

NASA/TM—20205001252

Air Traffic Management TestBed
Data Exchange Model

Chok Fung Lai
Ames Research Center, Moffett Field, California

 Click here: Press F1 key (Windows) or Help key (Mac) for help

May 2020

NASA STI Program ... in Profile

Since its founding, NASA has been dedicated
to the advancement of aeronautics and space
science. The NASA scientific and technical
information (STI) program plays a key part in
helping NASA maintain this important role.

The NASA STI program operates under the
auspices of the Agency Chief Information Officer.
It collects, organizes, provides for archiving, and
disseminates NASA’s STI. The NASA STI
program provides access to the NTRS Registered
and its public interface, the NASA Technical
Reports Server, thus providing one of the largest
collections of aeronautical and space science STI
in the world. Results are published in both non-
NASA channels and by NASA in the NASA STI
Report Series, which includes the following report
types:

• TECHNICAL PUBLICATION. Reports of

completed research or a major significant
phase of research that present the results of
NASA Programs and include extensive data
or theoretical analysis. Includes compila-
tions of significant scientific and technical
data and information deemed to be of
continuing reference value. NASA counter-
part of peer-reviewed formal professional
papers but has less stringent limitations on
manuscript length and extent of graphic
presentations.

• TECHNICAL MEMORANDUM.
Scientific and technical findings that are
preliminary or of specialized interest,
e.g., quick release reports, working
papers, and bibliographies that contain
minimal annotation. Does not contain
extensive analysis.

• CONTRACTOR REPORT. Scientific and
technical findings by NASA-sponsored
contractors and grantees.

• CONFERENCE PUBLICATION.
Collected papers from scientific and
technical conferences, symposia, seminars,
or other meetings sponsored or
co-sponsored by NASA.

• SPECIAL PUBLICATION. Scientific,
technical, or historical information from
NASA programs, projects, and missions,
often concerned with subjects having
substantial public interest.

• TECHNICAL TRANSLATION.
English-language translations of foreign
scientific and technical material pertinent to
NASA’s mission.

Specialized services also include organizing
and publishing research results, distributing
specialized research announcements and
feeds, providing information desk and personal
search support, and enabling data exchange
services.

For more information about the NASA STI
program, see the following:

• Access the NASA STI program home page

at http://www.sti.nasa.gov

• E-mail your question to help@sti.nasa.gov

• Phone the NASA STI Information Desk at
757-864-9658

• Write to:
NASA STI Information Desk
Mail Stop 148
NASA Langley Research Center
Hampton, VA 23681-2199

This page is required and contains approved text that cannot be changed.

NASA/TM—20205001252

Air Traffic Management TestBed
Data Exchange Model

Chok Fung Lai
Ames Research Center, Moffett Field, California

 Click here: Press F1 key (Windows) or Help key (Mac) for help

National Aeronautics and
Space Administration

Ames Research Center
Moffett Field, CA 94035-1000

May 2020

Acknowledgments
The author would like to thank the other Air Traffic Management TestBed team members, Alan
Lee, Phu Huynh, Huu Huynh, Jimmy Nguyen, David Wood, and Yun Zheng, for their
contributions to the design and development of the data exchange model. The author would
also like to thank Mohamad Refai, Kee Palopo, Gregory Wong, Confesor Santiago, and
Katharine Lee for reviewing this technical memorandum.

 Click here: Press F1 key (Windows) or Help key (Mac) for help

This report is available in electronic form at

http://ntrs.nasa.gov/

 iii

Abstract
The Air Traffic Management (ATM) TestBed is a Platform as a Service that is being

developed by the National Aeronautics and Space Administration (NASA) to help design,
configure, integrate, run, and monitor air traffic simulations. The platform is designed to provide
cloud services including back-end, big-data analytics tools, on-demand computing resource
management, data storage, and communication middleware. The ATM TestBed reduces the
time to test concepts and technologies, supports interactions among various methods such as
human-in-the-loop and automation-in-the-loop simulations, and enables collaborative
simulations by sharing technologies and tools in the ATM community. In order to allow easier
access to simulation components, TestBed provides a messaging support layer for connectivity
using a consistent set of input/output interfaces. In addition, a standard data format is
introduced to facilitate communication between the components. The data exchange model,
supported in the messaging support layer, standardizes the format of the information to be
exchanged among the components. This document describes the messaging data model
currently developed in TestBed and provides data dictionaries for references to component
developers as well as simulation engineers.

 iv

This page intentionally left blank.

 v

Table of Content
1. Introduction ... 9
2. Naming Conventions .. 10

2.1. Data Structures .. 10
2.2. Units of Measurement .. 10
2.3. Package Names ... 11

3. Messaging Data Model ... 12
3.1. SNDEM .. 13

3.1.1. Meta Information .. 14
3.1.2. User Defined Data ... 14
3.1.3. Registry .. 16

4. Data Exchange Model .. 17
4.1. Attributes .. 17
4.2. Binary Data .. 19
4.3. Flight Conflict ... 20

4.3.1. Conflict Data .. 20
4.3.2. Separation .. 21

4.4. Flight Plan .. 22
4.4.1. Flight Plan Type ... 24

4.5. Image Data ... 24
4.6. Multi-Purpose Interface Messages ... 25
4.7. Resolution .. 27

4.7.1. Waypoint .. 28
4.8. Task ... 28

4.8.1. Task Status .. 29
4.9. Track .. 30
4.10. Trajectories .. 31

4.10.1. Trajectory ... 31
4.11. Vehicle State .. 32
4.12. Vehicle True State .. 32

4.12.1. Vehicle True State, Version 1 .. 33
4.12.2. Vehicle True State, Version 2 .. 37

Appendix A. Version History ... 37
5. References .. 39

 vi

List of Figures
Figure 1.1. Simulation setup: (a) without and (b) with TestBed .. 9
Figure 3.1. Hierarchy of the messaging data model ... 12
Figure 3.2. Flow diagram of a track message ... 13
Figure 3.3. Connectivity among two live SWIM feeds, Fuser, and Traffic Viewer 15
Figure 3.4. Engine data bundled in track messages via UDD .. 15
Figure 4.1. Relationships of data exchange model, user defined data, attributes, and registry . 18
Figure 4.2. Separation parameters ... 21
Figure 4.3. Screen sharing using image data ... 24
Figure 4.4. Connectivity among components using MPI messages: (a) without and (b) with

TestBed ... 25
Figure 4.5. Task messages between Task Provider and Task Consumer 28
Figure 4.6. Flow diagram between Task Provider and Task Consumer 29
Figure 4.7. Connectivity between Air Traffic Operations Laboratory and ATM TestBed

Laboratory ... 32

List of Listings
Listing 3.1. Engine data bundled in track message .. 16
Listing 3.2. Class definitions of Registry and Value Map .. 17
Listing 4.1. Example of an Attributes instance .. 17
Listing 4.2. Engine data model class .. 18
Listing 4.3. Engine data defined in attributes message .. 19

List of Tables
Table 2.1. Units of measurement .. 10
Table 2.2. Data structure names and their package names ... 11
Table 3.1. Data dictionary of SNDEM ... 13
Table 3.2. Data dictionary of Meta Information ... 14
Table 3.3. Data dictionary of User Defined Data .. 15
Table 4.1. Data dictionary of Attributes ... 17
Table 4.2. Data dictionary of Binary Data ... 20
Table 4.3. Data dictionary of Flight Conflict .. 20
Table 4.4. Data dictionary of Conflict Data ... 20
Table 4.5. Data dictionary of Separation .. 21
Table 4.6. Data dictionary of Flight Plan ... 22
Table 4.7. Data dictionary of Flight Plan Type .. 24
Table 4.8. Connectivity to components using MPI messages .. 25
Table 4.9. Supported MPI messages in TestBed ... 26
Table 4.10. Supported MPI messages in LVCGW ... 27
Table 4.11. Data dictionary of Resolution ... 27
Table 4.12. Data dictionary of Waypoint ... 28
Table 4.13. Data dictionary of Task .. 29
Table 4.14. Data dictionary of Task Status ... 30
Table 4.15. Data dictionary of Track ... 30
Table 4.16. Data dictionary of Trajectories ... 31
Table 4.17. Data dictionary of Trajectory .. 31

 vii

Table 4.18. Data dictionary of Vehicle State ... 32
Table 4.19. Data dictionary of Vehicle True State .. 33
Table 4.20. Data dictionary of Vehicle True State, Version 1 ... 33
Table 4.21. Data dictionary of Position 3D ... 36
Table 4.22. Data dictionary of Position 2D ... 36
Table 4.23. Data dictionary of Body Orientation ... 37
Table 4.24. Updated data dictionary of Vehicle True State, Version 2 37
Table A.1. Version history ... 37
Table A.2. Example track messages .. 38

 viii

This page intentionally left blank.

 9

1. Introduction
The Air Traffic Management (ATM) TestBed, formerly known as the Shadow Mode

Assessment using Realistic Technologies for the National Airspace System (SMART-NAS)
Testbed, has been under active development to enable collaborative simulations by sharing
technologies and simulation components in the ATM community [1, 2, 3]. The envisioned way to
achieve effective simulations is to provide access to components, namely realistic air
transportation data, air traffic control operational systems, and simulation tools. Inter-connecting
components requires data exchanges and therefore formats. However, components having
distinct data exchange formats makes design, setup, execution and extension complicated,
error prone and time consuming. Figure 1.1(a) shows a setup of a component, A, connecting to
three components, X, Y, and Z, where the directed links (↔) represent data connectivity.
Assume these components use distinct data exchange formats. In order for component A to
connect to the other components, its developers must implement three data converters, denoted
by A⇄X, A⇄Y, and A⇄Z, so that the format used in component A can be converted into the
other formats and back. This approach is not scalable especially if the creation of a custom data
converter requires software development, testing and maintenance. In the example, the
developers have to create yet another data converter X⇄Y to run an extended setup involving
connectivity between components X and Y.

(a) (b)

Figure 1.1. Simulation setup: (a) without and (b) with TestBed

In order to allow easier access to the components and to facilitate communication between
the components, TestBed provides a messaging support layer for connectivity using a
consistent set of input/output interfaces. The process introduces a standard data format called
SMART-NAS Data Exchange Model (SNDEM). In Figure 1.1(b), component A no longer
connects directly to the other components; instead, all the components are connecting to the
messaging support layer. Each component has its own data converter, also known as an
adapter, that converts its data format into the data exchange model, M, and back. The TestBed
platform allows new components to be added, and existing components replaced or removed in
a plug-and-play manner. In general, if P components need to connect to Q components, then
P×Q custom data converters are needed; with the introduction of a common data exchange
model, only P+Q generic data converters are needed.

The development of TestBed is based on a use case driven approach to support technology
exploration, research experiments and flight tests including:

1. Connectivity test among ATM TestBed Laboratory, Distributed Simulation Research
Laboratory [4], and FutureFlight Central [5] at NASA Ames Research Center

2. Connectivity test between NASA Ames and Langley Research Centers
3. Live flight data connection from the Federal Aviation Administration’s (FAA’s) System

Wide Information System (SWIM) via the NASA’s Sherlock ATM Data Warehouse [6]
4. Autoresolver [7] evaluation during the Boeing 2018 ecoDemonstrator [8] flight test

 10

5. Tailored Arrival Manager [9] evaluation and datalink connectivity during the Boeing 2020
ecoDemonstrator flight test with the FAA

6. Urban Air Mobility (UAM) [10] human-in-the-loop experiments with Uber
The purpose of this document is to provide detailed information of the Data Exchange Model

currently developed in TestBed and to provide data dictionaries of each data model for
references to component developers and simulation engineers. Though the data models have
been created to support the use cases mentioned above, there are general mechanisms
exchanging custom data that are not defined in the current model.

Naming conventions and units of measurement are presented in Section 2. Section 3
describes the messaging data model used in the messaging support layer. Data dictionaries of
the data models currently defined in TestBed are detailed in Section 4. Finally, version history of
the data exchange model is documented in Appendix A. Since the data exchange model will
continue to evolve, please contact the ATM TestBed Development Team (email:
chok.f.lai@nasa.gov) to obtain the latest version of this document. The information on how to
connect and use TestBed will be documented in a User Guide and Developer Guide.

2. Naming Conventions
The data exchange model has been developed using Java Standard Edition (SE)

Development Kit (SDK) version 8 [11]. The naming conventions in the TestBed codebase follow
the Google Java Style Guide [12] and the class names are in camel case. For example,
VehicleTrueState is the name of the class Vehicle True State.

2.1. Data Structures
The primitive types, arrays, enum types, and the class String are described in the Java

Language Specification [13]. Two collection data structures, List and Map, are also used:
1. A List<E> is a collection of elements with a generic type E.
2. A Map<K,V> is a collection of mappings of key to value. The keys and values have

generic types K and V, respectively.

2.2. Units of Measurement
Table 2.1 lists the units of measurement used in the data exchange model.

Table 2.1. Units of measurement

Symbol Unit Unit Of Description
% Percentage -- The dimensionless unit of a fraction of 100. One

percentage equals one-hundredth, i.e., 1% = 1 100⁄ .
deg Degree Angle For headings, values are between 0 and 360, inclusive.

Note that headings of 0 degrees and 360 degrees are the
same.
For latitudes, values are in World Geodetic System 1984
(WGS84) reference coordinate system [14]. Latitude
values are between −90 and +90, inclusive. Positive
values are north of the equator (N), and negative values
are south of the equator (S).
For longitudes, values are in WGS84 reference
coordinate system. Longitude values are between −180
and +180, inclusive. Positive values are east of the prime
meridian (E), and negative values are west of the prime
meridian (W).

 11

ft Foot Length The unit of vertical distance in air navigation.
inHg Inch of

mercury
Pressure The unit of pressure in an altimeter setting.

kt Knots Speed Positive values indicate forward movement, and negative
values indicate backward movement.

lbs Pound Weight The unit of weight in the flight data model.
min Minute Time The unit of time in the flight data model. One minute

equals 60 seconds.
ms Millisecond Time The unit of time. One millisecond equals one-thousandth

of a second, i.e., 1	𝑚𝑠 = 1 1,000⁄ 𝑠𝑒𝑐.
Time is measured by the number of milliseconds elapsed
since January 1, 1970, 00:00:00 GMT.
Duration is measured by taking the difference between
two timestamps.

nmi Nautical
mile

Length The unit of horizontal distance in air navigation. One
nautical mile equals 1,852 meters.

persons Person People Number of people.
sec Second Time The unit of time in the flight data model. One second

equals 1,000 milliseconds.

2.3. Package Names
Table 2.2 lists the data structure names and their package names used in this document.

The fully qualified name is the package name followed by the data structure name, e.g.,
java.util.List for List.

Table 2.2. Data structure names and their package names

Data Structure Name Package Name
Attributes gov.nasa.sntb.messagingdatamodels.sndem.attributes
Binary Data gov.nasa.sntb.messagingdatamodels.sndem.binary
Class java.lang
Conflict Data gov.nasa.sntb.messagingdatamodels.sndem.flightstate
Conflict Flight Data nasa.arc.aac.aacinterface
Flight Conflict gov.nasa.sntb.messagingdatamodels.sndem.flightstate
Flight Plan gov.nasa.sntb.messagingdatamodels.sndem.flightplan
Flight Plan Type gov.nasa.sntb.messagingdatamodels.sndem.flightplan
Image Data gov.nasa.sntb.messagingdatamodels.sndem.binary
Linked Hash Map java.util
List java.util
Map java.util
Meta Info gov.nasa.sntb.messagingdatamodels.sndem
Mpi Message gov.nasa.sntb.messagingdatamodels.sndem.mpi.message
Registry gov.nasa.sntb.messagingdatamodels.sndem.attributes
Resolution gov.nasa.sntb.messagingdatamodels.sndem.resolution

 12

Separation gov.nasa.sntb.messagingdatamodels.sndem.flightstate
Snccm gov.nasa.sntb.messagingdatamodels.snccm
Sndem gov.nasa.sntb.messagingdatamodels.sndem
Snhmm gov.nasa.sntb.messagingdatamodels.snhmm
Snmdm gov.nasa.sntb.messagingdatamodels.snmdm
String java.lang
Task gov.nasa.sntb.messagingdatamodels.sndem.task
Task Status gov.nasa.sntb.messagingdatamodels.sndem.task
Track gov.nasa.sntb.messagingdatamodels.sndem.flightstate
Trajectories gov.nasa.sntb.messagingdatamodels.sndem.trajectory
Trajectory gov.nasa.sntb.messagingdatamodels.sndem.trajectory
User Defined Data gov.nasa.sntb.messagingdatamodels.sndem
Vehicle State gov.nasa.sntb.messagingdatamodels.sndem.flightstate
Vehicle True State gov.nasa.sntb.messagingdatamodels.sndem.simuniverse
Waypoint gov.nasa.sntb.commoninterfacesupport.utilities.data

3. Messaging Data Model
SMART-NAS Messaging Data Model is a unified data representation in the TestBed

messaging support layer and standardizes the format of the information to be exchanged
among simulation components. Currently, three concrete models have been developed:

1. Command and Control Model—contains messages for controlling components such as
startup and shutdown.

2. Data Exchange Model—contains messages for data exchanges between components.
3. Health and Monitor Model—contains messages for monitoring components.

Figure 3.1. Hierarchy of the messaging data model

 13

The hierarchy of these models is shown in Figure 3.1 where the up arrow (↑) indicates
extension. Thus, a class at the tail of an arrow extends the class at the head of the arrow. The
models provide application programming interfaces for converting messages to and from the
format being used in the messaging support layer. This document focuses on the data
exchange model. The two other models are internal to the TestBed platform and are out of the
scope.

To ease development effort, each message is currently converted into a JavaScript Object
Notation (JSON) [15] string using Google Gson library [16]. Figure 3.2 is a flow diagram
illustrating how a track instance is transmitted from component A to component B. First, the
track instance is passed to an adapter’s publisher which calls the method Sndem.toJson() to
convert the instance into a JSON string. Second, the JSON string is transmitted to a subscriber
via the messaging support layer. Finally, the subscriber calls the method
Sndem.fromJson(String) to convert the JSON string back into a track instance.

Figure 3.2. Flow diagram of a track message

Note that converting a messaging data model into a JSON string and back (the red part in the
diagram) is considered internal in the TestBed platform. In the future, the JSON format may be
replaced with another format that supports additional features, such as compression and
encryption, to accommodate better network transfer rates as well as data protection without
affecting the existing adapter implementations.

3.1. SNDEM
Sndem is the abstract, base class for all the SNDEM (SMART-NAS Data Exchange Model)

classes defined in the TestBed messaging support layer. Table 3.1 lists the data dictionary of
this data structure using the following column definitions:

1. Field—name of the field defined in the data model or structure.
2. Type—name of the data type; complex data types will be listed in subsections.
3. Unit—unit of measurement, if available, of the field value (see Section 2.2).
4. Description—brief description of the field as well as optional information including value

ranges, name aliases defined in the previous versions, and an example value.
5. Since—first TestBed version supporting the field. The version history is documented in

Appendix A.
Note: throughout this document, for readability, long field names, type names and units of
measurement in the data dictionary tables are split into multiple lines.

Table 3.1. Data dictionary of SNDEM

Field Type Unit Description Since
meta Meta

Info
 Meta-information of the data exchange model

instance (see Section 3.1.1).
Field alias: metaInfo.

1.0a

_udd User
Defined
Data

 Optional user-defined data storing name-value pairs
based on given types (see Section 3.1.2).
Value is null if not available.
Field alias: userDefinedData.

2.0a

 14

3.1.1. Meta Information
A Meta Info instance stores metadata and information about a data exchange model

including the identifier of the adapter’s publisher, version of the message, time when the
message was published, and time when the message was received. Table 3.2 lists the data
dictionary of the meta information.

Table 3.2. Data dictionary of Meta Information

Field Type Unit Description Since
src String Source of the data exchange model message, i.e.,

who publishes the data. The format of this value is
[ComponentTitle].[BlockID]. The value will be
automatically set in an adapter’s publisher if it is not
programmatically set by a developer.
Field alias: source.
Example: Traffic Viewer.2.

0.9b

ver String Version of the data exchange model. This is also
the version of the TestBed Software Development
Kit.
Value is null if not available.
Field alias: version.
Example: 2.0a.

2.0a

tpub long ms Publication time when the data exchange model
message was published by a component to the
messaging layer. It is possible that multiple
messages have the same publication time when
they were published within the same millisecond.
Value range is [0, +inf] or zero (0) if not
available.
Field alias: timePublished.
Example: 1512429016457.

0.9b

tsub long ms Subscription time when the data exchange model
was received by a component from the messaging
layer. It is possible that multiple messages have the
same subscription time if they were received within
the same millisecond.
Value range is [0, +inf] or zero (0) if not
available.
Field alias: timeArrived, timeSubscribed.
Example: 1518546378849.

0.9b

3.1.2. User Defined Data
A User Defined Data (UDD) instance stores user specific name-value pairs that are not

defined in the data exchange model. The name-value pairs can be grouped by a type that is, by
convention, a fully qualified class name of the user specific data structure. Table 3.3 lists the
data dictionary of the UDD. Internally, a UDD instance uses a Registry (see Section 3.1.3) data
structure to store custom data.

 15

Table 3.3. Data dictionary of User Defined Data

Field Type Unit Description Since
registry Registry Mappings of data type to name-value pairs:

• Key = type of the data
• Value = mappings of data name to value:

• Key = name of the data
• Value = value of the data as string

0.9b

The UDD provides flexibility for component adapter developers to store custom and extended
data in any existing data exchange model. Figure 3.3 shows a setup demonstrating the usage of
the UDD and connectivity among four components:

1. SWIM: Airport Surface Detection Equipment—Model X (ASDE-X)
2. SWIM: Traffic Flow Management Data (TFMData)
3. Fuser from the Airspace Technology Demonstration 2 (ATD-2) [17]
4. TestBed Traffic Viewer [18]

The UDD associated with the track messages consists of the following information:
• Globally Unique Flight Identifier (GUFI) of the system that produced the track
• Identifier of the airport that is responsible for the track
• Identifiers of the departure and destination airports

and the UDD associated with the flight plan messages includes the following information:
• GUFI of the system that produced the flight plan
• Estimated and scheduled times of arrival to arrival fix, landing, and gate arrival
• Engine class (jet, turbo, or piston), equipment and weight class qualifiers

Figure 3.3. Connectivity among two live SWIM feeds, Fuser, and Traffic Viewer

Here is an example demonstrating the usage of the UDD. Suppose that two component
adapters, My Publisher and My Subscriber, need to exchange track messages with aircraft
engine data. Even though no engine data model is currently defined in the TestBed data
exchange model, the engine data can still be bundled in the track messages, as illustrated in
Figure 3.4.

Figure 3.4. Engine data bundled in track messages via UDD

 16

Assume the aircraft engine data model has a type string “com.example.model.Engine” and
consists of two fields: a string representing the engine model (“model”) and an integer number
representing the rotations per minute (“rpm”). Listing 3.1 lists code snippets, in the Java
programming language, demonstrating two use cases:

(a) A publisher component publishes a track message with the engine data bundled, and
(b) A subscriber component receives the bundled engine data from a track message.

Listing 3.1. Engine data bundled in track message

(a) package com.example.component.MyPublisher;

import gov.nasa.sntb.messagingdatamodels.sndem.UserDefinedData;
import gov.nasa.sntb.messagingdatamodels.sndem.flightstate.Track;
import gov.nasa.sntb.simcomponent.adapter.PluginAdapter;

public class MyPublisher extends PluginAdapter {
 @Override
 public void execute() {
 Track track = new Track("NASA123", 37.77f, -122.42f, 1200f, 0);
 String type = "com.example.model.Engine";
 UserDefinedData engine = track.getUserDefinedData().get(type);
 engine.setString("model", "boost");
 engine.setInt("rpm", 123456);
 publish(track);
 }
}

(b) package com.example.component.MySubscriber;

import gov.nasa.sntb.architectblueprint.interfaces.datasets.TrackDataset;
import gov.nasa.sntb.messagingdatamodels.sndem.UserDefinedData;
import gov.nasa.sntb.messagingdatamodels.sndem.flightstate.Track;
import gov.nasa.sntb.simcomponent.adapter.PluginAdapter;

public class MySubscriber extends PluginAdapter implements TrackDataset {
 @Override
 public void processTrackDataset(String key, Track dataset) {
 String type = "com.example.model.Engine";
 UserDefinedData engine = dataset.getUserDefinedData().get(type);
 String model = engine.getString("model");
 int rpm = engine.getInt("rpm");
 }
}

3.1.3. Registry
A Registry instance is a specialized map data structure storing mappings of type to Value

Map, which itself is a map. The keys are types and the values are mappings of name to value.
Thus, each value can be uniquely identified by a pair of type and name. Listing 3.2 lists the
class definitions of the Registry and Value Map. The purpose of the Registry data structure is to
provide a standardized way to store and query values by types and names. Note that registry
instances are referenced in both the User Defined Data (see Section 3.1.2) and the Attributes
(see Section 4.1).

 17

Listing 3.2. Class definitions of Registry and Value Map

package gov.nasa.sntb.messagingdatamodels.sndem.attributes;

public class Registry extends LinkedHashMap<String, ValueMap> {
}

public class ValueMap extends LinkedHashMap<String, String> implements Delegate {
}

4. Data Exchange Model
Each data exchange model class extends the abstract class Sndem (see Section 3.1). The

extension allows new capabilities, such as data compression and data encryption, to be added
in the future without modifications of any existing subclasses. The following subsections detail
each data exchange model defined in TestBed.

4.1. Attributes
The Attributes model provides a means for exchanging data that are not currently defined

in the data exchange model. This allows current and future airspace concepts to be rapidly
prototyped even if a limited number of data exchange models (presented in Section 4) are
implemented in TestBed. Table 4.1 lists the data dictionary of the attributes model. Internally, an
attributes instance uses a Registry (see Section 3.1.3) data structure to store custom data.

Table 4.1. Data dictionary of Attributes

Field Type Unit Description Since
type String Current type of the attributes.

Example: com.example.model.Engine.
0.9b

registry Registry Mappings of attribute type to name-value pairs:
• Key = type of the attribute
• Value = mappings of attribute name to value:

• Key = name of the attribute
• Value = value of the attribute as string

0.9b

Listing 4.1 is an example of an Attributes data structure containing two types, type1 and

type2, where the first and second types have M and N pairs of attributes, respectively.

Listing 4.1. Example of an Attributes instance

Attributes {
 type1 = {
 name1 = value1,
 name2 = value2,
 ...
 nameM = valueM
 },
 type2 = {
 ...
 nameN = valueN
 }
}

 18

One main difference between the User Defined Data and the Attributes is the data
hierarchy. The former one is a data structure used to include extra fields in an existing data
exchange model, while the latter one is a standalone data exchange model. Figure 4.1 shows a
relationship diagram where the boxes represent the classes, the white-triangle link (◁−)
represents the “is a” relationship, and the diamond links (♦−) represent the “has a” relationship:

1. The Attributes class is a subclass of the Data Exchange Model class.
2. A Data Exchange Model instance has a User Defined Data instance.
3. An Attributes instance has a Registry instance that stores attribute values.
4. A User Defined Data instance has a Registry instance that stores custom values.

Figure 4.1. Relationships of data exchange model, user defined data, attributes, and registry

To illustrate the usage of the Attributes model, consider that one adapter needs to publish
engine data to another adapter. The engine data may be exchanged by executing the following
steps:

1. Create a data model class named Engine.
2. Add a constructor accepting an Attributes parameter in the class Engine.
3. Add a method toAttributes() to convert the engine data into an Attributes instance.

Listing 4.2. Engine data model class

package com.example.mode; 1
 2
import gov.nasa.sntb.messagingdatamodels.sndem.attributes.Attributes; 3
 4
public class Engine { 5
 private static final String TYPE = Engine.class.getName(); 6
 private String model; 7
 private int rpm; 8
 9
 public Engine(String model, int rpm) { 10
 this.model = model; 11
 this.rpm = rpm; 12
 } 13
 14
 public Engine(Attributes attributes) { 15
 Attributes engine = attributes.getAttributes(TYPE); 16
 model = engine.getString("model"); 17
 rpm = engine.getInt("rpm"); 18
 } 19
 20
 public Attributes toAttributes() { 21
 Attributes engine = new Attributes(TYPE); 22
 engine.setString("model", model); 23

 19

 engine.setInt("rpm", rpm); 24
 return engine; 25
 } 26
 27
 public String getModel() { 28
 return model; 29
 } 30
 31
 Public int getRpm() { 32
 return rpm; 33
 } 34
}35

Listing 4.2 is a sample implementation of the class Engine. Lines 10-13 define the
constructor. Lines 16-18 demonstrate how to get the engine data via the supplied attributes
instance. Lines 22-25 demonstrate how to create an Attributes instance based on the current
engine data. Lines 28-34 are the getter methods. Listing 4.3 lists (a) a publisher component
publishing an attributes message with the engine data, and (b) a subscriber component
receiving the engine data from an attributes message.

Listing 4.3. Engine data defined in attributes message

(a) package com.example.component.MyPublisher;

import com.example.model.Engine;
import gov.nasa.sntb.messagingdatamodels.sndem.attributes.Attributes;
import gov.nasa.sntb.simcomponent.adapter.PluginAdapter;

public class MyPublisher extends PluginAdapter {
 @Override
 public void execute() {
 Engine engine = new Engine("boost", 123456);
 publish(engine.toAttributes());
 }
}

(b) package com.example.component.MySubscriber;

import com.example.model.Engine;
import gov.nasa.sntb.architectblueprint.interfaces.datasets.AttributesDataset;
import gov.nasa.sntb.simcomponent.adapter.PluginAdapter;

public class MySubscriber extends PluginAdapter implements AttributesDataset {
 @Override
 public void processAttributesDataset(String key, Attributes dataset) {
 Engine engine = new Engine(dataset);
 String model = engine.getModel();
 int rpm = engine.getRpm();
 }
}

4.2. Binary Data
The Binary Data model stores binary data as a byte array for data exchange. The model is

useful for exchanging data that are computer-readable but not human-readable such as images
(see Section 4.5) and weather data. The format of a binary data content is identified by a

 20

Multipurpose Internet Mail Extensions (MIME) [19] type. Table 4.2 lists the data dictionary of the
binary data model.

Table 4.2. Data dictionary of Binary Data

Field Type Unit Description Since
key String Key of the data. This will be used as the topic key.

Example: pi.
0.9b

mimeType String MIME type of the binary data.
Example: application/octet-stream.

0.9b

data byte[] Array of bytes representing the binary data.
Example: [3,1,4,1,5,9].

0.9b

4.3. Flight Conflict
The Flight Conflict model is a container for the conflict information in Autoresolver. A

conflict represents a detected, predicted loss of separation between two flights at a future time.
Table 4.3 lists the data dictionary of the flight conflict model.

Table 4.3. Data dictionary of Flight Conflict

Field Type Unit Description Since
detectionTime long ms The time, in milliseconds, when the conflict

detection occurs.
Example: 1518548215902.

0.9b

conflictTime long ms The time, in milliseconds, when the first loss-of-
separation conflict is predicted to occur.
Example: 1518548275902.

0.9b

firstFlight Conflict
Data

 The conflict data (see Section 4.3.1) pertaining to
the first flight.

0.9b

secondFlight Conflict
Data

 The conflict data pertaining to the second flight. 0.9b

4.3.1. Conflict Data
A Conflict Data instance contains information related to a particular flight involved in a

loss-of-separation conflict. It originated from the class Conflict Flight Data in the Advanced
Airspace Concept (AAC) [7]. Table 4.4 lists the data dictionary of the conflict data.

Table 4.4. Data dictionary of Conflict Data

Field Type Unit Description Since
callsign String The callsign of the flight.

Example: AAL123.
0.9b

latitude
Degrees

double deg The latitude value, in degrees, of the trajectory
point at the conflict.
Value range is [-90, +90].

0.9b

 21

Example: 37.67.

longitude
Degrees

double deg The longitude value, in degrees, of the trajectory
point at the conflict.
Value range is [-180, +180].
Example: -122.26.

0.9b

altitudeFeet double ft The altitude, in feet, of the trajectory point at the
conflict. The altitude type depends on the conflict
detectors. It may be an indicated altitude of
aircraft above mean sea level (MSL) on a
standard day, or a pressure altitude.
Example: 23987.65.

0.9b

trueHeading
Degrees

double deg The true heading, in degrees, of the trajectory
point at the conflict.
Value range is [0, 360].
Example: 120.45.

0.9b

required
Separation

Separation The required separation parameters that have
been violated at the conflict (see Section 4.3.2).

0.9b

type String The algorithm-specific type string describing the
nature of the trajectories such as “AAC,” “dead-
reckon,” “flight plan” or “maneuver.”
Example: dead-reckon.

0.9b

4.3.2. Separation
A Separation instance stores separation parameters used in a conflict detection algorithm.

The parameters describe a right circular cylinder, as shown in Figure 4.2, where the center
represents the location of a flight, the radius represents the horizontal separation distance, and
the height represents twice the vertical separation distance.

Figure 4.2. Separation parameters

Table 4.5 lists the data dictionary of the separation.

Table 4.5. Data dictionary of Separation

Field Type Unit Description Since
horizontalNmi double nmi Required horizontal separation distance, in nautical

miles.
Value range is [0, +inf] or zero (0) if not
available.
Example: 5.0.

0.9b

 22

verticalFt double ft Required vertical separation distance, in feet.
Value range is [0, +inf] or zero (0) if not
available.
Example: 960.0.

0.9b

4.4. Flight Plan
The Flight Plan model stores flight plan related data fields defined in FAA Form 7233-1

[20]. The model is created for parsing live data feeds from the FAA’s SWIM via the NASA’s
Sherlock ATM Data Warehouse. Table 4.6 lists the data dictionary of the flight plan model.

Table 4.6. Data dictionary of Flight Plan

Field Type Unit Description Since
aircraftId String Complete aircraft callsign or identification

including the prefix “N” if applicable.
Example: AAL123.

0.9b

flightPlanType Flight
Plan
Type

 Type of the flight plan to be used (see Section
4.4.1).
Value is null if not available.

0.9b

aircraftType String Designator of the aircraft, i.e., aircraft type or
special equipment.
Example: BE9L.

0.9b

trueAirspeed
Knots

int knots True airspeed, in knots.
Value range is [0, +inf] or zero (0) if not
available.
Example: 456.

0.9b

departure
Airport

String Departure airport identifier code, or if
unknown, the name of the airport.
Note that this field may include the city name
(or even the state name) if needed for clarity.
Value is null if not available.
Example: KSFO.

0.9b

proposed
DepartureTime

long ms Proposed departure time, in milliseconds.
If airborne, specify the actual or proposed
departure time as appropriate.
Value range is [0, +inf] or zero (0) if not
available.
Example: 1511983543000.

0.9b

actual
DepartureTime

long ms Actual departure time, in milliseconds.
If airborne, specify the actual or proposed
departure time as appropriate.
Value range is [0, +inf] or zero (0) if not
available.
Example: 1511983552000.

0.9b

 23

cruiseAltitude
Feet

int ft Appropriate Visual Flight Rules altitude, in
feet, to assist the briefer in providing weather
and wind information.
Value range is [0, +inf] or zero (0) if not
available.
Example: 29000.

0.9b

routeOfFlight String The route of flight defined by using
Navigational Aid (NAVAID) identifier codes
and airways.
Value is null if not available.
Example: KSFO.SSTIK3.EBAYE..AVE..KLAX.

0.9b

destination
Airport

String Destination airport identifier code, or if
unknown, the airport name.
Note that this may include city name (or even
the state name) if needed for clarity.
Value is null if not available.
Example: KLAX.

0.9b

estimated
EnRoute
Duration

long ms Estimated en route duration, in milliseconds.
Value range is [0, +inf] or zero (0) if not
available.
Example: 10800000.

0.9b

remarks String Remarks pertinent to Air Traffic Control or to
the clarification of other flight plan information,
such as the appropriate radiotelephony
(callsign) associated with the designator field
in aircraft ID.
Items of a personal nature are not accepted.
Value is null if not available.
Example: No over water.

0.9b

fuelOnBoard
Duration

long ms Duration of fuel on board, in milliseconds.
Value range is [0, +inf] or zero (0) if not
available.
Example: 14400000.

0.9b

alternate
Airports

String Alternate airport(s) if desired.
Value is null if not available.
Example: KSAN, KPHX.

0.9b

pilot
Information

String Pilot’s information such as name, address, and
telephone number. This may include sufficient
information to identify home base, airport, or
operator.
Since this field value contains pilot identifying
information such as name, address, and
telephone number, the value is neither stored
nor transmitted by TestBed.

0.9b

 24

Value is null if not available.
Example: John Doe, Moffett Field,
(650) 555-1234.

numberAboard int persons Total number of persons on board.
Value range is [0, +inf] or zero (0) if not
available.
Example: 100.

0.9b

colorOf
Aircraft

String Predominant colors.
Value is null if not available.
Example: White.

0.9b

4.4.1. Flight Plan Type
A Flight Plan Type instance indicates one of the types used in the flight plan model:
• Visual Flight Rules (VFR)
• Instrument Flight Rules (IFR)
• Defense Visual Flight Rules (DVFR)

Note that it is possible to have a composite flight plan type by enabling multiple types, e.g.,
“VFR/IFR.” Table 4.7 lists the data dictionary of the flight plan type.

Table 4.7. Data dictionary of Flight Plan Type

Field Type Unit Description Since
vfr boolean Flag indicates whether the VFR are used. 0.9b

ifr boolean Flag indicates whether the IFR are used. 0.9b

dvfr boolean Flag indicates whether the DVFR are used. 0.9b

4.5. Image Data
The Image Data model stores image specific binary data (see Section 4.2). A use case of

doing image data exchange is to share a screen from a host computer to one or multiple client
computers. Figure 4.3 shows a nominal setup that a Screen Capture adapter on the left-hand
side captures a screen image every second and then publishes the image data to TestBed’s
messaging support layer. The subscriber on the right-hand side runs a Screen Viewer adapter
that displays the captured image on screen.

Figure 4.3. Screen sharing using image data

Refer to Table 4.2 for the data dictionary of the image data model. Common MIME types for
the images are:

1. Graphics Interchange Format: image/gif
2. Joint Photographic Experts Group: image/jpeg
3. Portable Network Graphics: image/png

 25

4.6. Multi-Purpose Interface Messages
The Multi-Purpose Interface (MPI) is a data exchange format used by the Aeronautical

Datalink and Radar Simulator (ADRS) and external components [21, 22, 23]. To evaluate,
demonstrate and support connectivity among components running at NASA Ames Research
Center laboratories using the TestBed platform, a subset of the MPI messages has been
implemented and included in the TestBed data exchange model. Table 4.8 lists the components
as well as the laboratories used.

Table 4.8. Connectivity to components using MPI messages

 Component Laboratory
1. Multi-Aircraft Control System

(MACS) [24]
• ATM TestBed Laboratory
• Distributed Simulation Research Laboratory

2. Time-Based Flow Management
(TBFM) [25]

• ATM TestBed Laboratory

3. Live, Virtual, Constructive Gateway
(LVCGW) [26]

• ATM TestBed Laboratory
• Distributed Simulation Research Laboratory

4. Reconfigurable Image Generator
(RiG) [27]

• ATM TestBed Laboratory
• FutureFlight Central

In order to meet project-specific needs, software development teams may add new

capabilities to the ADRS and some of the components by modifying their source code. As a
result, certain components may no longer be able to connect to the same ADRS for data
exchange due to incompatibility. Figure 4.4(a) illustrates this issue in an experiment run by
connecting four components, MACS, TBFM, LVCGW, and RiG, via a modified ADRS, but the
TBFM is no longer compatible with the modified ADRS. One potential solution is to update the
TBFM so that it is compatible with the modified ADRS. However, this solution is not desired
especially if a change in the ADRS would break all the connecting components.

The TestBed platform addresses this concern by connecting each component to a single
ADRS and each ADRS connects to the messaging support layer. Figure 4.4(b) illustrates a
nominal network diagram connecting the four components to the TestBed messaging support
layer via individual ADRS instances. Since these components are connected to their compatible
versions of ADRS, modifying a component and its connected ADRS, e.g., MACS and ADRS 1,
will not affect the connectivity of the other components.

(a) (b)

Figure 4.4. Connectivity among components using MPI messages: (a) without and (b) with TestBed

 26

Table 4.9 lists the MPI messages in the ADRS that have been implemented in TestBed. The
TestBed class names use camel case and the pattern AdrsMpi<XXX>MsgSt where the <XXX>
values are listed in the first column, while the corresponding ADRS C data structure names use
lowercase and the pattern adrs_mpi_<YYY>_msg_st where the <YYY> values are listed in the
second column.

Table 4.9. Supported MPI messages in TestBed

TestBed Class Name1
AdrsMpi<XXX>MsgSt

ADRS C Data Structure
adrs_mpi_<YYY>_msg_st

Description

AcControl ac_control Aircraft control message.
AkRoute ak_route Host AK route message.
Arinc702 arinc_702 Aeronautical Radio, Incorporated

(ARINC) 702 message defined in
the flight management system.

Broadcast broadcast Broadcast message.
DateTime date_time Date time message.
DeleteAc delete_ac Delete aircraft message.
ExtendedFlightData extended_flight_data Extended flight data message.
ExtendedFlightPlan extended_flight_plan Extended flight plan message.
FlightData flight_data Flight data message.
FlightPlan flight_plan Flight plan message.
FlightState flight_state Flight state message.
Ident ident Identification message.
InitialClient initial_client Initial client message.
InitialServerResponse initial_server_response Initial server response message.
InitialState initial_state Initial state message.
MacsConfig macs_config MACS configuration message.
MacsControl macs_control MACS control message.
PilotInput pilot_input Pilot input message.
Request request Request message.
Scenario scenario Scenario message.
Track track Track message.
Trajectory trajectory Trajectory message.
Transaction transaction Transaction message.
XmlPayload xml_payload Extensible Markup Language

(XML) payload message.

In addition, Table 4.10 lists the MPI messages in the LVCGW that have been implemented in
TestBed. The TestBed class names use the pattern Mpi<XXX>Message where the <XXX> values

1 In the package gov.nasa.sntb.messagingdatamodels.sndem.mpi.message.

 27

are listed in the first column, while the corresponding LVCGW class names use the pattern
Msg<YYY> where the <YYY> values are listed in the second column.

Table 4.10. Supported MPI messages in LVCGW

TestBed Class2
Mpi<XXX>Message

LVCGW Message Class
Msg<YYY>

Description

AcTrackState AcTrackState Track state of the intruder aircraft
message.

AcTrackStateOwnship AcTrackStateOS Track state of the ownship aircraft
message.

FlightPlan FlightPlan Flight plan message.
FlightState FlightState Flight state message.
Handshake Handshake Handshake message.
Heartbeat Heartbeat Heartbeat message.
SaaBands SaaBands Sense And Avoid (SAA) bands

message.
SaaFlightState SaaFlightState SAA flight state message.
SaaThreatResults SaaThreatResults SAA threat results message.
WellClearRecovery WellClearRecovery Well clear recovery message.

4.7. Resolution
The Resolution model stores conflict resolution information of an Autoresolver’s flight

conflict. Table 4.11 lists the data dictionary of the resolution model.

Table 4.11. Data dictionary of Resolution

Field Type Unit Description Since
resolutionId String The resolution identifier.

Example: AAL123.
0.9b

maneuver String Textual description of the maneuver an aircraft
has to perform to avoid the flight conflict.
Example: Turn left by 10 degrees.

0.9b

altitudeFt float ft Target altitude, in feet.
NaN3 if not available.
Example: 28000.0.

0.9b

distanceNmi float nmi Distance, in nautical miles, to hold.
Value range is [0, +inf] or zero (0) if not
available.
Example: 10.0.

0.9b

2 In the package gov.nasa.sntb.lvcgwadapter.mpi.message.
3 NaN represents a Not-a-Number value of types float or double.

 28

headingDeg float deg Target heading, in degrees.
Value range is [0, 360] or NaN if not available.
Example: 350.0.

0.9b

speedKts float knots Target speed, in knots.
Value range is [0, +inf] or NaN if not available.
Example: 254.80046.

0.9b

waypoints List<
Waypoint
>

 List of waypoints to be used (see Section 4.7.1).
Value is null if not available.

0.9b

4.7.1. Waypoint
A Waypoint instance represents a named, two-dimensional location. Table 4.12 lists the

data dictionary of the waypoint data structure.

Table 4.12. Data dictionary of Waypoint

Field Type Unit Description Since
name String The name of the waypoint, which can be a fix name,

an airport name, or a fix name with radial and
distance.
Example: PUW257044.

0.9b

latitude double deg Latitude in degrees.
Value range is [-90, +90] or NaN if not available.
Example: 46.504688749082106.

0.9b

longitude double deg Longitude in degrees.
Value range is [-180, +180] or NaN if not
available.
Example: -118.2609576981683.

0.9b

4.8. Task
The Task model represents a user task to be processed, either sequentially or in parallel, by

a component. The model is developed for experiments requiring an automated simulation
capability [28]. Figure 4.5 shows a nominal setup demonstrating the usage of the task model
between two components, Task Provider and Task Consumer.

Figure 4.5. Task messages between Task Provider and Task Consumer

During an experiment startup, the task provider reads task definitions from a configurable
property into a task list. Whenever a message requesting a task is received from the task
consumer, the task provider will reply the next available task from the task list as a response

 29

message. The request-response process continues until there are no more tasks available in
the task list. This design supports running tasks in a sequential mode when a single task
consumer is used, or concurrent modes when multiple task consumers are connected to the
same task provider. Table 4.13 lists the data dictionary of the task model.

Table 4.13. Data dictionary of Task

Field Type Unit Description Since
processorId String Identification of the processor that handles this task.

The value is null if the field is not available.
Example: abed3702.1.task-consumer.

0.9b

status Task
Status

 Status of this task (see Section 4.8.1).
Example: REQUESTED.

0.9b

parameters Map<
String,
String>

 Mapping of parameter name to value to be passed
to the task for execution. Keys are parameter
names and values are parameter values.

0.9b

4.8.1. Task Status
A Task Status instance represents a stage, as an enumeration value, of a task execution.

Here is the sequence of task status:
1. REQUESTED
2. INITIALIZED
3. STARTED
4. CANCELLED or COMPLETED

Figure 4.6. Flow diagram between Task Provider and Task Consumer

Figure 4.6 shows a flow diagram of the task status values between the task provider and the
task consumer. Table 4.14 lists the data dictionary of the task status enumeration values.

 30

Table 4.14. Data dictionary of Task Status

Enum Description Since
CANCELLED Task has been cancelled. 0.9b

COMPLETED Task is completed. 0.9b

INITIALIZED Task is initialized but not yet started. 0.9b

REQUESTED New task is requested. 0.9b

STARTED Task has started and is running. 0.9b

4.9. Track
The Track model represents a single, three-dimensional location of a vehicle obtained by

radar or sensor. Table 4.15 lists the data dictionary of the track model.

Table 4.15. Data dictionary of Track

Field Type Unit Description Since
vid String Vehicle identifier such as aircraft callsign.

Value is null if not available.
Field alias: vehicleId.
Example: AAL123.

0.9b

latDeg float deg Latitude, in degrees, of the vehicle’s location.
Value range is [-90, +90] or NaN if not available.
Field alias: latitudeDegrees.
Example: 34.907051.

0.9b

lonDeg float deg Longitude, in degrees, of the vehicle’s location.
Value range is [-180, +180] or NaN if not
available.
Field alias: longitudeDegrees.
Example: -117.620305.

0.9b

altFt float ft Indicated altitude, in feet, of the vehicle above
mean sea level (MSL) on a standard day.
Value is NaN if not available.
Field alias: altitudeFeet.
Example: 27059.473.

0.9b

time long ms Time, in milliseconds, when the track information
was created.
Value is zero (0) if not available.
Example: 1512411933075.

0.9b

gsKt float knots Groundspeed, in knots, represents movement of
the vehicle relative to the ground.
Value is NaN if not available.
Field alias: groundspeedKnots.

0.9b

 31

Example: 104.0.

crsDeg float deg Flight course in degrees. By default, values are in
degrees from true north.
Value range is [0, 360] or NaN if not available.
Field alias: courseDegrees.
Example: 130.78125.

0.9b

vsFpm float ft/min Vertical speed in feet per minute. Positive values
indicate climbing, and negative values indicate
descending.
Value is NaN if not available.
Field alias: verticalSpeedFpm.
Example: 16.0.

0.9b

4.10. Trajectories
The Trajectories model stores mappings of type to trajectory that are used in

Autoresolver. The trajectory types are algorithm-specific strings describing the nature of the
trajectories such as “AAC,” “dead-reckon,” “flight plan,” or “maneuver.” Table 4.16 lists the data
dictionary of the trajectories model.

Table 4.16. Data dictionary of Trajectories

Field Type Unit Description Since
map Map<

String,
Trajectory
>

 Mappings of type to trajectory (see Section
4.10.1).
Field alias: trajectoryMap.

0.9b

vid String Vehicle identifier such as aircraft callsign.
Field alias: vehicleId.
Example: AAL123.

0.9b

4.10.1. Trajectory
A Trajectory instance stores a list of tracks of a vehicle. The instance may represent a

predicted path of a specific type such as dead reckoning and tracks are ordered by time values
in ascending order. Table 4.17 lists the data dictionary of the Trajectory data structure.

Table 4.17. Data dictionary of Trajectory

Field Type Unit Description Since
vehicleId String Identification of the vehicle, e.g., aircraft callsign.

Example: AAL123.
0.9b

tracks List
<Track>

 List of tracks in the trajectory (see Section 4.9). 0.9b

 32

4.11. Vehicle State
The Vehicle State model represents a single state of a vehicle. This model is an

extension of the track model (see Section 4.9) with additional fields. Table 4.18 lists the data
dictionary of the additional fields in the vehicle state model.

Table 4.18. Data dictionary of Vehicle State

Field Type Unit Description Since
trueHeading float deg True heading in degrees.

Value range is [-90, +90].
Example: 45.17.

0.9b

trueAirspeed float knots True airspeed in knots.
Example: 326.45.

0.9b

indicatedAirspeed float knots Indicated airspeed in knots.
Example: 301.12.

0.9b

4.12. Vehicle True State
The Vehicle True State model represents a true state of a vehicle obtained from an

Aircraft Simulation for Traffic Operations Research (ASTOR), a simulated aircraft having six-
degree of freedom dynamic models, in the Air Traffic Operations Simulation (ATOS) distributed
simulation platform running in the Air Traffic Operations Laboratory (ATOL) at NASA Langley
Research Center [29]. Figure 4.7 shows a nominal diagram demonstrating the usage of the
vehicle true state model in a connectivity test between NASA Ames and Langley Research
Centers.

Figure 4.7. Connectivity between Air Traffic Operations Laboratory and ATM TestBed Laboratory

The ASTOR currently supports two versions, 1 and 2, of the vehicle true state models. The two
versions are included in the TestBed data exchange model. To query the latest available
version being defined in the model, the method VehicleTrueState4.getVersion() may be
called and it will return an integer value. Alternatively, the methods getV001() and getV002()
may also be called; supported versions are returned as non-null values. Table 4.19 lists the data
dictionary of the vehicle true state model.

4 In the package gov.nasa.sntb.messagingdatamodels.sndem.simuniverse.

 33

Table 4.19. Data dictionary of Vehicle True State

Field Type Unit Description Since
v001 Vehicle

True
State5

 Vehicle true state, in version 1 format (see Section
4.12.1).
Value is null if not available.

1.5a

v002 Vehicle
True
State6

 Vehicle true state, in version 2 format (see Section
4.12.2).
Value is null if not available.

1.5a

4.12.1. Vehicle True State, Version 1
A Vehicle True State, defined in the sub-package v001, represents a true state of a

vehicle from an ASTOR in the version 1 format. Table 4.20 lists the data dictionary of this data
structure. The custom data structures used in this version are defined in the sub-package v001.
Note that for numeric fields, -9999.0 represents an unknown value.

Table 4.20. Data dictionary of Vehicle True State, Version 1

Field Type Unit Description Since
simId int Unique identifier for simulated entity.

C type: unsigned long.
Example: 10895060.

1.5a

callSign String Callsign string.
C type: char[128].
Example: NASA501.

1.5a

qualifierBits int Qualifier Bits.
C type: unsigned long.
Example: 0.

1.5a

realTime long ms Current epoch time, number of milliseconds
since January 1, 1970, 00:00:00 GMT.
C type: long long.
Example: 1456497096952.

1.5a

simTime long ms Simulation epoch time, number of
milliseconds since January 1, 1970, 00:00:00
GMT.
C type: long long.
Example: 1456497096952.

1.5a

5 In the package gov.nasa.sntb.messagingdatamodels.sndem.simuniverse.v001.
6 In the package gov.nasa.sntb.messagingdatamodels.sndem.simuniverse.v002.

 34

truePosition3d Position3d Position of the vehicle in the three-
dimensional space (see Section 4.12.1.1).

1.5a

topodetic
Velocity

float[3] ft/
sec

Wanted velocity vector, North-East-Down
(NED) frame, in feet per second.
Example: [-191.0, -84.0, 0.0].

1.5a

topodetic
Acceleration

float[3] ft/
sec/
sec

Wanted acceleration, x, y, z, in feet per
second per second.
Example: [0.0, 0.0, 0.0].

1.5a

body
Orientation

Orientation Orientation of the vehicle body (see Section
4.12.1.3).
Optional.

1.5a

bodyAngular
Rate

float[3] deg/
sec

Angular rate, in degrees per second, of the
vehicle body.
Optional.
Example: [0.0, 0.0, 0.0].

1.5a

indicated
Altitude

float ft Indicated altitude in feet.
This is the value shown on the altimeter.
Example: 925.0.

1.5a

pressure
Altitude

float ft Pressure altitude in feet. This is the altitude
above the standard datum plane; the value
shown on the altimeter when it is set to a
standard pressure of 29.92 inHg.
Optional.
Example: 925.0.

1.5a

altimeter
Setting

float inHg Altimeter setting in inHg. The value of the
atmospheric pressure used to adjust the sub-
scale of a pressure altimeter.
Optional.
Example: 256.0.

1.5a

indicated
Airspeed

float knots Airspeed, in knots, read directly from the
airspeed indicator.
Optional.
Example: 126.0.

1.5a

trueAirspeed float knots The speed, in knots, of the aircraft relative to
the airmass in which it is flying.
Example: 120.0.

1.5a

calibrated
Airspeed

float knots The indicated airspeed, in knots, corrected for
instrument and position error.
Optional.
Example: 122.0.

1.5a

 35

magHeading float deg Magnetic heading in degrees:
• Heading of x-body axis with respect to

magnetic north.
• Headings are angles, range is between 0

and 360.
• Angles are in degrees.
Optional.
Example: 175.13336.

1.5a

magneticTrack float deg Magnetic track angle in degrees. Direction of
projection of velocity vector onto ground with
respect to magnetic north.
Optional.
Example: 175.13336.

1.5a

magnetic
Variation

float deg Magnetic variation in degrees. Magnetic
variation at three-dimensional position and
simulation time.
Optional.
Example: 10.602112.

1.5a

aircraftWeight float lbs Aircraft weight in pounds.
Optional.
Example: 2300.0.

1.5a

fuelWeight float lbs Fuel weight in pounds. For logging and post-
analysis use only.
Optional.
Example: 210.0.

1.5a

landingGear float % Landing gear percentage.
Optional, only needed for display.
Example: 0.0.

1.5a

speedBrakes float % Speed brakes percentage.
Optional, only needed for display.
Example: 0.0.

1.5a

vehicleType String Vehicle type.
C type: char[128].
Optional, only needed for display.
Example: SR22.

1.5a

vehicle
Operator

String Vehicle operator.
C type: char[128].
Optional, only needed for display.
Example: NASA.

1.5a

 36

deadReckoning
Algorithm

long Enumeration of the dead-reckoning algorithm
to use.
Optional.
Example: 0.

1.5a

lights boolean Flag indicates whether lights are on (true) or
not (false).
Optional, only needed for display.
Example: false.

1.5a

freeze boolean Flag indicates whether the simulator is frozen
(true) or not (false). If true, the simulator is not
updating, and dead reckoning is suspended.
Optional.
Example: false.

1.5a

svbuffer String Packed buffer to be used for topic sub-
versioning.
C type: char[320].
Example: svbuffer.

1.5a

4.12.1.1. Position 3D
A Position 3D represents a location in the three-dimensional space. Table 4.21 lists the

data dictionary of this data structure.

Table 4.21. Data dictionary of Position 3D

Field Type Unit Description Since
position2d Position2d Position of the vehicle in the two-dimensional

space (See Section 4.12.1.2).
1.5a

geodetic
Altitude

float ft Altitude in feet.
Example: 5425.0.

1.5a

4.12.1.2. Position 2D
A Position 2D represents a location in the two-dimensional space. Table 4.22 lists the data

dictionary of this data structure.

Table 4.22. Data dictionary of Position 2D

Field Type Unit Description Since
latitude double deg Latitude in degrees.

Example: 36.974036693573.
1.5a

longitude double deg Longitude in degrees.
Example: -76.70776605606079.

1.5a

 37

4.12.1.3. Body Orientation
A Body Orientation represents the orientation of a vehicle body. Table 4.23 lists the data

dictionary of this data structure.

Table 4.23. Data dictionary of Body Orientation

Field Type Unit Description Since
yaw float deg Yaw in degrees.

Example: 164.53125.
1.5a

pitch float deg Pitch in degrees.
Example: 2.0.

1.5a

roll float deg Roll in degrees.
Example: 0.0.

1.5a

4.12.2. Vehicle True State, Version 2
A Vehicle True State, defined in the sub-package v002, represents a true state of a

vehicle from an ASTOR in the version 2 format. When comparing with the version 1, the only
change is the qualifierBits field that it is declared as long type in the version 2 instead of
int type in the version 1. Table 4.24 lists the data dictionary of the updated field. Note that all
the custom data structures used in this version are defined in the sub-package v002.

Table 4.24. Updated data dictionary of Vehicle True State, Version 2

Field Type Unit Description Since
qualifierBits long Qualifier Bits.

C type: long long.
Example: 0.

1.5a

Appendix A. Version History
In order to support high-fidelity simulations among NASA and communities, the SNDEM has

been undergoing improvements and modifications. Table A.1 lists the version history of the
changes introduced in the data exchange model among TestBed versions. This document
focuses on the latest version 2.0a.

Table A.1. Version history

Version Changes Notes
0.9a • None • Released on February 10, 2016.

• This initial version was effective
until the Boeing 2018
ecoDemonstrator flight test.

0.9b • Supported field aliases to reduce
message sizes, e.g., “src” for
“source”

• Omitted long fields with zero (0) values

• Released on June 8, 2017.
• A primary goal was to reduce

message sizes.

 38

• Converted byte array contents into
Base64 [19] strings

• Converted character array contents
into Java strings

• Supported special floating numbers:
NaN, -Infinity, and Infinity

1.0a • Moved the following SNDEM fields to
the “metaInfo” field:
o “source”
o “timePublished”
o “timeSubscribed”

• Released on September 27, 2018.
• This version allowed subclasses

to define fields using these three
names.

• The changes allowed TestBed to
add new fields without affecting
subclasses in the future.

1.5a • None • Released on May 24, 2019.
• No changes to the data exchange

model.
2.0a • Added “userDefinedData” field to

SNDEM.
• Added “version” field to the

“metaInfo” field.

• Released on September 30, 2019.
• This version supported user

defined data and message
versioning.

Table A.2 lists an example track message, in JSON format, to illustrate the changes among the
versions. Note that the message of the version 2.0a also includes a user-defined data named
“engine.”

Table A.2. Example track messages

Version Message Version Message
0.9a {

 "vehicleId": "BOE069",
 "latitudeDegrees": 48.133335,
 "longitudeDegrees": -111.13718,
 "altitudeFeet": 27004.1,
 "trackTime": 1523829782000,
 "groundspeedKnots": 389.2,
 "trueHeadingDegrees": 123.22178,
 "verticalSpeedFpm": -96.3,
 "source": "EcodAdapter.1",
 "timePublished": 1520526488734,
 "timeArrived": 0
}

0.9b {
 "vid": "BOE069",
 "latDeg": 48.133335,
 "lonDeg": -111.13718,
 "altFt": 27004.1,
 "time": 1523829782000,
 "gsKt": 389.2,
 "crsDeg": 123.22178,
 "vsFpm": -96.3,
 "src": "EcodAdapter.1",
 "tpub": 1523829795652
}

1.0a
1.5a

{
 "vid": "BOE069",
 "latDeg": 48.133335,
 "lonDeg": -111.13718,
 "altFt": 27004.1,
 "time": 1523829782000,
 "gsKt": 389.2,
 "crsDeg": 123.22178,

2.0a {
 "vid": "BOE069",
 "latDeg": 48.133335,
 "lonDeg": -111.13718,
 "altFt": 27004.1,
 "time": 1523829782000,
 "gsKt": 389.2,
 "crsDeg": 123.22178,

 39

 "vsFpm": -96.3,
 "meta": {
 "src": "EcodAdapter.1",
 "tpub": 1561586962076
 }
}

 "vsFpm": -96.3,
 "meta": {
 "src": "EcodAdapter.1",
 "ver": "2.0a",
 "tpub": 1561586962076
 },
 "_udd": {
 "registry": {
 "engine": {
 "model": "boost",
 "rpm": "12345"
 }
 }
 }
}

5. References
1. Palopo, K., Chatterji, G. B., Guminsky, M. D., and Glaab, P. C. (2015) “Shadow Mode

Assessment using Realistic Technologies for the National Airspace System (SMART NAS)
Test Bed Development,” AIAA Modeling and Simulation Technologies Conference, Dallas,
TX, 22-26 June 2015.

2. Robinson, J. E., Lee, A., and Lai, C. F. (2017) “Development of a High-Fidelity Simulation
Environment for Shadow-Mode Assessments of Air Traffic Concepts,” Royal Aeronautical
Society: Modeling and Simulation in Air Traffic Management Conference, London, UK, 14-
15 November 2017.

3. Chan, W., Barmore, B., Kibler, J., Lee, P., O’Connor, N., Palopo, K., Thipphavong, D., and
Zelinski, S. (2018) “Overview of NASA’s Air Traffic Management - Exploration (ATM-X)
Project,” AIAA 2018-3363, AIAA Aviation Forum, AIAA Aviation Technology, Integration, and
Operations Conference, Atlanta, GA, 25-29 June 2018.

4. Aponso, B. L. (2014) “Simulation Technology at NASA,” National Academies’ Workshop on
Opportunities for the Employment of Simulation in U.S. Air Force Training Environments,
Dayton, OH, November 17-19, 2014.

5. Dorighi, N. S. and Sullivan, B. T. (2003) “FutureFlight Central: A Revolutionary Air Traffic
Control Tower Simulation Facility,” AIAA-2003-5598, AIAA Modeling and Simulation
Technologies Conference and Exhibit, 11-14 August 2003.

6. Eshow, M. M., Lui, M., and Ranjan, S., (2014) “Architecture and Capabilities of a Data
Warehouse for ATM Research,” 2014 IEEE/AIAA 33rd Digital Avionics Systems Conference
(DASC), Colorado Springs, CO, 2014, pp. 1E3-1-1E3-14.

7. Erzberger, H., Lauderdale, T. A., and Chu Y-C (2010), “Automated Conflict Resolution,
Arrival Management and Weather Avoidance for ATM,” 27th Congress of International
Council of the Aeronautical Sciences, Nice, France, 19-24 September 2010.

8. “Boeing: ecoDemonstrator” (Online).
https://www.boeing.com/principles/environment/ecodemonstrator. Boeing. Retrieved
2020/02/11.

9. Coppenbarger, R. A., Mead, R. W., and Sweet, D. N. (2007), “Field Evaluation of the
Tailored Arrivals Concept for Datalink-Enabled Continuous Descent Approach,” AIAA 2007-
7778, 7th AIAA Aviation Technology, Integration and Operations Conference (ATIO), Belfast,
Northern Ireland, 18-20 September 2007.

10. Thipphavong, D. P., Apaza, R. D., Barmore, B. E., Battiste, V., Burian, B. K., Dao, Q. V.,
Feary, M. S., Go, S., Goodrich, K. H., Homola, J. R., Idris, H. R., Kopardekar, P. H., Lachter,
J. B., Neogi, N. A., Ng, H. K., Oseguera-Lohr, R. M., Patterson, M. D., and Verma, S. A.

 40

(2018) “Urban Air Mobility Airspace Integration Concepts and Considerations,” AIAA 2018-
3676, 2018 Aviation Technology, Integration, and Operations Conference, Atlanta, GA, 25-
29 June 2018.

11. “Java SE - Downloads | Oracle Technology Network | Oracle” (Online).
https://www.oracle.com/technetwork/java/javase/downloads/. Oracle. Retrieved 2020/02/12.

12. “Google Java Style Guide” (Online). https://google.github.io/styleguide/javaguide.html.
Google. Retrieved 2020/02/12.

13. Gosling, J., Joy, B., Steele, G., Bracha, G., and Buckley, A., “The Java® Language
Specification – Java SE 8 Edition” (Online).
https://docs.oracle.com/javase/specs/jls/se8/html/index.html. Oracle. Retrieved 2020/02/10

14. The National Imagery and Mapping Agency (NIMA) (2000), “Department of Defense World
Geodetic System 1984, Its Definition and Relationships With Local Geodetic Systems,”
NIMA Technical Report TR8350.2, 3 January 2000.

15. Bray, T., “RFC 8259 - The JavaScript Object Notation (JSON) Data Interchange Format”
(Online). https://tools.ietf.org/html/rfc8259. Internet Engineering Task Force. Retrieved
2020/02/07.

16. “GitHub - google/gson: A Java serialization/deserialization library to convert Java Objects
into JSON and back” (Online). https://github.com/google/gson. Google. Retrieved
2020/02/12.

17. Ging, A., Engelland, S., Capps, A., Eshow, M., Jung, Y., Sharma, S., Talebi, E., Downs, M.,
Freedman, C., Ngo, T., Sielski, H., Wang, E., Burke, J., Gorman, S., Phipps, B.,
Ruszkowski, L. M. (2018) “Airspace Technology Demonstration 2 (ATD-2) Technology
Description Document (TDD),” NASA-TM-2018-219767, NASA Technical Memorandum,
March 1, 2018.

18. Lai, C. F. (2020) “Air Traffic Management TestBed Traffic Viewer: Developer’s Guide,”
NASA-TM-2020-220511, NASA Technical Memorandum, April 16, 2020.

19. Freed, N. and Borenstein, N. (1996) “RFC 2045: Multipurpose Internet Mail Extensions
(MIME) Part One: Format of Internet Message Bodies,” https://doi.org/10.17487/RFC2045.
Internet Engineering Task Force. Retrieved 2020/02/07.

20. Cunningham, S. (1982) “Form 7233-1 – Flight Plan Document Information,”
https://www.faa.gov/forms/index.cfm/go/document.information/documentid/186159. Federal
Aviation Administration. Retrieved 2020/02/12.

21. Jovic, S. (2017), “Live Virtual Constructive (LVC) Interface Control Document for the LVC
Gateway,” NASA-TM-2017-219499, NASA Technical Memorandum, January 19, 2017.

22. Prevot, T., Palmer, E., Smith, N., and Callantine, T. (2002), “A Multi-Fidelity Simulation
Environment for Human-in-the-Loop Studies of Distributed Air Ground Traffic Management,”
AIAA 2002-4679, AIAA Modeling and Simulation Technologies Conference and Exhibit,
Monterey, CA, 5-8 August 2002.

23. Prevot, T., Smith, N., Palmer, E., Mercer, J., Lee, P., Homola, J., and Callantine, T. (2006)
“The Airspace Operations Laboratory (AOL) at NASA Ames Research Center,” AIAA 2006-
6112, AIAA Modeling and Simulation Technologies Conference and Exhibit, Keystone, CO,
21-24 August 2006.

24. Prevot, T. and Mercer, J. (2007) “MACS: A Simulation Platform for Today’s and Tomorrow’s
Air Traffic Operations,” AIAA-2007-6556, AIAA Modeling and Simulation Technologies
(MST) Conference and Exhibit, Hilton Head, SC, 20-23 August 2007.

25. “Time Based Flow Management” (Online). https://www.faa.gov/nextgen/cip/tbfm/. Federal
Aviation Administration. Retrieved 2020/02/05.

26. Murphy, J. R., Jovic, S., and Otto, N. M. (2015), “Message Latency Characterization of a
Distributed Live, Virtual, Constructive Simulation Environment,” AIAA SciTech, Kissimmee,
FL, 5-9 January 2015.

 41

27. Archdeacon, J. L., Iwai, N. H., Kato, K. H., and Sweet, B. T. (2017) “Reconfigurable Image
Generator,” U.S. Patent 9,583,018, February 28, 2017.

28. Arneson, H., Evans, A. D., Li, J., and Wei, M. Y. (2017) “Development and Validation of an
Automated Simulation Capability in Support of Integrated Demand Management,”
AIAA/Royal Aeronautical Society Flight Simulation, London, UK, 14-16 November 2017.

29. Peters, M. E., Ballin, M. G., and Sakosky, J. S. (2012), “A Multi-Operator Simulation for
Investigation of Distributed Air Traffic Management Concepts,” AIAA 2002-4596, AIAA
Modeling and Simulation Technologies Conference and Exhibit, Monterey, CA, 5-8 August
2002.

