea levels for four different return periods us-
ing co-variables such as wind and pressure climatologies and
bathymetry. These were combined with socio-economic data
and scenarios, as well as cost estimates for increasing protec-20

tion standards to estimate present-day and future risk and the
costs of future DRR measures.

This method was extended in the European DINAS-
COAST project, in which the Dynamic and Interactive Vul-
nerability Assessment (DIVA) model was developed. This25

model assesses coastal flood risks at a finer spatial resolu-
tion than Hoozemans et al. (1993 TS1 ) using coastal seg-
ments, whereby each segment represents a different coastal
archetype (Vafeidis et al., 2008). In total, 12 148 coastal seg-
ments are defined, with the length of each section ranging30

from less than 1 to 5213 km, depending on physical and
socio-economic conditions. For these segments, extreme sea
levels were computed following Hoozemans et al. (1993) and

combined with biophysical and socio-economic data along
these coastal segments to enable assessment of risk in terms 35

of affected coastal area and population, population forced to
migrate, and damage based on a single depth–damage func-
tion. From the start, the DIVA model has explicitly repre-
sented the costs and benefits of future DRR measures, since
it was developed to assist climate adaptation studies. DIVA 40

has been used in several studies at a global scale, including
those of Hinkel and Klein (2009) and Hinkel et al. (2010,
2014), to assess risks under scenarios of sea level rise, sub-
sidence, and population growth, with several assumptions on
future DRR measures. It has also been used by Hallegatte 45

et al. (2013) to assess coastal flood risk and the costs and
benefits of structural DRR measures in major coastal cities
by 2050. Jongman et al. (2012) used extreme sea level esti-
mates from the DIVA studies to produce a gridded inunda-
tion map for a 100-year flood. Using this, they assessed the 50

increase in risk during the 21st century as a result of change
in exposure only. More recently, Schuerch et al. (2018) mod-
ified DIVA to perform a more comprehensive assessment of
coastal wetland responses to climate change globally. Com-
bined, the aforementioned studies show that in general risk 55

will increase by a large amount throughout the 21st century
if no future DRR measures take place. The costs of imple-
menting future DRR measures are large but are far smaller
than the benefits gained by their risk-reducing effect.

The previous studies all use the extreme sea levels from 60

the original DIVA model. Fang et al. (2014) present the first
gridded analysis of current flood risk in terms of affected
people and affected GDP. Not until 2013 were the extreme
sea levels in coastal flood risk studies improved through hy-
drodynamic modelling. Muis et al. (2016) made the dynamic 65

Global Tide and Surge Reanalysis (GTSR) – the first of its
kind – using the physically based global-coverage Global
Tide and Surge Model (GTSM). GTSR was validated against
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sea level observations worldwide and compared against the
previously used extreme sea levels within DIVA. GTSR rep-
resents extreme sea levels much better than the previously
used extreme sea levels. Muis et al. (2016, 2017) used these
new extreme sea levels to estimate the population exposed5

to a 100-year-return-period flood, and they found the global
numbers to be about 28 % lower than those with the pre-
viously used extreme sea levels. Recent work by Hunter et
al. (2017) used the approach of Hallegatte et al. (2013) to
assess flood risk in global cities, but using extreme sea lev-10

els derived from tide gauges. They find that the original ex-
treme sea levels are overestimated compared to observations
and that average annual damages are about 30 % lower using
observations. Tiggeloven et al. (2019 TS2 ) used an updated
version of the GTSR dataset, including observed tropical cy-15

clones, to assess current risk in terms of EADCE1 and future
risk until 2080 (using projections of change in hazard and ex-
posure). They also assess the benefits and costs of structural
flood protection and find various strategies to show high po-
tential of cost-effectively reducing (future) coastal flood risk20

at the global scale.
Several recent studies have examined new avenues for ex-

amining coastal risk. Beck et al. (2018) estimate the global
flood protection savings that can be provided by coral reefs.
Vafeidis et al. (2019) investigate the uncertainty introduced25

to global coastal risk modelling by the flood attenuation land
inwards. They show that the uncertainties in attenuation are
similar in size to the uncertainties in sea level rise, suggesting
this is an important future research direction.

From the outset, coastal flood risk assessments have been30

forward-looking, since the original studies were developed
to assist climate adaptation studies. The use of future haz-
ard and exposure scenarios is therefore widespread, as is the
assessment of the costs and benefits of DRR measures, both
structural and nature-based. Vulnerability has been included35

in many of the DIVA studies; dynamic vulnerability scenar-
ios have not been developed. Several recent studies have fo-
cused more on current risk, using the newer datasets on ex-
treme sea levels. Recently, a number of studies have assessed
risks at a 30′′× 30′′ gridded resolution, moving towards a40

higher spatial resolution compared to the studies carried out
using the DIVA model. Coastal flood risk studies have either
assessed impacts for a single return period or have assessed
probabilistic risk by aggregating across several return peri-
ods. As with river floods, to date none of the global-scale45

studies have used probabilistic stochastic event sets.

2.1.3 Pluvial floods

To the best of our knowledge, the scientific literature does
not contain any examples of global-scale pluvial flood risk
assessments, i.e. flooding caused by intense rainfall that ex-50

ceeds the capacity of the drainage system. Pluvial flooding
is most commonly assessed using flood models for a small
area (e.g. city or even part of a city) that generate data on

depth and velocity of surface water associated with rainfall
events of different intensities. Guerreiro et al. (2017) did de- 55

velop a modelling approach to assess pluvial flood hazard
for 571 cities at the continental scale in Europe. The paper
outlines some of the key challenges in such a continental
approach, which would be amplified for a potential global-
scale application. These include difficulties in obtaining the 60

required hourly rainfall records; low resolution of continental
to global digital elevation models (DEMs) compared to those
typically used for pluvial flood models; and the lack of data
to represent local sewer systems, building shapes, and infil-
tration in local green spaces. Opportunities to collect such 65

data lie in high-resolution remote sensing and data science
(Schumann and Bates, 2018), but also in local crowdsourced
methods such as community mapping (Winsemius et al.,
2019), which is a promising avenue, particularly in strongly
growing urban centres in developing countries. Guerreiro 70

et al. (2017) demonstrate that current modelling capabili-
ties and requisite computing power make large-scale pluvial
flood hazard assessment a possibility, if these data challenges
can be overcome. Sampson et al. (2015) do include floods
in small river channels (with catchment less than 50 km2) 75

driven by intense local precipitation. To do this, they use a
“rain-on-grid” method in which flow is generated by simulat-
ing rainfall directly on the DEM at a high resolution (3′′×3′′),
using intensity–duration–frequency relationships of extreme
rainfall from ∼ 200 locations around the world. However, 80

they state that it is not known whether this method provides
robust estimates of return period rainfall globally, and they
also indicate the importance of tackling the aforementioned
difficulties. Wing et al. (2018) use this method to assess flood
hazard and risk in the conterminous USA. 85

2.2 Tropical cyclones

Several studies on tropical cyclone (TC) risk have been car-
ried out at the global scale, using various methods (Table 1).
Peduzzi et al. (2009) assess current TC risk hotspots, ex-
pressed in terms of expected number of fatalities per year per 90

country. Hazard is represented by computing buffers along
individual TC tracks between 1980 and 2000, where wind
speed exceeds a threshold of 42.5 m s−1. The tracks are taken
from the PreView Global Cyclones Asymmetric Windspeed
Profile dataset. The average cyclone frequency per cell is de- 95

termined by taking the spatial extents of individual cyclones
(5 km× 5 km) and averaging the frequency over the entire
period. Exposure is represented by population and GDP per
capita (5 km× 5 km), taken from GRID and the World Bank,
respectively. Vulnerability is represented using a selection of 100

32 socio-economic and environmental variables. Since the
results are only for current conditions, future DRR measures
are not accounted for.

Cardona et al. (2014) also assess current risk from TCs in
the current time period. They express risk in terms of eco- 105

nomic damage (average annual loss and probable maximum
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loss for a fixed return period of 250 years) by combining data
on hazard, exposure, and vulnerability within the CAPRA
Platform Risk Calculator (https://ecapra.org/, TS3 ). Hazard is
represented by maps of wind speed for different return peri-
ods at a horizontal resolution of 1 km× 1 km. These are de-5

rived from a stochastic set of wind fields, calculated using
a model forced by historical observations of TCs from the
IBTrACS v02r01 dataset (Knapp et al., 2010). Exposure is
represented using the common dataset of the GAR 2015, in
which it is represented as a group of buildings in each point10

or cell of analysis with a resolution of 5 km× 5 km. Vulnera-
bility is represented by IDFs relating maximum wind veloc-
ity sustained for 5 s gusts at 10 m above ground level (Yamin
et al., 2014). Since the results are only for current conditions,
future DRR measures are not included. In the paper, rankings15

of national-level risk are shown.
Fang et al. (2015) assess the global population and GDP at

risk from TC winds in the current period. To represent haz-
ard, they develop a 6-hourly TC track database up to 2012
using CMA-track (Ying et al., 2014), HURDAT (Landsea20

and Franklin, 2013), and IBTrACS (Knapp et al., 2010). To
convert the gust wind to sustained wind speed, a gust fac-
tor model is applied. Next, a Gumbel distribution is fitted
to all grid cells (30′′× 30′′) with more than 20 TC events
to calculate wind speeds at several return periods. Exposure25

is represented using gridded population data at a resolution
of 30′′× 30′′ from LandScan 2010 from the Oak Ridge Na-
tional Laboratory (ORNL)CE2 and is represented using grid-
ded GDP data at a resolution of 0.5◦× 0.5◦ from the Green-
house Gas Initiative (GGI) dataset of the International In-30

stitute for Applied Systems Analysis (IIASA)CE3 for 2010.
Vulnerability is not accounted for, and since the study only
examines current risk no future DRR measures are included.
They find that China has the highest expected annual affected
population and GDP, and the top 10 % of countries are largely35

in Asia.
Peduzzi et al. (2012) assess risk from TCs over the pe-

riod 1970–2009, with projections of future risk to 2030 based
on projections of increased exposure only. Hazard is repre-
sented by maps showing TC frequency and maximum inten-40

sity for events between 1970 and 2009 at a horizontal resolu-
tion of 2 km× 2 km. The dataset is derived from a TC model
of wind speed profiles using a parametric Holland model
(Holland, 1980), which is forced using historical observa-
tions of TCs from the IBTrACS v02r01 dataset (Knapp et45

al., 2010). Exposure is represented by gridded maps of popu-
lation and GDP at a horizontal resolution of 30′′× 30′′. Cur-
rent population data are taken from LandScan 2008 (Land-
Scan, 2008) and current GDP data are taken from data from
the World Bank. They are both extrapolated to each decade50

from 1970 to 2030, based on UN Environment Programme
(UNEP)CE4 country data. Vulnerability is represented us-
ing different country-level parameters relating to the econ-
omy, demography, environment, development, early warn-
ings, governance, health, education, and remoteness. These55

are used to calculate exposed GDP, affected population, and
mortality risk per country for each year between 1970 and
2030. Future DRR measures are not included. The average
population exposed to TCs per year is projected to increase
by 11.7 % by 2030, with about 90 % of this increase in Asia. 60

In relative terms, the largest increase in risk is in Africa.
Mendelsohn et al. (2012) assess TC risk using future sce-

narios of hazard, exposure, and vulnerability. Risk is ex-
pressed in terms of direct damage, and the damage per-
tains to storm surge, wind, and freshwater flooding, without 65

distinguishing between the three sources. Hazard is repre-
sented by TC landfall locations and intensity from a synthetic
dataset of TC tracks, simulated using the model of Emanuel
et al. (2008). The TC model is seeded with climate data from
four GCMs: CNRM-CM3, ECHAM5, GFDL CM2.0, and 70

MIROC 3.2, for both the current period (1981–2000) and
future period (2081–2100) under the SRES A1b emissions
scenario; sea level rise is not accounted for. The damage per
storm is calculated using a statistical damage function per
county in the USA or per country for the rest of the world. 75

The damage function uses population density to represent ex-
posure and income as an indicator of vulnerability. Current
exposure and income data are used per county for the USA
and per country for other regions. Future projections of pop-
ulation per country are taken from the World Bank (2010), 80

and future projections of GDP per country are based on long-
term growth rates for three income groups. Probabilistic risk
is expressed as direct damage per year, based on the dam-
ages from the stochastic storm tracks. Future DRR measures
are not included. The main findings are an increase in global 85

damage of ∼ 115 % by 2100 due to changes in population
and income, with approximately a further doubling due to
climate change.

In summary, several studies have examined the risk
from TCs at the global scale. Most have only considered cur- 90

rent conditions, except Peduzzi et al. (2009) (change in expo-
sure) and Mendelsohn et al. (2012) (changes in hazard, expo-
sure, vulnerability). A defining aspect of a TC hazard is that
it is composed of wind, precipitation, and storm surge, and
the impacts result from a combination of these. However, the 95

current studies to date do not explicitly model all of these as-
pects. At present there are no methods available to paramet-
rically model 2-D precipitation fields from TCs in the same
way that wind fields are parametrically modelled using the
Holland Model (Holland, 1980). A large range of different 100

approaches have been used for defining and modelling both
the hazard and risk. Mendelsohn et al. (2012) and Cardona
et al. (2014) express risk in probabilistic terms. Mendelsohn
et al. (2012) is the only study to use a synthetic TC dataset,
whilst the other studies use historical TC events to construct 105

the hazard.
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2.3 Hazards associated with severe convective storms

Perils associated with severe convective storms (SCSs), such
as large hail, heavy rainfall, strong wind gusts, or tornadoes,
are among the most important perils in several regions of
the world (Christian et al., 2003; Virts et al., 2013; Cecil et5

al., 2014). Of all SCS-related hazards, hail causes the largest
economic damage (Kunz and Geissbuehler, 2017). However,
the modelling of SCS risk is still in its infancy (Allen et al.,
2016; Martius et al., 2018). As a result, there are currently
no global risk models available for these SCS events or their10

sub-perils (hail, wind gusts, tornadoes, heavy rain, lightning),
nor are efforts being made in this direction.

However, as insurance companies have to either provide
the solvency capital for rare events (e.g. 200-year-return-
period event according to the EU Solvency II directive in15

Europe) or have to reinsure their risk, there is a growing
and large demand to better estimate the risk related to the
different SCS sub-perils in a scientific manner (Allen et al.,
2019). The few existing models owned by the insurance mar-
ket quantify the risk mainly on a regional (e.g. Schmidberger,20

2018), national, or continental level (e.g. Punge et al., 2014).
These models are not freely available and the literature is
scarce. Initial loss estimates in the insurance industry were
based on mathematical analyses of the company’s own dam-
age data and portfolio. As more and more data on SCS events25

and their sub-perils have become available during the last
decade, an increasing number of damage and risk models
for SCS have been developed either by insurance companies
or by companies developing catastrophe models (CAT mod-
els). The CAT models consider basic hazard characteristics30

(e.g. length, width, angle of the footprints of sub-perils) and
intensity metrics (e.g. hailstone size, hail kinetic energy, pre-
cipitation amount, maximum wind speed) of an underlying
event set and quantify the damage for a certain portfolio (ex-
posure data) via fragility curves, a kind of IDF. Due to the35

restricted record length of SCS hazard event sets, stochas-
tic simulations based on, for example, statistical distribu-
tions of the relevant input parameters in combination with
Markov or Poisson processes are performed (e.g. Punge et
al., 2014; Holmes, 2015; Ritz, 2017; Schmidberger, 2018;40

Schmidberger et al., 2018). In some cases, the CAT models
also consider atmospheric conditions relevant for SCS de-
velopment. None of the insurance models consider projected
changes in the frequency and severity of SCS due to climate
change.45

2.4 Droughts

A relatively large number of studies have been carried out to
assess global risk from droughts. Therefore, these are sum-
marised in this section and in Table 1 and further elabo-
rated upon in the Supplement. Here, we focus specifically50

on drought risk, rather than water scarcity. Drought itself
is a difficult concept to define, and as a result more than

150 indices have been developed for its identification over
the past decades. Commonly, drought hazard is defined as
a relative concept, mostly as a deficit to normal, e.g. when 55

such drought indices fall below or exceed a given thresh-
old. Nevertheless, since drought is a complex hazard which
propagates from a rainfall deficit (meteorological drought)
to soil moisture drought to hydrological drought, a variety of
corresponding impacts may result with regard to the differ- 60

ent types of drought, as well as underlying socio-economic
and ecological conditions. Hence, since a universal definition
of drought seems impracticable, a paradigm shift towards a
definition of drought by its impacts has been recommended
(Lloyd-Hughes, 2014). 65

The multifaceted aspects of drought are reflected in the
large range of risk indicators used in the studies described
below as well as the very diverse range of approaches and
datasets used to represent hazard, exposure, and vulnerabil-
ity. The studies described below neither explicitly include fu- 70

ture DRR measures nor assess risk in a probabilistic sense.
Dilley et al. (2005) are some of the first to conduct a

global-scale assessment of drought risk, overlaying layers
of hazard (Weighted Anomaly of Standardized Precipitation,
WASP), and exposure (population, GDP, road density) in- 75

formation at a relatively coarse resolution of 2.5◦× 2.5◦ for
the current time period. They assess risk in terms of affected
GDP, population, roads, and infrastructure. Christenson et
al. (2014) build on the drought risk assessment of Dilley et
al. (2005) by making a further distinction between the type of 80

population exposed (i.e. urban or rural). Neither of the afore-
mentioned studies assess vulnerability. The studies of Yin et
al. (2014) and Carrão et al. (2016) do include vulnerability
(as well as hazard and exposure) and also calculate risk at
a higher spatial resolution of 0.5◦× 0.5◦. Yin et al. (2014) 85

express risk in terms of maize yield, and they represent vul-
nerability by fitted logistic regressions between historical
maize crop loss estimates and simulations of drought stress.
Drought hazard is represented as the normalised cumulative
water stress index during the growing season, and exposure 90

is represented by a map of fields and maize yield. Carrão et
al. (2016) assess risk using a drought index integrating sev-
eral factors. Vulnerability is represented in the form of prox-
ies of economic, social, and infrastructural vulnerability, at
resolutions from 5′× 5′ to the country scale. Hazard is rep- 95

resented by WASP, whereby a drought is identified when the
monthly precipitation deficit is less than or equal to 50 % of
its long-term median value for 3 or more consecutive months.
Exposure is represented by gridded maps of agricultural land,
population, and livestock. On the basis of their results, Car- 100

rão et al. (2016) state that a reduction in drought risk could be
rapidly achieved by improved irrigation and water harvesting
in regions where infrastructural vulnerability is high.

Several studies assess future drought risk, as a result of
either hazard or hazard and exposure. The forward-looking 105

studies below all use a horizontal resolution of 0.5◦× 0.5◦,
except for that of Smirnov et al. (2016), where a resolution of

www.nat-hazards-earth-syst-sci.net/20/1/2020/ Nat. Hazards Earth Syst. Sci., 20, 1–28, 2020



10 P. J. Ward et al.: Review article: Natural hazard risk assessments at the global scale

2◦× 2◦ is used. The majority of these studies do not include
vulnerability (Arnell et al., 2013, 2018; Smirnov et al., 2016;
Liu et al., 2018), whilst Li et al. (2009) and Guo et al. (2016)
do include vulnerability, but only under current conditions.

Li et al. (2009), Arnell et al. (2013), and Guo et al. (2016)5

perform future simulations by projecting changes in hazard
only for different time slices up to the end of the 21st century,
as a result of climate change. As with the current drought
risk studies, the risk, hazard, exposure, and vulnerability are
represented using very diverse metrics. All assess risk in10

terms of agricultural impacts, although the metric used is
different in all cases. Hazard is represented by the Palmer
Drought Severity Index (PDSI), Standardized Precipitation
Index (SPI), namely SPI-12, and normalised cumulative wa-
ter stress index, whereby different thresholds are used to15

identify hazardous drought conditions. Representation of ex-
posure is diverse but shows some similarities across the stud-
ies, represented by data on crop yields, cropland/field areas,
or a combination of both. Vulnerability is included in very
different ways: the proportion of area equipped for irrigation20

per country in Li et al. (2009) and proxies of economic, so-
cial, and infrastructural vulnerability in Guo et al. (2016).

Smirnov et al. (2016), Arnell et al. (2018), and Liu et
al. (2018) add a layer of complexity in their future drought
risk assessments by including projections of change in ex-25

posure as well as hazard, although vulnerability is not in-
cluded in these studies. Risk is expressed in terms of the
population affected in all of the studies, as well as cropland
area affected by Arnell et al. (2018). Again, the indicators
used to represent hazard are very diverse: Standardized Pre-30

cipitation Evapotranspiration Index (SPEI), namely SPEI-
24; Standardised Runoff Index (SRI); and PDSI respectively.
Since they all assess the population affected by drought, they
all use gridded population projections for the current and fu-
ture time period, with Arnell et al. (2018) additionally using35

crop data.
As a result of the wide range of risk indicators and ap-

proaches used, estimates of global drought risk vary signif-
icantly from study to study. Nevertheless, all studies find a
robust increase in future drought risk due to changes in both40

climate and socio-economic conditions.

2.5 Wildfire

Wildfire is increasingly understood as being an inherently
socio-natural phenomenon with feedbacks between society,
vegetation, fire weather, and climate (Riley et al., 2019).45

However, global wildfire risk is a particularly understudied
area of disaster risk assessment. This may be due to a focus
on global burnt area products to provide input to global cli-
mate modelling as a significant source of emissions (Giglio
et al., 2009; GCOS, 2011; Chuvieco et al., 2016) rather than50

a disaster risk emphasis. It is also due to the large degree
of complexity with interactions between natural and human

processes driving occurrence and intensity of wildfires as
well as exposure and vulnerability to them.

In the studies reviewed below, DRR measures are not ex- 55

plicitly accounted for in the modelling frameworks. This is
largely due to uncertainty in human actions – continued abil-
ity to manage fuel and suppress fires under different climatic
conditions and increased sprawl into wildland–urban inter-
face (WUI) areas – and due to regime changes in weather 60

and vegetation making previously non-hazardous vegetation
areas susceptible to fire, especially with increased logging
and fragmentation, particularly in tropical areas (Laurance
and Williamson, 2001; Flannigan et al., 2009; Corlett, 2011;
Jolly et al., 2015). Significant steps forward could be made 65

by examining interactions between vegetation, weather, cli-
mate, and human activities that cause wildfires.

Meng et al. (2015) map forest wildfire risk globally under
current conditions only. Risk is expressed in terms of for-
est area burnt for different return periods at a resolution of 70

0.1◦× 0.1◦ but is not integrated into estimates of probabilis-
tic risk. Hazard is represented as annual forest wildfire occur-
rence based on historical data from MODIS satellite imagery
(0.1◦× 0.1◦). The short historical time series of wildfire oc-
currence (12 years) required the use of fuzzy mathematics to 75

allow for the calculation of different return periods of for-
est wildfire (Huang, 1997, 2012). Exposure is represented by
the area of forest (representing economic value), using land
cover data at 0.1◦× 0.1◦. Vulnerability is modelled as a func-
tion derived from fire occurrence versus burnt area, whereby 80

a cell with high vulnerability indicates that a small number of
fires can cause a large amount of burnt area, with the inverse
being true for low vulnerability. The results show the high-
est risk in central Africa, central South America, northwest-
ern Southeast Asia, middle-eastern Siberia, and the north- 85

ern regions of North America. High risk can also be seen
eastern Australia, Laos, Cambodia, Thailand, Bangladesh,
eastern Russia, and the borders of Zambia, Angola, and the
Democratic Republic of Congo. Risk results from Meng et
al. (2015) are used by Shi and Kasperson (2015 TS4 ) as part 90

of a multi-hazard global risk assessment. In this study, im-
pacts are integrated across return periods to estimate prob-
abilistic risk. However, the results are aggregated across 11
different hazards, so the risk attributed to wildland fire cannot
be identified. 95

Cao et al. (2015) performed a similar study to Meng et
al. (2015), but they present results for grassland wildfire risk
at a resolution of 1 km× 1 km. The analysis is carried out
for current conditions, expressing risk as average impacts per
year over 2000–2010. Hazard is calculated based on prob- 100

ability of ignition, slope, and vegetation properties (calcu-
lated from MODIS data) (1 km× 1 km). A logistic regres-
sion model is developed using these properties and historical
burnt area records to model the probability of grassland burn-
ing. Exposure is based on the assumption that the primary 105

impact of grassland fires is on the stock industry, which is
dependent on available biomass from grassland. Therefore
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global net primary product (NPP) (1 km× 1 km) is used as
the proxy for exposed value for grassland wildfire. Vulnera-
bility is the probability of fire spread or propagation and con-
tributes to the calculation of probability of grassland burning.
The key results show that the areas of highest risk are in Aus-5

tralia, Brazil, Mozambique, Madagascar, the United States
of America, Russia, Kazakhstan, China, Tanzania, Canada,
Angola, South Africa, Venezuela, Argentina, Nigeria, Sudan,
and Colombia. Again, the results are used in Shi and Kasper-
son (2015 TS5 ) as part of a multi-hazard global risk assess-10

ment.
Knorr et al. (2016) present wildfire risk for 1901 to 2005

and then to 2100 using Representative Concentration Path-
ways (RCPs) and Shared Socioeconomic Pathways (SSPs)
to project hazard and exposure. Risk is expressed in terms15

of affected people and burnt area per year at a resolution of
1◦× 1◦. Hazard is modelled by coupling a semi-empirical
fire model, SIMFIRE (Knorr et al., 2014), with a global
dynamic land ecosystem and biogeochemical model LPJ-
GUESS (Ahlström et al., 2012). This produces hazard met-20

rics of fractional burnt area per year. The coupling with LPJ-
GUESS allows vegetation and weather factors to update,
with SIMFIRE providing annual updates on fire frequency
per grid cell. The hazard modelling is driven using RCP4.5
and RCP8.5 data for monthly mean precipitation, tempera-25

ture, and radiation from CMIP5. Exposure is represented by
population under SSP2, SSP3, and SSP5, although this does
not include changing rates of population splits between ur-
ban and rural areas, which is an important factor for future
interactions with wildfire. Vulnerability and DRR measures30

are not explicitly considered, although population density is
a factor within SIMFIRE, accounting for the idea that gener-
ally increasing population will suppress wildfires. Under the
future scenarios, there is a significant increase in the number
of people in fire-prone areas between 1971–2000 and 2071–35

2100: between 23 % and 56 % for RCP4.5 and between 25 %
and 73 % for RCP8.5, averaged across SSPs.

2.6 Earthquakes

A relatively large number of studies have been carried out
to assess global risk from earthquakes. Therefore, these are40

summarised in this section and in Table 1 and elaborated
on in the Supplement. Several global assessments have used
index-based methods or overlays of a single hazard map
with exposure data (e.g. population, GDP) to assess global
exposure to earthquake hazard, and they are not explicitly45

discussed in this review. All of the studies reviewed in Ta-
ble 1 explicitly include hazard, exposure, and vulnerability,
although none of them carry out future projections of risk.

One of the first global earthquake risk models to go beyond
this approach is that of Chan et al. (1998), who examine di-50

rect damage via macroeconomic indicators to derive global
seismic loss at the relatively coarse scale of 0.5◦× 0.5◦. The
study of Dilley et al. (2005) also uses hazard data based

on past events (based on the Richter scale), but in addition
it uses 50-year-return-period hazard maps from the Global 55

Seismic Hazard Assessment Program (GSHAP). The resolu-
tion of the risk analysis is higher, at 2.5′× 2.5′, and a wider
range of impact indicators are used (affected population, af-
fected GDP, affected road and rail infrastructure, and fatal-
ities). Global studies at a higher resolution of 1 km× 1 km 60

were performed by Jaiswal and Wald (2010, 2011). These
two studies essentially use the same approach, but the for-
mer assesses risk in terms of affected people and fatalities,
whilst the latter also assesses risk in terms of direct eco-
nomic damage and affected GDP. Hazard is represented by 65

shakemapsCE5 of intensity from past events at a resolution
of 1 km× 1 km.

Daniell (2014) and Daniell and Wenzel (2014) also as-
sess global earthquake risk at 1 km× 1 km, whereby risk
is expressed in terms of direct and indirect damage, fa- 70

talities, affected people, and affected GDP, at a resolution
of 1 km× 1 km. In this case, hazard is represented by the
spectral acceleration and/or macroseismic intensity (MMI) at
each point, which is then rasterised on a 1 km× 1 km grid for
each event. None of the aforementioned studies assess risk 75

probabilistically, instead calculating impacts for past events
or for a given return period.

Li et al. (2015) describe a global earthquake risk model
using a probabilistic approach, in which the impacts are inte-
grated over several exceedance probabilities. Hazard is rep- 80

resented by peak ground acceleration (PGA) at 0.1◦× 0.1◦

with conversion to macroseismic intensity. Risk is expressed
in terms of direct damage, fatalities, affected people, and af-
fected GDP, at a resolution of 0.5◦× 0.5◦ for mortality and
0.1◦× 0.1◦ for economic–social wealth. 85

From the GAR2013 onwards (UNDRR, 2013, 2015a,
2017), a probabilistic approach using stochastic hazard mod-
elling has been used in the GARs. Risk, in terms of di-
rect damages, is calculated stochastically at a country res-
olution and expressed at the national scale in terms of 90

probable maximum loss and annual average losses. Haz-
ard is represented by spectral accelerations at a resolution
of 5 km× 5 km, using a stochastic event set of earthquakes
around the world. The Global Earthquake Model (GEM)
(Silva et al., 2018) also uses stochastic event sets to produce 95

probabilistic risk estimates in terms of economic damage to
buildings (1 km× 1 km).

Exposure data used in global earthquake models have gen-
erally increased in resolution from∼ 0.5◦ to∼ 1 km, usually
using datasets such as gridded population and GDP. A defin- 100

ing feature of more recent global studies has been the use of
capital stock data (e.g. Daniell, 2014; Daniell and Wenzel,
2014; Silva et al., 2018). Vulnerability is represented in vari-
ous ways, ranging from empirical loss and fatality functions
based on reported losses and fatalities to empirical fatality 105

and loss ratios and IDFs based on different building types.
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2.7 Tsunamis

As with other natural hazards, tsunami risk can be broken
down into hazard, vulnerability, and exposure. However, lim-
ited empirical data on vulnerability and the computational
burden of tsunami wave propagation simulations mean that5

only a limited number of studies have so far been devel-
oped, and most of them have either limited scope or reso-
lution. Early risk assessments at the local scale from Berry-
man (2005 TS6 ) and Grezio et al. (2012) use methods to
estimate the inundation at low resolution. The highest spa-10

tial resolution simulations have been carried out by Wiebe
and Cox (2014) for parts of Oregon, Jelínek et al. (2012)
for Cádiz in Spain, and De Risi and Goda (2017) for the
Miyagi prefecture in Japan. Some models, such those of Tinti
et al. (2008), or Okumura et al. (2017), have assessed risk in15

terms of fatalities.
Løvholt et al. (2015) assess global risk in terms of di-

rect damage, affected people, and fatalities at a resolution
of 1 km× 1 km. Risk is calculated probabilistically using
stochastic event sets and a probable maximum loss curve20

at 100, 500, and 1500 years, as well as average annual losses.
Risk is only assessed for current conditions, and therefore no
DRR measures are included. Hazard is represented in terms
of inundation depth at a resolution of 90 m× 90 m. This is
simulated using a 25 km propagation model, followed by a25

2-D model at a resolution of 1′×1′ and is then further down-
scaled using a 90 m DEM. Exposure is represented by capital
stock and population at 1 km× 1 km, taken from the coastal
database of De Bono and Chatenoux (2015) used as part of
GAR2015. Vulnerability is represented by IDFs for differ-30

ent building types derived from expert workshops (Maqsood
et al., 2014) for the Asia Pacific. The Suppasri et al. (2013)
functions are used for the rest of the world. They find that
Japan and the Philippines, among other island nations, have
the highest relative risk.35

Schäfer (2018) introduce a generic tsunami risk assess-
ment framework that could be applied for global risk mod-
elling, and they apply it to various regions around the world.
Risk is expressed in terms of direct damage, affected GDP,
affected population, and fatalities for current conditions not40

accounting for DRR measures. It is calculated at 90 m× 90 m
resolution for various return periods, with expected annual
impacts being assessed by integrating across different ex-
ceedance probabilities. Hazard is represented by maps of
inundation depths (90 m× 90 m), based on numerical sim-45

ulations using shallow water wave equations and machine
learning. Exposure is derived using a population-based capi-
tal stock model (90 m× 90 m) built from the Global Human
Settlement Layer (Pesaresi et al., 2016). Vulnerability is rep-
resented by depth–damage IDFs that are resolved for three50

building classes (light, moderate, and massive buildings) and
a fatality function considering both water depth and arrival
time. The study is tested in various regions, including Japan,

Chile, and the Caribbean, and derives average annual losses
and probable maximum loss curves. 55

2.8 Volcanoes

Volcanoes can produce a variety of hazards, including py-
roclastic density currents (pyroclastic flows, surges, and
blasts), tsunamis, lahars, tephra (including volcanic ash and
ballistics), debris avalanches (sector collapse), gases and 60

aerosols, lava flows, and domes and lightning. Not all vol-
canic hazards are produced by every volcano or eruption, and
some can occur without an eruption, for instance volcanic
gas. Whilst many hazards might be triggered by the volcano
directly, the occurrence or distribution of others can be influ- 65

enced by hydrometeorological factors, for instance, rainfall-
triggered lahars and landslides or the influence of wind on
the distribution of volcanic ash. Comprehensive assessments
of volcanic hazard or risk at the global scale do not exist.
Quantitative risk assessments (where they exist) at the lo- 70

cal scale rarely include the effect of DRR measures, many
of which are not measurable in a quantitative sense (e.g. en-
gagement between scientists and civil protection, policymak-
ing, preparedness, and planning). The field of volcanic haz-
ard and risk assessment can therefore appear less well devel- 75

oped compared to other natural hazard fields of study, with
the effect that assessments combining multiple natural haz-
ards typically underestimate the threat from volcanic activ-
ity. There are at least three key factors that limit our ability
to assess volcanic risk at the global scale: the multi-hazard, 80

time-varying, and complex nature of volcanic events; a large
discrepancy in the quality and quantity of data required to
inform global volcanic hazard assessments between regions;
and limitations of data to inform global volcanic risk assess-
ment, especially because large, damaging eruptions impact- 85

ing populated areas are relatively infrequent and impacted
zones can be dangerous and sometimes inaccessible for long
periods. International collaborations have now been estab-
lished to facilitate the production of systematic evidence,
data, and analysis of volcanic hazards and risk from local 90

to global scales (e.g. Loughlin et al., 2015; Newhall et al.,
2017; Bonadonna et al., 2018).

Past approaches to global volcano risk, described below,
have mainly aimed to identify those volcanoes or cells that
pose the greatest relative danger, in order to inform subse- 95

quent in-depth investigations using local data and knowl-
edge. The first assessment of the hazard threat posed by
volcanoes globally is Yokoyama et al. (1984). They use an
index-based approach to identify “high-risk” volcanoes. Bi-
nary indices are used to score 10 hazard and five exposure 100

components, describing the frequency of recent explosive
activity and hazards, and the size of the population within
a certain radius of the volcano, respectively. Two quasi-
vulnerability binary scores are used: one for if the volcano
had produced historical fatalities and one for if evacuations 105

had resulted from historical eruptions. Scores for each vol-
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cano are summed, with high-risk volcanoes defined as those
with a score≥ 10. This approach results in notable volcanoes
that have produced some of the worst volcanic catastrophes
of the 20th century being considered not high risk.

Small and Naumann (2001) and Freire et al. (2019) rank5

volcanoes globally according to the population exposed
within radii of 200 and 10–100 km from a volcano, respec-
tively. Hence, hazard and vulnerability are not included. Ex-
posure is represented by gridded population data at a reso-
lution of 2.5′× 2.5′ (Small and Naumann, 2001) and 250 m10

(Freire et al., 2019). For the GAR2015, an index-based ap-
proach to assessing volcanic hazard and risk is also used,
combining data and the approaches of Auker et al. (2015) and
Brown et al. (2015a, b). Hazard is represented by Auker et
al. (2015) using an index method to represent the hazard level15

of each volcano according to the frequency and intensity
of past eruptions, while accounting for record incomplete-
ness. Exposure is represented using the method of Brown et
al. (2015a), an index of population exposure weighted to his-
torical data of fatalities (Auker et al., 2013) with distance,20

and vulnerability is expressed in terms of affected popula-
tion and fatalities for past events. Combining the hazard in-
dex with fatality-weighted population counts gives estimates
of individual volcanic threat. Not all volcanic hazards are
considered in the weighting; the weights are sourced from25

volcanic flow fatality data only, as pyroclastic density cur-
rents and lahars are the source of the majority of direct his-
torical fatalities (Auker et al., 2013). Brown et al. (2015b)
further aggregate the volcanoes to the national scale to pro-
vide country-level estimates of volcanic threat. Whilst this30

approach represents our most recent attempt at considering
volcanic hazard and risk at the global scale, it still assumes
concentric radii around each volcano.

Grid-based global assessments of volcanic risk have been
carried out by Dilley et al. (2005) and Pan et al. (2015).35

Dilley et al. (2005) include volcanoes as part of their multi-
hazard hotspot analysis, whereby risk is expressed in terms
of affected GDP and population and fatalities (2.5′× 2.5′).
Hazard is expressed in terms of the count of volcanic activ-
ity, which is gridded to 2.5◦× 2.5◦, between 79 and 2000 CE40

(i.e. no consideration of the size of eruptions or their spa-
tial extent). Exposure is represented by gridded population
from the Gridded Population of the World 3 (GPWv3) dataset
from CIESIN; GDP per capita at the national scale from
the World Bank; and transportation lengths from the VMAP45

datasets, all at 2.5′×2.5′. Vulnerability is represented by two
quasi-vulnerability values, for mortality and economic loss
rates globally as a result of volcanic activity between 1981
and 2000 based on the EM-DAT database, aggregated to
country and regional levels. A major limitation of this ap-50

proach, as recognised by the authors themselves, is that the
hazard records are too short to capture the larger, typically
more damaging events and are biased towards those volca-
noes for which we have good and recent records of past ac-
tivity. Also, no attempt was made to account for far-reaching55

volcanic hazards like ash. Pan et al. (2015) built on this ap-
proach to assess fatalities, by extending the length of the fa-
tality database used to 1600 CE. They also add relationships
between eruption Volcanic Explosivity Index (VEI) and fre-
quency and hazard extent, although concentric circles are still 60

assumed. Hazard is defined here as the frequency of each VEI
eruption, using the method of Jenkins et al. (2012). Expo-
sure is represented using gridded population data (30′′×30′′)
of 2010 from the Oak Ridge National Laboratory (ORNL)
(Bright et al., 2011). Vulnerability is represented by fatality 65

curves fitted to the historical average fatality of each VEI
provided by the National Oceanic and Atmospheric Admin-
istration (NOAA).

2.9 Landslides

Assessing the risk associated with landslides at a global scale 70

is challenging for several reasons. Firstly, the spatial extent
of individual landslides is typically small, limiting the ef-
fectiveness of routinely monitoring these events at a global
scale. Further, the diversity of parameters influencing the
hazard susceptibility (e.g. elevation, lithology), precondition- 75

ing (e.g. soil moisture, seismicity), and triggering (e.g. ex-
treme rainfall, earthquakes) make it difficult to physically
model these processes using uniform approaches. While the
spatial extent of landslide source regions is generally small,
the downstream hazards such as debris flows – which are of- 80

ten associated with the greatest damage (Badoux et al., 2014)
– can be more widely distributed, meaning risk assessments
must consider locations both close to and far from the source
areas.

Efforts have been made to catalogue landslides and their 85

impacts, based on a range of data sources including media
reports, government statistics and other written sources, re-
mote sensing, and citizen science (e.g. Guzzetti et al., 1994;
Kirschbaum et al., 2010; Petley, 2012; Tanyas et al., 2017;
Froude and Petley, 2018; Juang et al., 2019). In addition, 90

several studies have tried to model global landslide hazard
(e.g. Stanley and Kirschbaum, 2017; Kirschbaum and Stan-
ley, 2018). In the following paragraphs, those studies that
have explicitly assessed global risk are described and sum-
marised in Table 1. 95

Nadim et al. (2004, and updated in 2006) are among the
first to assess risk associated with landslides at the global
scale. Risk is expressed in terms of the number of fatalities
per year at a resolution of 30′′× 30′′, over the period 1980–
2000, associated with landslides and avalanches. Hazard is 100

estimated using a range of global datasets based on both sus-
ceptibility (factors such as slope, lithology, and soil mois-
ture) and triggering factors (rainfall and seismicity). A sim-
ilar approach is used to define the hazard associated with
avalanches. Exposure is represented by the Global Popula- 105

tion of the World v4 (GPWv4) dataset (30′′× 30′′) (CIESIN,
2016). Vulnerability is estimated using empirical data on loss
of life from landslides in a number of countries, using the
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EM-DAT database. Future projections and therefore future
DRR measures are not included in the study. They find that
hotspots for landslide fatalities are the Himalayas, Taiwan,
the Philippines, Central America, northwestern South Amer-
ica, the Caucasus, Indonesia, Italy, and Japan, with smaller5

proportional impacts in other countries and regions.
Dilley et al. (2005) estimate the risk associated with land-

slides, expressed in terms of direct damage and affected GDP
and population at 2.5′× 2.5′, for current conditions. Haz-
ard is represented using the data of Nadim et al. (2004) at10

30′′×30′′. Exposure is represented by data at 2.5′×2.5′ con-
structed from GPWCE6 population data, road density data
from VMAP datasets developed by the United States Na-
tional Imagery and Mapping Agency, and gridded economic
and agricultural activity from the World Bank and based on15

Sachs et al. (2001). Vulnerability is represented by empirical
loss rates based on the EM-DAT database. Future projections
and therefore future DRR measures are not included in the
study. Their primary output is in map form, with the most el-
evated impacts found in many of the same locations as in the20

study of Nadim et al. (2004, 2006), although they find higher
impacts in terms of total GDP in China.

Yang et al. (2015) assess risk in terms of fatalities for the
current period at a resolution of 0.25◦× 0.25◦. Hazard is rep-
resented based on the method of Nadim et al. (2006), us-25

ing TRMM satellite rainfall data to estimate the number of
landslide events and filling in gaps in the data using infor-
mation diffusion theory. Exposure is represented by popula-
tion data from LandScan, resampled to 0.25◦× 0.25◦. Vul-
nerability is based on empirical mortality rates per country30

calibrated using a dataset of global landslides causing fatal-
ities from Kirschbaum et al. (2010). Future projections and
therefore future DRR measures are not included in the study.
They find similar patterns to Dilley et al. (2005) and Nadim
et al. (2006), but they additionally find many areas that have35

elevated risk of mortality compared to those prior studies,
including large parts of China and sub-Saharan Africa.

Nowicki Jessee et al. (2018) present a global earthquake-
induced landslide hazard model, which is implemented
within the USGS Ground Failure hazard and risk model. Risk40

is expressed in terms of exposed population in near-real time
for each earthquake event that triggers landsliding. Hazard is
calculated by leveraging the earthquake-triggered database
from Tanyas et al. (2017), based on various sources of in-
formation describing factors controlling susceptibility (such45

as slope and lithology) and earthquake parameters, such as
shaking intensity, to estimate the relative density of lands-
liding within an area impacted by a major earthquake. The
model landslide density estimates are not dependent on res-
olution. Exposure is represented by LandScan population50

maps, with a resolution of 30′′×30′′ (Bright et al., 2017). No
vulnerability data are incorporated. Future projections and
therefore future DRR measures are not included in the study.
For each earthquake, an estimate of population exposed to
landsliding and liquefaction is presented.55

3 Comparison of approaches across hazard types

3.1 (Dynamics of) risk elements

As our review focuses on global-scale natural hazard risk
assessments, we have not included studies that only exam-
ine the hazard. All but two of the studies have an explicit 60

representation of hazard intensity and/or probability and of
exposure. The only exceptions are the volcano studies of
Small and Naumann (2001) and Freire et al. (2019), in which
the population living within a set radius of volcanoes is es-
timated, without an explicit representation of the hazard. 65

About two-thirds of the reviewed studies include a specific
representation of vulnerability. Across the various hazards,
there is no clear difference in the proportion of studies in-
cluding vulnerability as we move towards the most recent
publications. It is noteworthy that all of the earthquake and 70

tsunami studies reviewed include a specific representation of
vulnerability. For pluvial flooding and SCS, there are cur-
rently no global-scale risk models, with the local scale of the
hazard and impact of these events making their large-scale
modelling difficult. 75

In terms of the inclusion of dynamic risk drivers, there
is a clear difference between studies focusing on hydrologi-
cal, climatological, and meteorological hazards and those fo-
cusing on geological hazards. For geological hazards, none
of the reviewed studies include future projections, whilst 80

for hydrological, climatological, and meteorological hazards,
around two-thirds of the studies include projections of at
least one of the risk drivers. The difference between the stud-
ies of hydrological, climatological, and meteorological haz-
ards, compared to those of geological hazards in terms of 85

projections, may be due to the climate-change-related focus
of many studies in the former group. This provides a policy
context for carrying out forward-looking hazard projections
to examine the influence of climate change on risk. In total,
there are 32 reviewed studies that include future projections: 90

19 include projections of hazard and exposure, eight include
projections of hazard only, and three include projections of
exposure only. The remaining two studies include projections
of vulnerability (as well as hazard and exposure): one study
for river flooding and one for TCs. Time horizons used for 95

the forward-looking studies tend to be towards the middle
and late 21st century. For river flooding and drought, several
recent studies have examined future warming levels, rather
than future time slices. It is interesting to note that projec-
tions of the other risk drivers have not yet been examined for 100

the geological hazards at the global scale, despite their im-
portance for other policy contexts, such as the Sendai Frame-
work and SDGs, although definitions used for monitoring
of these frameworks explicitly state disaster risk assessment
as “evaluating existing conditions of exposure and vulner- 105

ability” without considering future change (UNGA, 2016).
The global-scale geological risk studies could apply some
of the forward-looking models of exposure in their analysis
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to estimate future risk, which is of importance for designing
prospective risk management strategies and measures.

3.2 Resolution and type of input data

The list of studies in Table 1 shows a general tendency to-
wards higher-resolution risk analyses as we move towards5

more recent studies, though this is not the case for all studies.
Many of the early studies are at resolutions from several de-
grees to 0.5◦, and for many hazards there has been a progres-
sion towards higher resolutions of 30′′/1 kmCE7 , and even up
to 90 m per point value in some cases. We do see differences10

between the various hazards. Most of the early coastal flood
risk studies examine risk using the coastal segments from the
DIVA database, although recent studies have also moved to-
wards 30′′/1 km. For drought, the resolution tends to be much
lower, from around 0.5 to 2.0◦ in general. This is in line with15

the difference in resolution at which drought impacts are felt
(Stahl and Hisdal, 2004), compared to many of the other haz-
ards for which the direct impacts are felt more locally. For a
similar reason, TC studies tend to show a much higher res-
olution in their analysis, which reflects the fact that TC im-20

pacts for an individual event are felt over smaller areas. Most
global volcano risk studies to date examine risk at the reso-
lution of an individual volcano, rather than on a raster grid.
Several recent studies on earthquakes (Silva et al., 2018) and
earthquake-induced landslides (Nowicki Jessee et al., 2017)25

use model frameworks that can use variable scales.
In most cases, the resolution of the risk analysis follows

the resolution of the hazard and exposure datasets used as
input. In most cases these have the same resolution, and
where this is not the case the tendency is to either resam-30

ple the lower-resolution datasets to the higher resolution or
vice versa. Therefore, the resolution of the input hazard and
exposure databases tends to show the same overall patterns
as those discussed above for the risk calculations. The most
commonly used datasets used to represent exposure are grid-35

ded datasets of population and GDP. Direct economic dam-
age is further assessed using land use data, whilst in recent
studies related to earthquakes and tsunamis the use of capital
stock estimates (based on building typologies) has become
more common. Given the importance of agricultural impacts40

for drought, exposure is also represented using datasets such
as gridded agricultural area, cropland area, planting area, and
so forth. For wildfires, areas of forest and grassland are also
used. Nevertheless, Kreibich et al. (2019) highlighted that,
especially for drought, data on losses and impacts that are45

directly attributed to the hazard of drought are lacking.
Methods and datasets used to represent vulnerability

are highly diverse. Within the flooding community, the
most common approach is to use intensity–damage func-
tions (IDFs). For flooding, the IDF takes the form of a depth–50

damage function. In most studies, one global IDF is used (es-
pecially for coastal flooding), whilst for river flooding sev-
eral studies have also used regional or country-level IDFs.

Jongman et al. (2015) also use regional ratios of affected
GDP to report losses and affected population to report fa- 55

talities; the latter is also used by Dottori et al. (2018). Global
IDFs are also used in studies that examine wildfires. Some
earthquake and tsunami studies have also used IDFs. They
either use IDFs per income class or region (i.e. not a global
function), or in more recent years there has been a tendency 60

to use IDFs related to building types. Another approach is
to use empirically derived regressions between reported im-
pacts and a given level of hazard and exposure to derive
empirical regression equations. In volcanology the limited
amount of impact data has meant that only a few vulnera- 65

bility and fragility functions for physical vulnerability have
been developed (Blong, 2003; Jenkins et al., 2014; Maqsood
et al., 2014; Wilson et al., 2014). Global TC and volcano
studies tend to use various socio-economic variables at the
country (or state) level as a proxy of vulnerability. Therefore, 70

the spatial representation of vulnerability is much coarser and
does not use gridded datasets in the same way as hazard or
exposure.

It is clear that the different hazard communities use some
common datasets to represent exposure, for example relating 75

to population and GDP. However, there are also differences
and opportunities for interaction, sharing, and knowledge ex-
change. For example, the use of building stock data based
on building typologies in earthquake and tsunami studies
has provided opportunities for improving the assessment of 80

other hazards (e.g. volcanic tephra). The same can be said for
the other hazards, where advances in IDFs related to build-
ing type offer opportunities outside the seismic community.
On the other hand, approaches that have been developed to
project future exposure in the flood risk community could be 85

harnessed by the other hazard communities.

3.3 Risk indicators

The most commonly used risk indicator is the number of af-
fected people, which is used in 59 % of the reviewed stud-
ies. A large number of studies also use some indicator of 90

direct economic damage (44 %), with fatalities (26 %) and
affected GDP (24 %) having also been used in many studies.
Fatalities have been much less commonly assessed in flood
and drought risk studies than in studies of the other hazards,
offering potential for cross hazard knowledge exchange on 95

methods for fatality assessment.

3.4 Future DRR measures

To date, future DRR measures have only been explicitly in-
cluded in several studies, all of which are related to flood-
ing. Global-scale assessments in coastal flooding have been 100

forward looking from the outset, since the original studies
were developed to assist climate adaptation studies. As such,
they also include a wider range of DRR measures (both struc-
tural and nature-based) than the few river flood studies that

Pl
ea

se
no

te
th

e
re

m
ar

ks
at

th
e

en
d

of
th

e
m

an
us

cr
ip

t.

www.nat-hazards-earth-syst-sci.net/20/1/2020/ Nat. Hazards Earth Syst. Sci., 20, 1–28, 2020



16 P. J. Ward et al.: Review article: Natural hazard risk assessments at the global scale

have explicitly included DRR measures in recent years. The
costs of DRR measures have only been explicitly assessed in
a couple of studies, for coastal or river flood risk. Hence, in
this regard the global flood modelling community has a lot of
knowledge and examples that can be used to begin to include5

DRR measures in global-scale assessments of other hazards.
To date, no global studies have assessed the influence that hu-
man behaviour and perception can have on the effectiveness
of DRR measures.

3.5 Type of analysis10

In Table 1, we have classed studies as either non-
probabilistic (NP) or probabilistic (P), whereby probabilistic
refers to studies that assess expected annual impacts by inte-
grating across return periods based on a probabilistic stochas-
tic event set. For droughts, volcanoes, and landslides, studies15

to date have used non-probabilistic approaches only. Studies
on floods and earthquakes have seen a move towards more
probabilistic studies in more recent years, and the two stud-
ies reviewed for tsunamis also use a probabilistic approach.
For wildfires and TCs, both approaches are used, with too20

few studies to be able to see any particular change in fo-
cus through time. A major difference between the studies of
earthquakes and tsunamis, in comparison to the other haz-
ards, is the extensive use of stochastic event sets in the for-
mer. Stochastic modelling could also be beneficial for the as-25

sessment of several other hazards, as discussed in Sect. 4.

4 Future research challenges and opportunities

Our review shows that the field of global natural hazard risk
modelling has developed rapidly over the last decade, and
advances continue to be made at a rapid pace. We show that30

there are differences between the modelling and assessment
methods used in the different hazard communities, and we
show possibilities for learning between hazards. There are
also opportunities for learning from methods and approaches
being developed and applied to assess natural hazard risks35

at continental or regional scales. As Sect. 2 demonstrates,
rather than simply make direct comparisons, it is essential to
contextualise the reasons for advances in global risk assess-
ments for certain hazards compared with others, which in-
clude funding, policy drivers (e.g. climate change), different40

levels of complexity (e.g. multi-hazard environments), and
the relative frequency of occurrence of certain hazard-related
disasters. We have identified within the literature opportu-
nities for addressing some of the key challenges. Given the
constraints of space, this is not intended to be an exhaustive45

list and is more intended to encourage further dialogue on
knowledge sharing between scientists’ disciplines and com-
munities working on different hazards and risk and at differ-
ent spatial scales. An overall challenge for global risk mod-
ellers is the lack of high-quality impact data for model val-50

idation. Efforts are constantly ongoing to improve the col-
lection of impact data used in databases such as EM-DAT
(CRED, 2020 TS7 ), NatCatSERVICE (Munich Re, 2020),
DesInventar (UNDRR, 2020), and CATDAT (Daniell, 2020),
but issues relating to incompleteness, fragmentation, bias, 55

and differences in reporting conventions remain a challenge
(e.g. Kron et al., 2012; CRED and UNISDR, 2018).

4.1 Hazard

Continual improvements in hazard modelling are required,
both to correctly represent processes and to increase resolu- 60

tion. The availability of higher-resolution input datasets with
increased accuracy is helping in this regard and is a common
theme across hazard studies. In some cases, global hazard
models are available but have not yet been used in global
risk assessments. For example, Jenkins et al. (2015) provide 65

a global volcanic hazard assessment (10 km× 10 km) that ac-
counts for ash fall affected by local wind conditions. While
the geographic extent of major disasters may be large, the
specific hotspots for hazard may be much more localised. As
such, there are ample opportunities to model the downscaled 70

impact of hazards. For example, global models at present
do not capture the downstream impacts of landslide mate-
rial (e.g. Nowicki Jesse et al., 2017), even though in many
settings debris flows and sediment-related damage can be the
costliest type of hazard (Turowski et al., 2014 TS8 ). 75

Within the global earthquake and tsunami risk modelling
community, we see many examples of the use of stochastic
event sets. Similar approaches could be developed for assess-
ing risk of other hazards. For example, for TCs, several mod-
els have been developed to generate synthetic TCs, such as 80

the Synthetic Tropical Cyclone Generation Model (STORM;
Bloemendaal et al., 2020), the MIT model (Emanuel and
Nolan, 2004), or the Columbia Hazard (CHAZ)CE8 model
(Lee et al., 2018). Such TC events could then be used to force
global storm surge models, thereby also benefitting global 85

coastal flood risk assessment. Methods for generating large,
synthetic event sets could also be especially useful for those
events with high spatial and temporal resolution that cur-
rently miss global approaches, such as pluvial flooding and
SCS-related perils. 90

There is also a tendency to focus on one parameter of the
hazard, whilst a hazard’s impact is often related to several pa-
rameters. For example, in flood risk analysis, global hazard
studies focus on the flood depth, whilst risk is also related
to other parameters such as flood duration, velocity, and the 95

rate at which floodwaters rise (Ward et al., 2016). Similar
issues exist for TCs, where there has been a lot of recent at-
tention on their possible slowing down and stalling (Kossin,
2018; Wang et al., 2018; Hall and Kossin, 2019). For exam-
ple, Hurricane Dorian in 2019 stalled over the Bahamas for 100

36 h, pounding large parts of the island with 27 km h−1 winds
and 5 m storm surges.

Pl
ea

se
no

te
th

e
re

m
ar

ks
at

th
e

en
d

of
th

e
m

an
us

cr
ip

t.

Nat. Hazards Earth Syst. Sci., 20, 1–28, 2020 www.nat-hazards-earth-syst-sci.net/20/1/2020/



P. J. Ward et al.: Review article: Natural hazard risk assessments at the global scale 17

For the water-related hazards, one avenue towards im-
proved global hazard modelling is the improvement in hy-
drodynamic modelling of floods. For example, Sampson et
al. (2015) present a fully hydrodynamic modelling approach
for the globe, which could address some of the stated prob-5

lems. The approach has been further developed by Wing et
al. (2017) for the conterminous USA and further been applied
for current and future flood risk assessment in the USA at the
continental scale (Wing et al., 2018). For coastal flooding, the
fully hydrodynamic model GTSM is now being used to sim-10

ulate water levels due to surge and tide up to the coastline,
but then simple planar models are used to translate these wa-
ter levels into inundation maps on land. Vafeidis et al. (2019)
have shown the importance of accounting for hydrodynamic
processes by developing an approach to assess the impacts of15

water-level attenuation due to different land cover on flood
hazard. This approach can be used as a first step towards im-
proving global coastal flood risk assessment. Vousdoukas et
al. (2016) use the hydrodynamic LISFLOOD-FP model to
assess coastal flood hazard at the European scale, and this20

has been applied for European-scale coastal flood hazard by
Koks et al. (2019). Hydrodynamic inundation modelling is
also being applied by Schäfer (2018) for the modelling of
tsunami events. For the case of drought, studies typically fo-
cus only on a single type of drought or drought index. To25

comprehensively understand drought events and correspond-
ing risks, an all-angle view is needed. Furthermore, for the
global scale, remote sensing products that capture hazard and
impact at the same time (NDVI, fAPAR) should be applied
more.30

4.2 Exposure

Similarly, continual developments are being made in the im-
provement of global exposure databases. As stated in the re-
view, building typologies and/or investment data have been
used to develop global databases of capital stock, which are35

now routinely used in global earthquake and tsunami mod-
elling (Gunasekera et al., 2015). These data, where acces-
sible, could also be applied to other hazard types in most
cases, through communication and collaboration across haz-
ard communities. Efforts are also ongoing to develop expo-40

sure maps based on building material types within the flood
risk community. For example, Englhardt et al. (2019) have
developed an approach for mapping exposure in urban and
rural areas in Ethiopia, based on data on buildings and their
materials. This method is currently being tested for several45

other countries in Africa. Pittore et al. (2017) discuss the
challenges in designing a global and spatial-temporal dy-
namic exposure database, focusing on building stock. Other
data sources, such as OpenStreetMap, also offer the oppor-
tunity to use building-level information to improve global50

risk modelling. For the USA, Wing et al. (2018) have used
the FEMA National Structure Inventory. This dataset is in-
teresting in that it is also accompanied by projected distri-

butions under several future SSPs, whilst currently forward-
looking projections of exposure at the global level are limited 55

to GDP, population, and land use. Recent studies have also
shown the importance of examining temporal variations in
exposure (e.g. between day and night and between seasons)
(e.g. Freire et al., 2015) and between different income groups
(e.g. Winsemius et al., 2018; Hallegatte et al., 2016). The im- 60

portance of capital stock models such as those which encom-
pass buildings, infrastructure, cross-sector applications, and
contents is shown in the GRADE process, given that in most
cases the building stock is only one portion of the capital
stock at risk (Gunasekera et al., 2018). 65

4.3 Vulnerability

As evidenced from the review, much attention is required
to improve the representation of vulnerability in global risk
models. Currently there are a limited number of vulnerabil-
ity and fragility functions for some hazards (see Murnane et 70

al., 2019), compounded by the limited amount of impact data
available to inform them (e.g. volcanic eruptions). However,
a limited number of socio-economic vulnerabilities in vol-
canic environments are being considered in – for instance –
global datasets (e.g. global fatalities; Brown et al., 2017) and 75

there are some studies accounting for the indirect impacts of
eruptions (loss of livelihood, displacement, and resettlement)
at the volcano scale (e.g. Barclay et al., 2019). In time and
with more resources and studies, such efforts may be scal-
able and used to inform future global risk studies. 80

The highly temporal and spatial dynamics of vulnerabil-
ity and the resulting non-linearity of risk have been under-
scored by UNDRR’s Global Platform for Disaster Risk Re-
duction. While recent studies at regional and local scales
have begun to account for these aspects in changing hazard 85

(e.g. Mora et al., 2018) and exposure conditions (e.g. Cam-
merer et al., 2013), only a few studies account for the dy-
namics of vulnerability (e.g. Kreibich et al., 2019 TS9 ) across
multiple hazards. Specifically, there is an increased recog-
nition of the need to assess how socio-economic processes 90

can influence spatio-temporal changes in vulnerability (Cut-
ter et al., 2015). For example, there can be a temporary rise
in risk perception after a natural hazard, resulting in an in-
crease in DRR activities. Conversely, the absence of a natu-
ral hazard over a prolonged period can create a (false) sense 95

of safety, which can increase vulnerability (Di Baldassarre
et al., 2015). An improved understanding of these dynam-
ics of socio-economic vulnerability can significantly improve
the ability of risk managers to more efficiently implement
DRR measures (Hallegatte et al., 2017). Recent studies have 100

attempted to assess some of these aspects, for example by
developing indicators of socio-economic resilience for over
90 countries (Hallegatte et al., 2016; Wens et al., 2019), ex-
amining spatial differences in risk in different poverty groups
(Hallegatte et al., 2015 TS10 ; Winsemius et al., 2018) or mod- 105

elling dynamic feedbacks between levees and risk percep-
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tion (Di Baldassarre et al., 2018 TS11 ; Haer et al., 2019).
De Ruiter et al. (2020 TS12 ) discuss how the impacts of con-
secutive disasters can be distinctly different from single haz-
ards due to changes in socio-economic vulnerability. Cutter
and Finch (2008) have assessed future spatial and temporal5

patterns of social vulnerability at a national scale based on
historical events. For future projections, climate change is
widely recognised as an important driver of the increased fre-
quency and intensity of weather-related hazards but does not
explain the (projected) changes in damages caused by geo-10

physical hazards such as earthquakes. An improved under-
standing of future vulnerability can significantly improve the
ability of risk managers to more efficiently implement DRR
measures. Recent studies at the continental or global scale
show that vulnerability to natural-hazard-related disasters is15

decreasing in some areas because people adapt over time and
reduce vulnerability (e.g. Ciscar et al., 2019; Jongman et al.,
2015). In other areas, future vulnerability is expected to in-
crease, for example due to a limited availability of resources
to adapt (Winsemius et al., 2018) or due to the impacts of suc-20

cessive disasters that push communities into poverty (Mirza,
2003). Moreover, international organisations on the ground
are calling for an even higher level of granularity of these ex-
posure, vulnerability, and risk estimates in order to correctly
target those individuals who are in most need of disaster re-25

lief aid. For this to be achieved, it is required not only to
combine estimates of natural hazard with higher-resolution
vulnerability and exposure information, but also to increase
the level of detail of the latter for different groups, for exam-
ple with regards to gender, income, livelihood, and access to30

healthcare.
Another remaining scientific challenge is the harmonisa-

tion of indicators used to assess damages across a wide range
of different hazard types, in order to enable the collection of
loss data that are comparable across hazards. This would al-35

low for a better comparison of the dynamics of vulnerabil-
ity between different hazards. Currently, the impact data that
are collected by countries, first responders, and researchers
from different fields remain very heterogeneous (Cutter et
al., 2015; AghaKouchak et al., 2018), and the data are often40

collected at different times after a disaster.

4.4 DRR measures

The number of global risk studies that explicitly include
DRR measures is extremely limited and limited to flood risk
studies, especially coastal flooding. Even then, most of these45

studies have assessed structural measures and do not explic-
itly examine the costs. Global volcanic fatality data demon-
strate the impact of DRR measures; for instance, in spite
of population growth, the number of fatalities per eruption
has declined dramatically in the last few decades, suggest-50

ing that mortality has been reduced as a consequence of
improved volcano monitoring, increasing awareness, early
warning, communication, and preparedness around specific

volcanoes (Auker et al., 2013; Brown et al., 2017). Much can
be learnt from studies at local to regional scales, and it is 55

certainly beyond the scope of this paper to provide a review
of the many studies addressing DRR at this scale. A specific
aspect that has not been covered in any of the global risk
studies reviewed is the influence that human behaviour and
perception can have on the effectiveness of DRR measures, 60

through various feedbacks. A classic example in hydrology
is the levee effect (White, 1945), in which increased levels
of flood protection from levees and dikes can also lead to in-
creased exposure and/or vulnerability in areas protected by
dikes. Similarly, for wildfires feedbacks exist between the 65

physical risk and human actions to attempt to manage fuel
and suppress fires. A promising way to address these feed-
backs is through agent-based models that attempt to represent
the behaviour of agents (e.g. individuals, businesses, gov-
ernments) through a set of decision rules (e.g. Aerts et al., 70

2018). An application of the ABMCE9 approach has recently
been used in natural hazard risk modelling at the continental
scale (Haer et al., 2019), paving the way towards exploring
the use of these methods at a global scale. Another aspect
that is often overlooked, especially on a global scale, is the 75

interactions between different DRR measures that are aimed
at specific hazards (Zaghi et al., 2016; Scolobig et al., 2017).
DRR measures aimed at decreasing the risk of one hazard
can increase the risk of another, so-called asynergies of DRR
measures (De Ruiter et al., 2020 TS13 ). For example, build- 80

ing on stilts is a commonly used measure to decrease a build-
ing’s flood vulnerability, but it can simultaneously increase a
building’s earthquake vulnerability (Wood and Good, 2004).
Accounting for such asynergies between DRR measures in a
risk analysis is crucial, for example when developing tools 85

that enable policymakers to assess the effectiveness of DRR
measures. A first attempt to quantify these asymmetries at a
large spatial scale has recently been carried out by De Ruiter
et al. (2020 TS14 ), for measures to reduce flood and earth-
quake risk. The expansion of these approaches to the global 90

scale would be a large step forward for global risk modelling.
Moreover, assessing the impact of complex multi-hazard

damages that result from hazard chains (e.g. an earthquake
followed by a flood) has only been performed at local scales,
for example by using a probabilistic approach to calculate the 95

probabilities of different final damage states (e.g. Korswagen
et al., 2019). These complex hazard chains require the design
of structures and DRR measures that are able to address the
combined damages of different hazard chains (Korswagen et
al., 2019). 100

Studies that consider the dynamics of how drivers impact
risk into the future also enable the assessment of prospective
DRR actions across exposure and vulnerability components.
By modelling exposure profiles dynamically, risk reduction
actions that consider where development occurs and how 105

this can be changed to reduce future losses can be assessed.
This would support demonstrating the effectiveness of land
use planning and risk-sensitive developments as a DRR ac-
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tion. Similarly, for vulnerability, incorporating assessment of
future vulnerability and the inclusion of improved building
standards allows for demonstrating the benefits of more re-
silient construction. If changes in exposure and vulnerability
are excluded from disaster risk modelling, then the assess-5

ment of prospective DRR measures is extremely challenging.
Examples of this globally however are limited. Regional and
city-level studies showing elements of these benefits have
been demonstrated for multiple risks using coupled hazard
models with cellular-automata land use models and capital10

stock models (Lallemant, 2015; Riddell et al., 2019). Global
dynamic models of urban and land use change do however
exist, and efforts could be made to effectively couple these
with global hazard and risk models (Hasegawa et al., 2017;
Van Asselen and Verburg, 2013 TS15 ).15

4.5 Multi-hazard and multi-risk

There is a rapidly growing policy and scientific recognition
and dialogue on the need for multi-hazard (both the multi-
ple hazards and the simultaneous, cascading, or cumulative
occurrence of these; UNDRR, 2017) risk assessments, as ex-20

emplified by high-level discussions at the UNDRR Global
Platform 2019 and the aims of the Sendai Framework. These
call upon the science community for an increased under-
standing of the risk of consecutive and cascading disasters
(UNDRR, 2019). So far, the vast majority of global risk as-25

sessment studies have examined risk from a single hazard
type and indeed have examined a single parameter of the
hazard (Sect. 4.1). However, many environments are multi-
hazardous and many hazards can trigger secondary or cas-
cading hazards. For example, volcanoes can produce a wide30

variety of primary and secondary hazards that can occur si-
multaneously or sequentially and that differ widely in their
spatial extent, duration, dynamic characteristics, and associ-
ated impacts. Capturing all these hazards, and their impacts,
within the one assessment is very challenging, and typically35

the future hazard or risk is considered separately for each
type of hazard (e.g. Sandri et al., 2014) or by assuming a
given eruption scenario (e.g. Lindsay and Robertson, 2018).
Methods for volcanic multi-hazard assessment across mul-
tiple scenarios, where the range of potential future volcanic40

hazards is shown on the one map, have been developed but
as yet only been applied at the single volcano scale (e.g. Neri
et al., 2013).

Interactions among different primary hazards can also in-
fluence the overall risk (Gill and Malamud, 2014; Korswa-45

gen et al., 2019). For example, within the flooding commu-
nity, there has recently been much attention for so-called
compound floods, whereby the interaction of coastal, river,
and pluvial floods can influence the overall hazard and risk
(Zscheischler et al., 2018). Methods are being developed50

at the global scale to assess both the statistical dependence
among these hazards (e.g. Ward et al., 2018; Bevacqua et al.,
2019; Couasnon et al., 2020) and their physical impacts in

terms of hazard (Ikeuchi et al., 2017), with the step towards
risk being the next logical one. 55

Understanding inter-hazard linkages is also important for
properly calibrating estimates of risk in the aftermath of ma-
jor disasters. Earthquakes in particular can affect the long-
term propensity of a given landscape to fail via landsliding
(Marc et al., 2015), while the prior saturation state of a land- 60

scape – due to flooding or human input of irrigation water –
can increase landslide susceptibility during an earthquake it-
self (Bradley et al., 2019; Watkinson and Hall, 2019). These
interactions remain poorly constrained but can influence the
long-term recovery from major hazards. 65

Several studies have identified the current shortcomings
in future exposure and vulnerability projections for multi-
hazard risk assessments (e.g. Gallina et al., 2016). In spite
of the clear need to adopt a multi-hazard risk approach to
global risk assessments, the very nature of the endeavour 70

(accounting for multiple, interrelated hazards and their dy-
namic influence on vulnerability and exposure) has arguably
restricted progress towards truly comprehensive analyses of
global multi-hazard risk. There is a need to address the pre-
viously mentioned challenges with critical work at multiple 75

scales (local to global) towards comprehensive global multi-
hazard risk assessments. Collaboration between the interna-
tional hazard science and risk research communities is key to
progress.

4.6 Use of citizen science and crowdsourced data 80

All elements of risk may be better quantified or qualified
using citizen science and crowdsourced data, which are
utilised across a number of natural hazards (Hicks et al.,
2019). De Bruijn et al. (2017 TS16 ) already showed that pas-
sively shared information through social media platforms 85

can provide a plethora of qualitative and sometimes quan-
titative information of flood hazards, as well as impacts in
near-real time. Also, active sharing mechanisms are becom-
ing available. For example, citizen scientists report infor-
mation on landslide hazard that is otherwise difficult to ob- 90

tain. At the global scale, volunteers can contribute informa-
tion through Landslide Reporter (https://landslides.nasa.gov/
reporter, TS17 ). Numerous local, regional, or national crowd-
sourcing projects have also been undertaken (Juang et al.,
2019). Information on landslide timing is often missing from 95

existing landslide inventories, because neither remote sens-
ing nor geologic fieldwork determines this feature (Koca-
man and Gokceoglu, 2018). However, precise knowledge of
landslide timing is crucial for research into the triggering
mechanisms of landslides. Citizen scientists could remedy 100

this in cases where they have first-hand knowledge of recent
events. Citizen science has been applied in volcanic environ-
ments, from observations of ash fall (Wallace et al., 2015) to
community-based monitoring (Stone et al., 2014), and has a
well-established application in earthquakes (e.g. USGS “Did 105

You Feel It?”).
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An exciting avenue in citizen science lies in more active
mechanisms to report on hazards and their impacts (dam-
ages, households affected, people in need of help, and so
on). In particular, where such reports concern citizens’ own
property or surroundings, they are likely to be more moti-5

vated and more accurate in their reporting. By having an
active reporting mechanism, this can lead to a more struc-
tured approach to monitor and keep track of past hazards and
their impacts. Opportunities lie in particular in reporting lo-
cal flash floods, local landslides, and local drought conditions10

such as small reservoir states for rainfed farming and grass
states for pastoralists. These natural hazard conditions con-
cern time and space scales that are too small to capture with
other means but may occur frequently and in many locations.
Structured and organised data collection by citizens is tak-15

ing place more and more. Large-scale community mapping
projects are initiated that rapidly increase the availability of
well-organised taxonomic information on buildings and in-
frastructure (e.g. Soden and Palen, 2014; Iliffe et al., 2017).
These may serve as exposure and vulnerability databases for20

multiple natural hazards, as well as drainage information,
which can be used to establish flood hazard models (Win-
semius et al., 2019). The tools and data platforms to col-
lect, store, and share such data in any resource setting are
broadly available and include Open Data Kit (Brunette et al.,25

2013) and OpenStreetMap (Haklay and Weber, 2008). These
data may be used for instance to train machine-learning algo-
rithms that estimate exposure and vulnerability characteris-
tics based on remote sensing or to keep risk models in rapidly
changing environments, such as growing urban centres, up to30

date (Winsemius et al., 2019). These opportunities have been
explored only to a limited extent, and we foresee a growth in
demand of these research directions.

4.7 Concluding remarks

As shown by this review, efforts to assess and map natu-35

ral hazard risk at the global scale have increased consider-
ably in the last decade, in an attempt to contribute to the
Sendai Framework’s first Priority for Action of Understand-
ing Disaster Risk. This paper presents a first attempt to re-
view global risk studies across different hazards, thereby ex-40

amining similarities and differences between the approaches
taken within and across the different hazards and identify-
ing potential ways in which different communities can con-
tinue to exchange knowledge and approaches, for example
through UNDRR’s Global Risk Assessment Framework and45

Global Platforms or the EGU session on “Global and conti-
nental scale risk assessment for natural hazards: methods and
practice”. We also indicate several opportunities for address-
ing some of the pressing challenges in global risk modelling.
We hope that this review paper can serve to encourage further50

dialogue on knowledge sharing between scientists and com-
munities working on different hazards and at different spatial
scales that has been facilitated by the session “Global and

continental scale risk assessment for natural hazards: meth-
ods and practice” at the EGU General Assembly since 2012. 55
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