
 

NASA/TM—20205001252 
  

 

Air Traffic Management TestBed  
Data Exchange Model 
 
Chok Fung Lai 
Ames Research Center, Moffett Field, California
 
 
 
 
 
 
 
 
 
 
 

 Click here: Press F1 key (Windows) or Help key (Mac) for help  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

May 2020 



NASA STI Program ... in Profile 
 
 

Since its founding, NASA has been dedicated  
to the advancement of aeronautics and space 
science. The NASA scientific and technical 
information (STI) program plays a key part in 
helping NASA maintain this important role. 

 
The NASA STI program operates under the 
auspices of the Agency Chief Information Officer. 
It collects, organizes, provides for archiving, and 
disseminates NASA’s STI. The NASA STI 
program provides access to the NTRS Registered 
and its public interface, the NASA Technical 
Reports Server, thus providing one of the largest 
collections of aeronautical and space science STI 
in the world. Results are published in both non-
NASA channels and by NASA in the NASA STI 
Report Series, which includes the following report 
types: 

 
• TECHNICAL PUBLICATION. Reports of 

completed research or a major significant 
phase of research that present the results of 
NASA Programs and include extensive data 
or theoretical analysis. Includes compila- 
tions of significant scientific and technical 
data and information deemed to be of 
continuing reference value. NASA counter-
part of peer-reviewed formal professional 
papers but has less stringent limitations on 
manuscript length and extent of graphic 
presentations. 
 

• TECHNICAL MEMORANDUM.  
Scientific and technical findings that are 
preliminary or of specialized interest,  
e.g., quick release reports, working  
papers, and bibliographies that contain 
minimal annotation. Does not contain 
extensive analysis. 
 

• CONTRACTOR REPORT. Scientific and 
technical findings by NASA-sponsored 
contractors and grantees. 

• CONFERENCE PUBLICATION.  
Collected papers from scientific and 
technical conferences, symposia, seminars, 
or other meetings sponsored or  
co-sponsored by NASA. 
 

• SPECIAL PUBLICATION. Scientific, 
technical, or historical information from 
NASA programs, projects, and missions, 
often concerned with subjects having 
substantial public interest. 
 

• TECHNICAL TRANSLATION.  
English-language translations of foreign 
scientific and technical material pertinent to  
NASA’s mission. 
 

Specialized services also include organizing  
and publishing research results, distributing 
specialized research announcements and 
feeds, providing information desk and personal 
search support, and enabling data exchange 
services. 

 
For more information about the NASA STI 
program, see the following: 

 
• Access the NASA STI program home page 

at http://www.sti.nasa.gov 
 

• E-mail your question to help@sti.nasa.gov 
 

• Phone the NASA STI Information Desk at   
757-864-9658 
 

• Write to: 
NASA STI Information Desk 
Mail Stop 148 
NASA Langley Research Center 
Hampton, VA 23681-2199 

  
  

This page is required and contains approved text that cannot be changed.  



 

NASA/TM—20205001252 
  

 

Air Traffic Management TestBed  
Data Exchange Model 
 
Chok Fung Lai  
Ames Research Center, Moffett Field, California 
 
 
 
 
 
 
 
 

 Click here: Press F1 key (Windows) or Help key (Mac) for help  
 
 
 
 
 
 
 

 
 

National Aeronautics and 
Space Administration 
 
Ames Research Center 
Moffett Field, CA 94035-1000 

May 2020 



 

Acknowledgments  
The author would like to thank the other Air Traffic Management TestBed team members, Alan 
Lee, Phu Huynh, Huu Huynh, Jimmy Nguyen, David Wood, and Yun Zheng, for their 
contributions to the design and development of the data exchange model. The author would 
also like to thank Mohamad Refai, Kee Palopo, Gregory Wong, Confesor Santiago, and 
Katharine Lee for reviewing this technical memorandum. 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Click here: Press F1 key (Windows) or Help key (Mac) for help  
 

This report is available in electronic form at 

http://ntrs.nasa.gov/



 iii 

Abstract 
The Air Traffic Management (ATM) TestBed is a Platform as a Service that is being 

developed by the National Aeronautics and Space Administration (NASA) to help design, 
configure, integrate, run, and monitor air traffic simulations. The platform is designed to provide 
cloud services including back-end, big-data analytics tools, on-demand computing resource 
management, data storage, and communication middleware. The ATM TestBed reduces the 
time to test concepts and technologies, supports interactions among various methods such as 
human-in-the-loop and automation-in-the-loop simulations, and enables collaborative 
simulations by sharing technologies and tools in the ATM community. In order to allow easier 
access to simulation components, TestBed provides a messaging support layer for connectivity 
using a consistent set of input/output interfaces. In addition, a standard data format is 
introduced to facilitate communication between the components. The data exchange model, 
supported in the messaging support layer, standardizes the format of the information to be 
exchanged among the components. This document describes the messaging data model 
currently developed in TestBed and provides data dictionaries for references to component 
developers as well as simulation engineers. 
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1. Introduction 
The Air Traffic Management (ATM) TestBed, formerly known as the Shadow Mode 

Assessment using Realistic Technologies for the National Airspace System (SMART-NAS) 
Testbed, has been under active development to enable collaborative simulations by sharing 
technologies and simulation components in the ATM community [1, 2, 3]. The envisioned way to 
achieve effective simulations is to provide access to components, namely realistic air 
transportation data, air traffic control operational systems, and simulation tools. Inter-connecting 
components requires data exchanges and therefore formats. However, components having 
distinct data exchange formats makes design, setup, execution and extension complicated, 
error prone and time consuming. Figure 1.1(a) shows a setup of a component, A, connecting to 
three components, X, Y, and Z, where the directed links (↔) represent data connectivity. 
Assume these components use distinct data exchange formats. In order for component A to 
connect to the other components, its developers must implement three data converters, denoted 
by A⇄X, A⇄Y, and A⇄Z, so that the format used in component A can be converted into the 
other formats and back. This approach is not scalable especially if the creation of a custom data 
converter requires software development, testing and maintenance. In the example, the 
developers have to create yet another data converter X⇄Y to run an extended setup involving 
connectivity between components X and Y. 

 

 

 

 
(a)  (b) 

Figure 1.1. Simulation setup: (a) without and (b) with TestBed 

In order to allow easier access to the components and to facilitate communication between 
the components, TestBed provides a messaging support layer for connectivity using a 
consistent set of input/output interfaces. The process introduces a standard data format called 
SMART-NAS Data Exchange Model (SNDEM). In Figure 1.1(b), component A no longer 
connects directly to the other components; instead, all the components are connecting to the 
messaging support layer. Each component has its own data converter, also known as an 
adapter, that converts its data format into the data exchange model, M, and back. The TestBed 
platform allows new components to be added, and existing components replaced or removed in 
a plug-and-play manner. In general, if P components need to connect to Q components, then 
P×Q custom data converters are needed; with the introduction of a common data exchange 
model, only P+Q generic data converters are needed. 

The development of TestBed is based on a use case driven approach to support technology 
exploration, research experiments and flight tests including: 

1. Connectivity test among ATM TestBed Laboratory, Distributed Simulation Research 
Laboratory [4], and FutureFlight Central [5] at NASA Ames Research Center 

2. Connectivity test between NASA Ames and Langley Research Centers 
3. Live flight data connection from the Federal Aviation Administration’s (FAA’s) System 

Wide Information System (SWIM) via the NASA’s Sherlock ATM Data Warehouse [6] 
4. Autoresolver [7] evaluation during the Boeing 2018 ecoDemonstrator [8] flight test 
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5. Tailored Arrival Manager [9] evaluation and datalink connectivity during the Boeing 2020 
ecoDemonstrator flight test with the FAA 

6. Urban Air Mobility (UAM) [10] human-in-the-loop experiments with Uber 
The purpose of this document is to provide detailed information of the Data Exchange Model 

currently developed in TestBed and to provide data dictionaries of each data model for 
references to component developers and simulation engineers. Though the data models have 
been created to support the use cases mentioned above, there are general mechanisms 
exchanging custom data that are not defined in the current model. 

Naming conventions and units of measurement are presented in Section 2. Section 3 
describes the messaging data model used in the messaging support layer. Data dictionaries of 
the data models currently defined in TestBed are detailed in Section 4. Finally, version history of 
the data exchange model is documented in Appendix A. Since the data exchange model will 
continue to evolve, please contact the ATM TestBed Development Team (email: 
chok.f.lai@nasa.gov) to obtain the latest version of this document. The information on how to 
connect and use TestBed will be documented in a User Guide and Developer Guide. 

2. Naming Conventions 
The data exchange model has been developed using Java Standard Edition (SE) 

Development Kit (SDK) version 8 [11]. The naming conventions in the TestBed codebase follow 
the Google Java Style Guide [12] and the class names are in camel case. For example, 
VehicleTrueState is the name of the class Vehicle True State. 

2.1. Data Structures 
The primitive types, arrays, enum types, and the class String are described in the Java 

Language Specification [13]. Two collection data structures, List and Map, are also used:  
1. A List<E> is a collection of elements with a generic type E.  
2. A Map<K,V> is a collection of mappings of key to value. The keys and values have 

generic types K and V, respectively. 

2.2. Units of Measurement 
Table 2.1 lists the units of measurement used in the data exchange model. 

Table 2.1. Units of measurement 

Symbol Unit Unit Of Description 
% Percentage -- The dimensionless unit of a fraction of 100. One 

percentage equals one-hundredth, i.e., 1% = 1 100⁄ . 
deg Degree Angle For headings, values are between 0 and 360, inclusive. 

Note that headings of 0 degrees and 360 degrees are the 
same. 
For latitudes, values are in World Geodetic System 1984 
(WGS84) reference coordinate system [14]. Latitude 
values are between −90 and +90, inclusive. Positive 
values are north of the equator (N), and negative values 
are south of the equator (S). 
For longitudes, values are in WGS84 reference 
coordinate system. Longitude values are between −180 
and +180, inclusive. Positive values are east of the prime 
meridian (E), and negative values are west of the prime 
meridian (W). 
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ft Foot Length The unit of vertical distance in air navigation. 
inHg Inch of 

mercury 
Pressure The unit of pressure in an altimeter setting. 

kt Knots Speed Positive values indicate forward movement, and negative 
values indicate backward movement. 

lbs Pound Weight The unit of weight in the flight data model. 
min Minute Time The unit of time in the flight data model. One minute 

equals 60 seconds. 
ms Millisecond Time The unit of time. One millisecond equals one-thousandth 

of a second, i.e., 1	𝑚𝑠 = 1 1,000⁄ 𝑠𝑒𝑐. 
Time is measured by the number of milliseconds elapsed 
since January 1, 1970, 00:00:00 GMT. 
Duration is measured by taking the difference between 
two timestamps. 

nmi Nautical 
mile 

Length The unit of horizontal distance in air navigation. One 
nautical mile equals 1,852 meters.  

persons Person People Number of people. 
sec Second Time The unit of time in the flight data model. One second 

equals 1,000 milliseconds. 

2.3. Package Names 
Table 2.2 lists the data structure names and their package names used in this document. 

The fully qualified name is the package name followed by the data structure name, e.g., 
java.util.List for List. 

Table 2.2. Data structure names and their package names 

Data Structure Name Package Name 
Attributes gov.nasa.sntb.messagingdatamodels.sndem.attributes 
Binary Data gov.nasa.sntb.messagingdatamodels.sndem.binary 
Class java.lang 
Conflict Data gov.nasa.sntb.messagingdatamodels.sndem.flightstate 
Conflict Flight Data nasa.arc.aac.aacinterface 
Flight Conflict gov.nasa.sntb.messagingdatamodels.sndem.flightstate 
Flight Plan gov.nasa.sntb.messagingdatamodels.sndem.flightplan 
Flight Plan Type gov.nasa.sntb.messagingdatamodels.sndem.flightplan 
Image Data gov.nasa.sntb.messagingdatamodels.sndem.binary 
Linked Hash Map java.util 
List java.util 
Map java.util 
Meta Info gov.nasa.sntb.messagingdatamodels.sndem 
Mpi Message gov.nasa.sntb.messagingdatamodels.sndem.mpi.message 
Registry gov.nasa.sntb.messagingdatamodels.sndem.attributes 
Resolution gov.nasa.sntb.messagingdatamodels.sndem.resolution 
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Separation gov.nasa.sntb.messagingdatamodels.sndem.flightstate 
Snccm gov.nasa.sntb.messagingdatamodels.snccm 
Sndem gov.nasa.sntb.messagingdatamodels.sndem 
Snhmm gov.nasa.sntb.messagingdatamodels.snhmm 
Snmdm gov.nasa.sntb.messagingdatamodels.snmdm 
String java.lang 
Task gov.nasa.sntb.messagingdatamodels.sndem.task 
Task Status gov.nasa.sntb.messagingdatamodels.sndem.task 
Track gov.nasa.sntb.messagingdatamodels.sndem.flightstate 
Trajectories gov.nasa.sntb.messagingdatamodels.sndem.trajectory 
Trajectory gov.nasa.sntb.messagingdatamodels.sndem.trajectory 
User Defined Data gov.nasa.sntb.messagingdatamodels.sndem 
Vehicle State gov.nasa.sntb.messagingdatamodels.sndem.flightstate 
Vehicle True State gov.nasa.sntb.messagingdatamodels.sndem.simuniverse 
Waypoint gov.nasa.sntb.commoninterfacesupport.utilities.data 

3. Messaging Data Model 
SMART-NAS Messaging Data Model is a unified data representation in the TestBed 

messaging support layer and standardizes the format of the information to be exchanged 
among simulation components. Currently, three concrete models have been developed: 

1. Command and Control Model—contains messages for controlling components such as 
startup and shutdown. 

2. Data Exchange Model—contains messages for data exchanges between components. 
3. Health and Monitor Model—contains messages for monitoring components. 
 

 
Figure 3.1. Hierarchy of the messaging data model 
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The hierarchy of these models is shown in Figure 3.1 where the up arrow (↑) indicates 
extension. Thus, a class at the tail of an arrow extends the class at the head of the arrow. The 
models provide application programming interfaces for converting messages to and from the 
format being used in the messaging support layer. This document focuses on the data 
exchange model. The two other models are internal to the TestBed platform and are out of the 
scope. 

To ease development effort, each message is currently converted into a JavaScript Object 
Notation (JSON) [15] string using Google Gson library [16]. Figure 3.2 is a flow diagram 
illustrating how a track instance is transmitted from component A to component B. First, the 
track instance is passed to an adapter’s publisher which calls the method Sndem.toJson() to 
convert the instance into a JSON string. Second, the JSON string is transmitted to a subscriber 
via the messaging support layer. Finally, the subscriber calls the method 
Sndem.fromJson(String) to convert the JSON string back into a track instance. 

 

 
Figure 3.2. Flow diagram of a track message 

Note that converting a messaging data model into a JSON string and back (the red part in the 
diagram) is considered internal in the TestBed platform. In the future, the JSON format may be 
replaced with another format that supports additional features, such as compression and 
encryption, to accommodate better network transfer rates as well as data protection without 
affecting the existing adapter implementations. 

3.1. SNDEM 
Sndem is the abstract, base class for all the SNDEM (SMART-NAS Data Exchange Model) 

classes defined in the TestBed messaging support layer. Table 3.1 lists the data dictionary of 
this data structure using the following column definitions: 

1. Field—name of the field defined in the data model or structure. 
2. Type—name of the data type; complex data types will be listed in subsections. 
3. Unit—unit of measurement, if available, of the field value (see Section 2.2). 
4. Description—brief description of the field as well as optional information including value 

ranges, name aliases defined in the previous versions, and an example value. 
5. Since—first TestBed version supporting the field. The version history is documented in 

Appendix A. 
Note: throughout this document, for readability, long field names, type names and units of 
measurement in the data dictionary tables are split into multiple lines. 

Table 3.1. Data dictionary of SNDEM 

Field Type Unit Description Since 
meta Meta 

Info 
 Meta-information of the data exchange model 

instance (see Section 3.1.1). 
Field alias: metaInfo. 

1.0a 

_udd User 
Defined 
Data 

 Optional user-defined data storing name-value pairs 
based on given types (see Section 3.1.2). 
Value is null if not available. 
Field alias: userDefinedData. 

2.0a 
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3.1.1. Meta Information 
A Meta Info instance stores metadata and information about a data exchange model 

including the identifier of the adapter’s publisher, version of the message, time when the 
message was published, and time when the message was received. Table 3.2 lists the data 
dictionary of the meta information. 

Table 3.2. Data dictionary of Meta Information 

Field Type Unit Description Since 
src String  Source of the data exchange model message, i.e., 

who publishes the data. The format of this value is 
[ComponentTitle].[BlockID]. The value will be 
automatically set in an adapter’s publisher if it is not 
programmatically set by a developer. 
Field alias: source. 
Example: Traffic Viewer.2. 

0.9b 

ver String  Version of the data exchange model. This is also 
the version of the TestBed Software Development 
Kit. 
Value is null if not available. 
Field alias: version. 
Example: 2.0a. 

2.0a 

tpub long ms Publication time when the data exchange model 
message was published by a component to the 
messaging layer. It is possible that multiple 
messages have the same publication time when 
they were published within the same millisecond. 
Value range is [0, +inf] or zero (0) if not 
available. 
Field alias: timePublished. 
Example: 1512429016457. 

0.9b 

tsub long ms Subscription time when the data exchange model 
was received by a component from the messaging 
layer. It is possible that multiple messages have the 
same subscription time if they were received within 
the same millisecond. 
Value range is [0, +inf] or zero (0) if not 
available. 
Field alias: timeArrived, timeSubscribed. 
Example: 1518546378849. 

0.9b 

3.1.2. User Defined Data 
A User Defined Data (UDD) instance stores user specific name-value pairs that are not 

defined in the data exchange model. The name-value pairs can be grouped by a type that is, by 
convention, a fully qualified class name of the user specific data structure. Table 3.3 lists the 
data dictionary of the UDD. Internally, a UDD instance uses a Registry (see Section 3.1.3) data 
structure to store custom data. 
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Table 3.3. Data dictionary of User Defined Data 

Field Type Unit Description Since 
registry Registry  Mappings of data type to name-value pairs: 

• Key = type of the data 
• Value = mappings of data name to value: 

• Key = name of the data 
• Value = value of the data as string 

0.9b 

 
The UDD provides flexibility for component adapter developers to store custom and extended 
data in any existing data exchange model. Figure 3.3 shows a setup demonstrating the usage of 
the UDD and connectivity among four components: 

1. SWIM: Airport Surface Detection Equipment—Model X (ASDE-X) 
2. SWIM: Traffic Flow Management Data (TFMData) 
3. Fuser from the Airspace Technology Demonstration 2 (ATD-2) [17] 
4. TestBed Traffic Viewer [18] 

The UDD associated with the track messages consists of the following information: 
• Globally Unique Flight Identifier (GUFI) of the system that produced the track 
• Identifier of the airport that is responsible for the track 
• Identifiers of the departure and destination airports 

and the UDD associated with the flight plan messages includes the following information: 
• GUFI of the system that produced the flight plan 
• Estimated and scheduled times of arrival to arrival fix, landing, and gate arrival 
• Engine class (jet, turbo, or piston), equipment and weight class qualifiers 
 

 
Figure 3.3. Connectivity among two live SWIM feeds, Fuser, and Traffic Viewer 

Here is an example demonstrating the usage of the UDD. Suppose that two component 
adapters, My Publisher and My Subscriber, need to exchange track messages with aircraft 
engine data. Even though no engine data model is currently defined in the TestBed data 
exchange model, the engine data can still be bundled in the track messages, as illustrated in 
Figure 3.4. 

 

 
Figure 3.4. Engine data bundled in track messages via UDD 
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Assume the aircraft engine data model has a type string “com.example.model.Engine” and 
consists of two fields: a string representing the engine model (“model”) and an integer number 
representing the rotations per minute (“rpm”). Listing 3.1 lists code snippets, in the Java 
programming language, demonstrating two use cases: 

(a) A publisher component publishes a track message with the engine data bundled, and  
(b) A subscriber component receives the bundled engine data from a track message. 

Listing 3.1. Engine data bundled in track message 

(a) package com.example.component.MyPublisher; 
 
import gov.nasa.sntb.messagingdatamodels.sndem.UserDefinedData; 
import gov.nasa.sntb.messagingdatamodels.sndem.flightstate.Track; 
import gov.nasa.sntb.simcomponent.adapter.PluginAdapter; 
 
public class MyPublisher extends PluginAdapter { 
    @Override 
    public void execute() { 
        Track track = new Track("NASA123", 37.77f, -122.42f, 1200f, 0); 
        String type = "com.example.model.Engine"; 
        UserDefinedData engine = track.getUserDefinedData().get(type); 
        engine.setString("model", "boost"); 
        engine.setInt("rpm", 123456);         
        publish(track); 
    } 
} 

(b) package com.example.component.MySubscriber; 
 
import gov.nasa.sntb.architectblueprint.interfaces.datasets.TrackDataset; 
import gov.nasa.sntb.messagingdatamodels.sndem.UserDefinedData; 
import gov.nasa.sntb.messagingdatamodels.sndem.flightstate.Track; 
import gov.nasa.sntb.simcomponent.adapter.PluginAdapter; 
 
public class MySubscriber extends PluginAdapter implements TrackDataset { 
    @Override 
    public void processTrackDataset(String key, Track dataset) { 
        String type = "com.example.model.Engine"; 
        UserDefinedData engine = dataset.getUserDefinedData().get(type); 
        String model = engine.getString("model"); 
        int rpm = engine.getInt("rpm"); 
    } 
} 

3.1.3. Registry 
A Registry instance is a specialized map data structure storing mappings of type to Value 

Map, which itself is a map. The keys are types and the values are mappings of name to value. 
Thus, each value can be uniquely identified by a pair of type and name. Listing 3.2 lists the 
class definitions of the Registry and Value Map. The purpose of the Registry data structure is to 
provide a standardized way to store and query values by types and names. Note that registry 
instances are referenced in both the User Defined Data (see Section 3.1.2) and the Attributes 
(see Section 4.1). 
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Listing 3.2. Class definitions of Registry and Value Map 

package gov.nasa.sntb.messagingdatamodels.sndem.attributes; 
 
public class Registry extends LinkedHashMap<String, ValueMap> { 
} 
 
public class ValueMap extends LinkedHashMap<String, String> implements Delegate { 
} 

4. Data Exchange Model 
Each data exchange model class extends the abstract class Sndem (see Section 3.1). The 

extension allows new capabilities, such as data compression and data encryption, to be added 
in the future without modifications of any existing subclasses. The following subsections detail 
each data exchange model defined in TestBed. 

4.1. Attributes 
The Attributes model provides a means for exchanging data that are not currently defined 

in the data exchange model. This allows current and future airspace concepts to be rapidly 
prototyped even if a limited number of data exchange models (presented in Section 4) are 
implemented in TestBed. Table 4.1 lists the data dictionary of the attributes model. Internally, an 
attributes instance uses a Registry (see Section 3.1.3) data structure to store custom data. 

Table 4.1. Data dictionary of Attributes 

Field Type Unit Description Since 
type String  Current type of the attributes. 

Example: com.example.model.Engine. 
0.9b 

registry Registry  Mappings of attribute type to name-value pairs: 
• Key = type of the attribute 
• Value = mappings of attribute name to value: 

• Key = name of the attribute 
• Value = value of the attribute as string 

0.9b 

 
Listing 4.1 is an example of an Attributes data structure containing two types, type1 and 

type2, where the first and second types have M and N pairs of attributes, respectively. 

Listing 4.1. Example of an Attributes instance 

Attributes { 
  type1 = { 
    name1 = value1, 
    name2 = value2, 
    ... 
    nameM = valueM 
  }, 
  type2 = { 
    ... 
    nameN = valueN 
  } 
} 
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One main difference between the User Defined Data and the Attributes is the data 
hierarchy. The former one is a data structure used to include extra fields in an existing data 
exchange model, while the latter one is a standalone data exchange model. Figure 4.1 shows a 
relationship diagram where the boxes represent the classes, the white-triangle link (◁−) 
represents the “is a” relationship, and the diamond links (♦−) represent the “has a” relationship: 

1. The Attributes class is a subclass of the Data Exchange Model class. 
2. A Data Exchange Model instance has a User Defined Data instance. 
3. An Attributes instance has a Registry instance that stores attribute values. 
4. A User Defined Data instance has a Registry instance that stores custom values. 
 

 
Figure 4.1. Relationships of data exchange model, user defined data, attributes, and registry 

To illustrate the usage of the Attributes model, consider that one adapter needs to publish 
engine data to another adapter. The engine data may be exchanged by executing the following 
steps: 

1. Create a data model class named Engine. 
2. Add a constructor accepting an Attributes parameter in the class Engine. 
3. Add a method toAttributes() to convert the engine data into an Attributes instance. 

Listing 4.2. Engine data model class

package com.example.mode; 1 
 2 
import gov.nasa.sntb.messagingdatamodels.sndem.attributes.Attributes; 3 
 4 
public class Engine { 5 
    private static final String TYPE = Engine.class.getName(); 6 
    private String model; 7 
    private int rpm; 8 
 9 
    public Engine(String model, int rpm) { 10 
        this.model = model; 11 
        this.rpm = rpm; 12 
    } 13 
       14 
    public Engine(Attributes attributes) { 15 
        Attributes engine = attributes.getAttributes(TYPE); 16 
        model = engine.getString("model"); 17 
        rpm = engine.getInt("rpm"); 18 
    } 19 
       20 
    public Attributes toAttributes() { 21 
        Attributes engine = new Attributes(TYPE); 22 
        engine.setString("model", model); 23 
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        engine.setInt("rpm", rpm); 24 
        return engine; 25 
    } 26 
 27 
    public String getModel() { 28 
        return model; 29 
    } 30 
 31 
    Public int getRpm() { 32 
        return rpm; 33 
    } 34 
}35 
 

Listing 4.2 is a sample implementation of the class Engine. Lines 10-13 define the 
constructor. Lines 16-18 demonstrate how to get the engine data via the supplied attributes 
instance. Lines 22-25 demonstrate how to create an Attributes instance based on the current 
engine data. Lines 28-34 are the getter methods. Listing 4.3 lists (a) a publisher component 
publishing an attributes message with the engine data, and (b) a subscriber component 
receiving the engine data from an attributes message. 

Listing 4.3. Engine data defined in attributes message 

(a) package com.example.component.MyPublisher; 
 
import com.example.model.Engine; 
import gov.nasa.sntb.messagingdatamodels.sndem.attributes.Attributes; 
import gov.nasa.sntb.simcomponent.adapter.PluginAdapter; 
 
public class MyPublisher extends PluginAdapter { 
    @Override 
    public void execute() { 
        Engine engine = new Engine("boost", 123456); 
        publish(engine.toAttributes()); 
    } 
} 

(b) package com.example.component.MySubscriber; 
 
import com.example.model.Engine; 
import gov.nasa.sntb.architectblueprint.interfaces.datasets.AttributesDataset; 
import gov.nasa.sntb.simcomponent.adapter.PluginAdapter; 
 
public class MySubscriber extends PluginAdapter implements AttributesDataset { 
    @Override 
    public void processAttributesDataset(String key, Attributes dataset) { 
        Engine engine = new Engine(dataset); 
        String model = engine.getModel(); 
        int rpm = engine.getRpm(); 
    } 
} 

4.2. Binary Data 
The Binary Data model stores binary data as a byte array for data exchange. The model is 

useful for exchanging data that are computer-readable but not human-readable such as images 
(see Section 4.5) and weather data. The format of a binary data content is identified by a 
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Multipurpose Internet Mail Extensions (MIME) [19] type. Table 4.2 lists the data dictionary of the 
binary data model. 

Table 4.2. Data dictionary of Binary Data 

Field Type Unit Description Since 
key String  Key of the data. This will be used as the topic key. 

Example: pi. 
0.9b 

mimeType String  MIME type of the binary data. 
Example: application/octet-stream. 

0.9b 

data byte[]  Array of bytes representing the binary data. 
Example: [3,1,4,1,5,9]. 

0.9b 

4.3. Flight Conflict 
The Flight Conflict model is a container for the conflict information in Autoresolver. A 

conflict represents a detected, predicted loss of separation between two flights at a future time. 
Table 4.3 lists the data dictionary of the flight conflict model. 

Table 4.3. Data dictionary of Flight Conflict 

Field Type Unit Description Since 
detectionTime long ms The time, in milliseconds, when the conflict 

detection occurs. 
Example: 1518548215902. 

0.9b 

conflictTime long ms The time, in milliseconds, when the first loss-of-
separation conflict is predicted to occur. 
Example: 1518548275902. 

0.9b 

firstFlight Conflict 
Data 

 The conflict data (see Section 4.3.1) pertaining to 
the first flight. 

0.9b 

secondFlight Conflict 
Data 

 The conflict data pertaining to the second flight. 0.9b 

4.3.1. Conflict Data 
A Conflict Data instance contains information related to a particular flight involved in a 

loss-of-separation conflict. It originated from the class Conflict Flight Data in the Advanced 
Airspace Concept (AAC) [7]. Table 4.4 lists the data dictionary of the conflict data. 

Table 4.4. Data dictionary of Conflict Data 

Field Type Unit Description Since 
callsign String  The callsign of the flight. 

Example: AAL123. 
0.9b 

latitude 
Degrees 

double deg The latitude value, in degrees, of the trajectory 
point at the conflict. 
Value range is [-90, +90]. 

0.9b 
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Example: 37.67. 

longitude 
Degrees 

double deg The longitude value, in degrees, of the trajectory 
point at the conflict. 
Value range is [-180, +180]. 
Example: -122.26. 

0.9b 

altitudeFeet double ft The altitude, in feet, of the trajectory point at the 
conflict. The altitude type depends on the conflict 
detectors. It may be an indicated altitude of 
aircraft above mean sea level (MSL) on a 
standard day, or a pressure altitude. 
Example: 23987.65. 

0.9b 

trueHeading 
Degrees 

double deg The true heading, in degrees, of the trajectory 
point at the conflict. 
Value range is [0, 360]. 
Example: 120.45. 

0.9b 

required 
Separation 

Separation  The required separation parameters that have 
been violated at the conflict (see Section 4.3.2). 

0.9b 

type String  The algorithm-specific type string describing the 
nature of the trajectories such as “AAC,” “dead-
reckon,” “flight plan” or “maneuver.” 
Example: dead-reckon. 

0.9b 

4.3.2. Separation 
A Separation instance stores separation parameters used in a conflict detection algorithm. 

The parameters describe a right circular cylinder, as shown in Figure 4.2, where the center 
represents the location of a flight, the radius represents the horizontal separation distance, and 
the height represents twice the vertical separation distance. 

 

 
Figure 4.2. Separation parameters 

Table 4.5 lists the data dictionary of the separation. 

Table 4.5. Data dictionary of Separation 

Field Type Unit Description Since 
horizontalNmi double nmi Required horizontal separation distance, in nautical 

miles. 
Value range is [0, +inf] or zero (0) if not 
available. 
Example: 5.0. 

0.9b 
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verticalFt double ft Required vertical separation distance, in feet. 
Value range is [0, +inf] or zero (0) if not 
available. 
Example: 960.0. 

0.9b 

4.4. Flight Plan 
The Flight Plan model stores flight plan related data fields defined in FAA Form 7233-1 

[20]. The model is created for parsing live data feeds from the FAA’s SWIM via the NASA’s 
Sherlock ATM Data Warehouse. Table 4.6 lists the data dictionary of the flight plan model. 

Table 4.6. Data dictionary of Flight Plan 

Field Type Unit Description Since 
aircraftId String  Complete aircraft callsign or identification 

including the prefix “N” if applicable. 
Example: AAL123. 

0.9b 

flightPlanType Flight 
Plan 
Type 

 Type of the flight plan to be used (see Section 
4.4.1). 
Value is null if not available. 

0.9b 

aircraftType String  Designator of the aircraft, i.e., aircraft type or 
special equipment. 
Example: BE9L. 

0.9b 

trueAirspeed 
Knots 

int knots True airspeed, in knots. 
Value range is [0, +inf] or zero (0) if not 
available. 
Example: 456. 

0.9b 

departure 
Airport 

String  Departure airport identifier code, or if 
unknown, the name of the airport. 
Note that this field may include the city name 
(or even the state name) if needed for clarity. 
Value is null if not available. 
Example: KSFO. 

0.9b 

proposed 
DepartureTime 

long ms Proposed departure time, in milliseconds. 
If airborne, specify the actual or proposed 
departure time as appropriate. 
Value range is [0, +inf] or zero (0) if not 
available. 
Example: 1511983543000. 

0.9b 

actual 
DepartureTime 

long ms Actual departure time, in milliseconds. 
If airborne, specify the actual or proposed 
departure time as appropriate. 
Value range is [0, +inf] or zero (0) if not 
available. 
Example: 1511983552000. 

0.9b 
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cruiseAltitude 
Feet 

int ft Appropriate Visual Flight Rules altitude, in 
feet, to assist the briefer in providing weather 
and wind information. 
Value range is [0, +inf] or zero (0) if not 
available. 
Example: 29000. 

0.9b 

routeOfFlight String  The route of flight defined by using 
Navigational Aid (NAVAID) identifier codes 
and airways. 
Value is null if not available. 
Example: KSFO.SSTIK3.EBAYE..AVE..KLAX. 

0.9b 

destination 
Airport 

String  Destination airport identifier code, or if 
unknown, the airport name. 
Note that this may include city name (or even 
the state name) if needed for clarity. 
Value is null if not available. 
Example: KLAX. 

0.9b 

estimated 
EnRoute 
Duration 

long ms Estimated en route duration, in milliseconds. 
Value range is [0, +inf] or zero (0) if not 
available. 
Example: 10800000. 

0.9b 

remarks String  Remarks pertinent to Air Traffic Control or to 
the clarification of other flight plan information, 
such as the appropriate radiotelephony 
(callsign) associated with the designator field 
in aircraft ID. 
Items of a personal nature are not accepted. 
Value is null if not available. 
Example: No over water. 

0.9b 

fuelOnBoard 
Duration 

long ms Duration of fuel on board, in milliseconds. 
Value range is [0, +inf] or zero (0) if not 
available. 
Example: 14400000. 

0.9b 

alternate 
Airports 

String  Alternate airport(s) if desired. 
Value is null if not available. 
Example: KSAN, KPHX. 

0.9b 

pilot 
Information 

String  Pilot’s information such as name, address, and 
telephone number. This may include sufficient 
information to identify home base, airport, or 
operator. 
Since this field value contains pilot identifying 
information such as name, address, and 
telephone number, the value is neither stored 
nor transmitted by TestBed. 

0.9b 
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Value is null if not available. 
Example: John Doe, Moffett Field, 
(650) 555-1234. 

numberAboard int persons Total number of persons on board. 
Value range is [0, +inf] or zero (0) if not 
available. 
Example: 100. 

0.9b 

colorOf 
Aircraft 

String  Predominant colors. 
Value is null if not available. 
Example: White. 

0.9b 

4.4.1. Flight Plan Type 
A Flight Plan Type instance indicates one of the types used in the flight plan model: 
• Visual Flight Rules (VFR) 
• Instrument Flight Rules (IFR) 
• Defense Visual Flight Rules (DVFR) 

Note that it is possible to have a composite flight plan type by enabling multiple types, e.g., 
“VFR/IFR.” Table 4.7 lists the data dictionary of the flight plan type. 

Table 4.7. Data dictionary of Flight Plan Type 

Field Type Unit Description Since 
vfr boolean  Flag indicates whether the VFR are used. 0.9b 

ifr boolean  Flag indicates whether the IFR are used. 0.9b 

dvfr boolean  Flag indicates whether the DVFR are used. 0.9b 

4.5. Image Data 
The Image Data model stores image specific binary data (see Section 4.2). A use case of 

doing image data exchange is to share a screen from a host computer to one or multiple client 
computers. Figure 4.3 shows a nominal setup that a Screen Capture adapter on the left-hand 
side captures a screen image every second and then publishes the image data to TestBed’s 
messaging support layer. The subscriber on the right-hand side runs a Screen Viewer adapter 
that displays the captured image on screen. 

 

 
Figure 4.3. Screen sharing using image data 

Refer to Table 4.2 for the data dictionary of the image data model. Common MIME types for 
the images are: 

1. Graphics Interchange Format: image/gif 
2. Joint Photographic Experts Group: image/jpeg 
3. Portable Network Graphics: image/png 
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4.6. Multi-Purpose Interface Messages 
The Multi-Purpose Interface (MPI) is a data exchange format used by the Aeronautical 

Datalink and Radar Simulator (ADRS) and external components [21, 22, 23]. To evaluate, 
demonstrate and support connectivity among components running at NASA Ames Research 
Center laboratories using the TestBed platform, a subset of the MPI messages has been 
implemented and included in the TestBed data exchange model. Table 4.8 lists the components 
as well as the laboratories used. 

Table 4.8. Connectivity to components using MPI messages 

 Component Laboratory 
1. Multi-Aircraft Control System 

(MACS) [24] 
• ATM TestBed Laboratory 
• Distributed Simulation Research Laboratory 

2. Time-Based Flow Management 
(TBFM) [25] 

• ATM TestBed Laboratory 

3. Live, Virtual, Constructive Gateway 
(LVCGW) [26] 

• ATM TestBed Laboratory 
• Distributed Simulation Research Laboratory 

4. Reconfigurable Image Generator 
(RiG) [27] 

• ATM TestBed Laboratory 
• FutureFlight Central 

 
In order to meet project-specific needs, software development teams may add new 

capabilities to the ADRS and some of the components by modifying their source code. As a 
result, certain components may no longer be able to connect to the same ADRS for data 
exchange due to incompatibility. Figure 4.4(a) illustrates this issue in an experiment run by 
connecting four components, MACS, TBFM, LVCGW, and RiG, via a modified ADRS, but the 
TBFM is no longer compatible with the modified ADRS. One potential solution is to update the 
TBFM so that it is compatible with the modified ADRS. However, this solution is not desired 
especially if a change in the ADRS would break all the connecting components. 

The TestBed platform addresses this concern by connecting each component to a single 
ADRS and each ADRS connects to the messaging support layer. Figure 4.4(b) illustrates a 
nominal network diagram connecting the four components to the TestBed messaging support 
layer via individual ADRS instances. Since these components are connected to their compatible 
versions of ADRS, modifying a component and its connected ADRS, e.g., MACS and ADRS 1, 
will not affect the connectivity of the other components. 

 

 

 

 
(a)  (b) 

Figure 4.4. Connectivity among components using MPI messages: (a) without and (b) with TestBed 
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Table 4.9 lists the MPI messages in the ADRS that have been implemented in TestBed. The 
TestBed class names use camel case and the pattern AdrsMpi<XXX>MsgSt where the <XXX> 
values are listed in the first column, while the corresponding ADRS C data structure names use 
lowercase and the pattern adrs_mpi_<YYY>_msg_st where the <YYY> values are listed in the 
second column. 

Table 4.9. Supported MPI messages in TestBed 

TestBed Class Name1 
AdrsMpi<XXX>MsgSt 

ADRS C Data Structure 
adrs_mpi_<YYY>_msg_st 

Description 

AcControl ac_control Aircraft control message. 
AkRoute ak_route Host AK route message. 
Arinc702 arinc_702 Aeronautical Radio, Incorporated 

(ARINC) 702 message defined in 
the flight management system. 

Broadcast broadcast Broadcast message. 
DateTime date_time Date time message. 
DeleteAc delete_ac Delete aircraft message. 
ExtendedFlightData extended_flight_data Extended flight data message. 
ExtendedFlightPlan extended_flight_plan Extended flight plan message. 
FlightData flight_data Flight data message. 
FlightPlan flight_plan Flight plan message. 
FlightState flight_state Flight state message. 
Ident ident Identification message. 
InitialClient initial_client Initial client message. 
InitialServerResponse initial_server_response Initial server response message. 
InitialState initial_state Initial state message. 
MacsConfig macs_config MACS configuration message. 
MacsControl macs_control MACS control message. 
PilotInput pilot_input Pilot input message. 
Request request Request message. 
Scenario scenario Scenario message. 
Track track Track message. 
Trajectory trajectory Trajectory message. 
Transaction transaction Transaction message. 
XmlPayload xml_payload Extensible Markup Language 

(XML) payload message. 
 
In addition, Table 4.10 lists the MPI messages in the LVCGW that have been implemented in 
TestBed. The TestBed class names use the pattern Mpi<XXX>Message where the <XXX> values 

 
 
 
 
1 In the package gov.nasa.sntb.messagingdatamodels.sndem.mpi.message. 
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are listed in the first column, while the corresponding LVCGW class names use the pattern 
Msg<YYY> where the <YYY> values are listed in the second column. 

Table 4.10. Supported MPI messages in LVCGW 

TestBed Class2 
Mpi<XXX>Message 

LVCGW Message Class 
Msg<YYY> 

Description 

AcTrackState AcTrackState Track state of the intruder aircraft 
message. 

AcTrackStateOwnship AcTrackStateOS Track state of the ownship aircraft 
message. 

FlightPlan FlightPlan Flight plan message. 
FlightState FlightState Flight state message. 
Handshake Handshake Handshake message. 
Heartbeat Heartbeat Heartbeat message. 
SaaBands SaaBands Sense And Avoid (SAA) bands 

message. 
SaaFlightState SaaFlightState SAA flight state message. 
SaaThreatResults SaaThreatResults SAA threat results message. 
WellClearRecovery WellClearRecovery Well clear recovery message. 

4.7. Resolution 
The Resolution model stores conflict resolution information of an Autoresolver’s flight 

conflict. Table 4.11 lists the data dictionary of the resolution model. 

Table 4.11. Data dictionary of Resolution 

Field Type Unit Description Since 
resolutionId String  The resolution identifier. 

Example: AAL123. 
0.9b 

maneuver String  Textual description of the maneuver an aircraft 
has to perform to avoid the flight conflict. 
Example: Turn left by 10 degrees. 

0.9b 

altitudeFt float ft Target altitude, in feet. 
NaN3 if not available. 
Example: 28000.0. 

0.9b 

distanceNmi float nmi Distance, in nautical miles, to hold. 
Value range is [0, +inf] or zero (0) if not 
available. 
Example: 10.0. 

0.9b 

 
 
 
 
2 In the package gov.nasa.sntb.lvcgwadapter.mpi.message. 
3 NaN represents a Not-a-Number value of types float or double. 
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headingDeg float deg Target heading, in degrees. 
Value range is [0, 360] or NaN if not available. 
Example: 350.0. 

0.9b 

speedKts float knots Target speed, in knots. 
Value range is [0, +inf] or NaN if not available. 
Example: 254.80046. 

0.9b 

waypoints List< 
Waypoint 
> 

 List of waypoints to be used (see Section 4.7.1). 
Value is null if not available. 

0.9b 

4.7.1. Waypoint 
A Waypoint instance represents a named, two-dimensional location. Table 4.12 lists the 

data dictionary of the waypoint data structure. 

Table 4.12. Data dictionary of Waypoint 

Field Type Unit Description Since 
name String  The name of the waypoint, which can be a fix name, 

an airport name, or a fix name with radial and 
distance. 
Example: PUW257044. 

0.9b 

latitude double deg Latitude in degrees. 
Value range is [-90, +90] or NaN if not available. 
Example: 46.504688749082106. 

0.9b 

longitude double deg Longitude in degrees. 
Value range is [-180, +180] or NaN if not 
available. 
Example: -118.2609576981683. 

0.9b 

4.8. Task 
The Task model represents a user task to be processed, either sequentially or in parallel, by 

a component. The model is developed for experiments requiring an automated simulation 
capability [28]. Figure 4.5 shows a nominal setup demonstrating the usage of the task model 
between two components, Task Provider and Task Consumer. 

 

 
Figure 4.5. Task messages between Task Provider and Task Consumer 

During an experiment startup, the task provider reads task definitions from a configurable 
property into a task list. Whenever a message requesting a task is received from the task 
consumer, the task provider will reply the next available task from the task list as a response 
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message. The request-response process continues until there are no more tasks available in 
the task list. This design supports running tasks in a sequential mode when a single task 
consumer is used, or concurrent modes when multiple task consumers are connected to the 
same task provider. Table 4.13 lists the data dictionary of the task model. 

Table 4.13. Data dictionary of Task 

Field Type Unit Description Since 
processorId String  Identification of the processor that handles this task. 

The value is null if the field is not available. 
Example: abed3702.1.task-consumer. 

0.9b 

status Task 
Status 

 Status of this task (see Section 4.8.1). 
Example: REQUESTED. 

0.9b 

parameters Map< 
String, 
String> 

 Mapping of parameter name to value to be passed 
to the task for execution. Keys are parameter 
names and values are parameter values. 

0.9b 

4.8.1. Task Status 
A Task Status instance represents a stage, as an enumeration value, of a task execution. 

Here is the sequence of task status: 
1. REQUESTED 
2. INITIALIZED 
3. STARTED 
4. CANCELLED or COMPLETED 

 

 
Figure 4.6. Flow diagram between Task Provider and Task Consumer 

Figure 4.6 shows a flow diagram of the task status values between the task provider and the 
task consumer. Table 4.14 lists the data dictionary of the task status enumeration values. 
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Table 4.14. Data dictionary of Task Status 

Enum Description Since 
CANCELLED Task has been cancelled. 0.9b 

COMPLETED Task is completed. 0.9b 

INITIALIZED Task is initialized but not yet started. 0.9b 

REQUESTED New task is requested. 0.9b 

STARTED Task has started and is running. 0.9b 

4.9. Track 
The Track model represents a single, three-dimensional location of a vehicle obtained by 

radar or sensor. Table 4.15 lists the data dictionary of the track model. 

Table 4.15. Data dictionary of Track 

Field Type Unit Description Since 
vid String  Vehicle identifier such as aircraft callsign. 

Value is null if not available. 
Field alias: vehicleId. 
Example: AAL123. 

0.9b 

latDeg float deg Latitude, in degrees, of the vehicle’s location. 
Value range is [-90, +90] or NaN if not available. 
Field alias: latitudeDegrees. 
Example: 34.907051. 

0.9b 

lonDeg float deg Longitude, in degrees, of the vehicle’s location. 
Value range is [-180, +180] or NaN if not 
available. 
Field alias: longitudeDegrees. 
Example: -117.620305. 

0.9b 

altFt float ft Indicated altitude, in feet, of the vehicle above 
mean sea level (MSL) on a standard day. 
Value is NaN if not available. 
Field alias: altitudeFeet. 
Example: 27059.473. 

0.9b 

time long ms Time, in milliseconds, when the track information 
was created. 
Value is zero (0) if not available. 
Example: 1512411933075. 

0.9b 

gsKt float knots Groundspeed, in knots, represents movement of 
the vehicle relative to the ground. 
Value is NaN if not available. 
Field alias: groundspeedKnots. 

0.9b 
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Example: 104.0. 

crsDeg float deg Flight course in degrees. By default, values are in 
degrees from true north. 
Value range is [0, 360] or NaN if not available. 
Field alias: courseDegrees. 
Example: 130.78125. 

0.9b 

vsFpm float ft/min Vertical speed in feet per minute. Positive values 
indicate climbing, and negative values indicate 
descending. 
Value is NaN if not available. 
Field alias: verticalSpeedFpm. 
Example: 16.0. 

0.9b 

4.10. Trajectories 
The Trajectories model stores mappings of type to trajectory that are used in 

Autoresolver. The trajectory types are algorithm-specific strings describing the nature of the 
trajectories such as “AAC,” “dead-reckon,” “flight plan,” or “maneuver.” Table 4.16 lists the data 
dictionary of the trajectories model. 

Table 4.16. Data dictionary of Trajectories 

Field Type Unit Description Since 
map Map< 

String, 
Trajectory 
> 

 Mappings of type to trajectory (see Section 
4.10.1). 
Field alias: trajectoryMap. 

0.9b 

vid String  Vehicle identifier such as aircraft callsign. 
Field alias: vehicleId. 
Example: AAL123. 

0.9b 

4.10.1. Trajectory 
A Trajectory instance stores a list of tracks of a vehicle. The instance may represent a 

predicted path of a specific type such as dead reckoning and tracks are ordered by time values 
in ascending order. Table 4.17 lists the data dictionary of the Trajectory data structure. 

Table 4.17. Data dictionary of Trajectory 

Field Type Unit Description Since 
vehicleId String  Identification of the vehicle, e.g., aircraft callsign. 

Example: AAL123. 
0.9b 

tracks List 
<Track> 

 List of tracks in the trajectory (see Section 4.9). 0.9b 
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4.11. Vehicle State 
The Vehicle State model represents a single state of a vehicle. This model is an 

extension of the track model (see Section 4.9) with additional fields. Table 4.18 lists the data 
dictionary of the additional fields in the vehicle state model. 

Table 4.18. Data dictionary of Vehicle State 

Field Type Unit Description Since 
trueHeading float deg True heading in degrees. 

Value range is [-90, +90]. 
Example: 45.17. 

0.9b 

trueAirspeed float knots True airspeed in knots. 
Example: 326.45. 

0.9b 

indicatedAirspeed float knots Indicated airspeed in knots. 
Example: 301.12. 

0.9b 

4.12. Vehicle True State 
The Vehicle True State model represents a true state of a vehicle obtained from an 

Aircraft Simulation for Traffic Operations Research (ASTOR), a simulated aircraft having six-
degree of freedom dynamic models, in the Air Traffic Operations Simulation (ATOS) distributed 
simulation platform running in the Air Traffic Operations Laboratory (ATOL) at NASA Langley 
Research Center [29]. Figure 4.7 shows a nominal diagram demonstrating the usage of the 
vehicle true state model in a connectivity test between NASA Ames and Langley Research 
Centers. 

 

 
Figure 4.7. Connectivity between Air Traffic Operations Laboratory and ATM TestBed Laboratory 

The ASTOR currently supports two versions, 1 and 2, of the vehicle true state models. The two 
versions are included in the TestBed data exchange model. To query the latest available 
version being defined in the model, the method VehicleTrueState4.getVersion() may be 
called and it will return an integer value. Alternatively, the methods getV001() and getV002() 
may also be called; supported versions are returned as non-null values. Table 4.19 lists the data 
dictionary of the vehicle true state model. 

 
 
 
 
4 In the package gov.nasa.sntb.messagingdatamodels.sndem.simuniverse. 
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Table 4.19. Data dictionary of Vehicle True State 

Field Type Unit Description Since 
v001 Vehicle 

True 
State5 

 Vehicle true state, in version 1 format (see Section 
4.12.1). 
Value is null if not available. 

1.5a 

v002 Vehicle 
True 
State6 

 Vehicle true state, in version 2 format (see Section 
4.12.2). 
Value is null if not available. 

1.5a 

4.12.1. Vehicle True State, Version 1 
A Vehicle True State, defined in the sub-package v001, represents a true state of a 

vehicle from an ASTOR in the version 1 format. Table 4.20 lists the data dictionary of this data 
structure. The custom data structures used in this version are defined in the sub-package v001. 
Note that for numeric fields, -9999.0 represents an unknown value. 

Table 4.20. Data dictionary of Vehicle True State, Version 1 

Field Type Unit Description Since 
simId int  Unique identifier for simulated entity. 

C type: unsigned long. 
Example: 10895060. 

1.5a 

callSign String  Callsign string. 
C type: char[128]. 
Example: NASA501. 

1.5a 

qualifierBits int  Qualifier Bits. 
C type: unsigned long. 
Example: 0. 

1.5a 

realTime long ms Current epoch time, number of milliseconds 
since January 1, 1970, 00:00:00 GMT. 
C type: long long. 
Example: 1456497096952. 

1.5a 

simTime long ms Simulation epoch time, number of 
milliseconds since January 1, 1970, 00:00:00 
GMT. 
C type: long long. 
Example: 1456497096952. 

1.5a 

 
 
 
 
5 In the package gov.nasa.sntb.messagingdatamodels.sndem.simuniverse.v001.  
6 In the package gov.nasa.sntb.messagingdatamodels.sndem.simuniverse.v002.  
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truePosition3d Position3d  Position of the vehicle in the three-
dimensional space (see Section 4.12.1.1). 

1.5a 

topodetic 
Velocity 

float[3] ft/ 
sec 

Wanted velocity vector, North-East-Down 
(NED) frame, in feet per second. 
Example: [-191.0, -84.0, 0.0]. 

1.5a 

topodetic 
Acceleration 

float[3] ft/ 
sec/ 
sec 

Wanted acceleration, x, y, z, in feet per 
second per second. 
Example: [0.0, 0.0, 0.0]. 

1.5a 

body 
Orientation 

Orientation  Orientation of the vehicle body (see Section 
4.12.1.3). 
Optional. 

1.5a 

bodyAngular 
Rate 

float[3] deg/ 
sec 

Angular rate, in degrees per second, of the 
vehicle body. 
Optional. 
Example: [0.0, 0.0, 0.0]. 

1.5a 

indicated 
Altitude 

float ft Indicated altitude in feet. 
This is the value shown on the altimeter. 
Example: 925.0. 

1.5a 

pressure 
Altitude 

float ft Pressure altitude in feet. This is the altitude 
above the standard datum plane; the value 
shown on the altimeter when it is set to a 
standard pressure of 29.92 inHg. 
Optional. 
Example: 925.0. 

1.5a 

altimeter 
Setting 

float inHg Altimeter setting in inHg. The value of the 
atmospheric pressure used to adjust the sub-
scale of a pressure altimeter. 
Optional. 
Example: 256.0. 

1.5a 

indicated 
Airspeed 

float knots Airspeed, in knots, read directly from the 
airspeed indicator. 
Optional. 
Example: 126.0. 

1.5a 

trueAirspeed float knots The speed, in knots, of the aircraft relative to 
the airmass in which it is flying. 
Example: 120.0. 

1.5a 

calibrated 
Airspeed 

float knots The indicated airspeed, in knots, corrected for 
instrument and position error. 
Optional. 
Example: 122.0. 

1.5a 
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magHeading float deg Magnetic heading in degrees: 
• Heading of x-body axis with respect to 

magnetic north. 
• Headings are angles, range is between 0 

and 360. 
• Angles are in degrees. 
Optional. 
Example: 175.13336. 

1.5a 

magneticTrack float deg Magnetic track angle in degrees. Direction of 
projection of velocity vector onto ground with 
respect to magnetic north. 
Optional. 
Example: 175.13336. 

1.5a 

magnetic 
Variation 

float deg Magnetic variation in degrees. Magnetic 
variation at three-dimensional position and 
simulation time. 
Optional. 
Example: 10.602112. 

1.5a 

aircraftWeight float lbs Aircraft weight in pounds. 
Optional. 
Example: 2300.0. 

1.5a 

fuelWeight float lbs Fuel weight in pounds. For logging and post-
analysis use only. 
Optional. 
Example: 210.0. 

1.5a 

landingGear float % Landing gear percentage. 
Optional, only needed for display. 
Example: 0.0. 

1.5a 

speedBrakes float % Speed brakes percentage. 
Optional, only needed for display. 
Example: 0.0. 

1.5a 

vehicleType String  Vehicle type. 
C type: char[128]. 
Optional, only needed for display. 
Example: SR22. 

1.5a 

vehicle 
Operator 

String  Vehicle operator. 
C type: char[128]. 
Optional, only needed for display. 
Example: NASA. 

1.5a 
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deadReckoning 
Algorithm 

long  Enumeration of the dead-reckoning algorithm 
to use. 
Optional. 
Example: 0. 

1.5a 

lights boolean  Flag indicates whether lights are on (true) or 
not (false). 
Optional, only needed for display. 
Example: false. 

1.5a 

freeze boolean  Flag indicates whether the simulator is frozen 
(true) or not (false). If true, the simulator is not 
updating, and dead reckoning is suspended. 
Optional. 
Example: false. 

1.5a 

svbuffer String  Packed buffer to be used for topic sub-
versioning. 
C type: char[320]. 
Example: svbuffer. 

1.5a 

4.12.1.1. Position 3D 
A Position 3D represents a location in the three-dimensional space. Table 4.21 lists the 

data dictionary of this data structure. 

Table 4.21. Data dictionary of Position 3D 

Field Type Unit Description Since 
position2d Position2d  Position of the vehicle in the two-dimensional 

space (See Section 4.12.1.2). 
1.5a 

geodetic 
Altitude 

float ft Altitude in feet. 
Example: 5425.0. 

1.5a 

4.12.1.2. Position 2D 
A Position 2D represents a location in the two-dimensional space. Table 4.22 lists the data 

dictionary of this data structure. 

Table 4.22. Data dictionary of Position 2D 

Field Type Unit Description Since 
latitude double deg Latitude in degrees. 

Example: 36.974036693573. 
1.5a 

longitude double deg Longitude in degrees. 
Example: -76.70776605606079. 

1.5a 
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4.12.1.3. Body Orientation  
A Body Orientation represents the orientation of a vehicle body. Table 4.23 lists the data 

dictionary of this data structure. 

Table 4.23. Data dictionary of Body Orientation 

Field Type Unit Description Since 
yaw float deg Yaw in degrees. 

Example: 164.53125. 
1.5a 

pitch float deg Pitch in degrees. 
Example: 2.0. 

1.5a 

roll float deg Roll in degrees. 
Example: 0.0. 

1.5a 

4.12.2. Vehicle True State, Version 2 
A Vehicle True State, defined in the sub-package v002, represents a true state of a 

vehicle from an ASTOR in the version 2 format. When comparing with the version 1, the only 
change is the qualifierBits field that it is declared as long type in the version 2 instead of 
int type in the version 1. Table 4.24 lists the data dictionary of the updated field. Note that all 
the custom data structures used in this version are defined in the sub-package v002. 

Table 4.24. Updated data dictionary of Vehicle True State, Version 2 

Field Type Unit Description Since 
qualifierBits long  Qualifier Bits. 

C type: long long. 
Example: 0. 

1.5a 

Appendix A. Version History 
In order to support high-fidelity simulations among NASA and communities, the SNDEM has 

been undergoing improvements and modifications. Table A.1 lists the version history of the 
changes introduced in the data exchange model among TestBed versions. This document 
focuses on the latest version 2.0a. 

Table A.1. Version history 

Version Changes Notes 
0.9a • None • Released on February 10, 2016. 

• This initial version was effective 
until the Boeing 2018 
ecoDemonstrator flight test. 

0.9b • Supported field aliases to reduce 
message sizes, e.g., “src” for 
“source” 

• Omitted long fields with zero (0) values 

• Released on June 8, 2017. 
• A primary goal was to reduce 

message sizes. 
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• Converted byte array contents into 
Base64 [19] strings 

• Converted character array contents 
into Java strings 

• Supported special floating numbers: 
NaN, -Infinity, and Infinity 

1.0a • Moved the following SNDEM fields to 
the “metaInfo” field: 
o “source” 
o “timePublished” 
o “timeSubscribed” 

• Released on September 27, 2018. 
• This version allowed subclasses 

to define fields using these three 
names. 

• The changes allowed TestBed to 
add new fields without affecting 
subclasses in the future. 

1.5a • None • Released on May 24, 2019. 
• No changes to the data exchange 

model. 
2.0a • Added “userDefinedData” field to 

SNDEM. 
• Added “version” field to the 

“metaInfo” field. 

• Released on September 30, 2019. 
• This version supported user 

defined data and message 
versioning. 

 
Table A.2 lists an example track message, in JSON format, to illustrate the changes among the 
versions. Note that the message of the version 2.0a also includes a user-defined data named 
“engine.” 

Table A.2. Example track messages 

Version Message Version Message 
0.9a { 

 "vehicleId": "BOE069", 
 "latitudeDegrees": 48.133335, 
 "longitudeDegrees": -111.13718, 
 "altitudeFeet": 27004.1, 
 "trackTime": 1523829782000, 
 "groundspeedKnots": 389.2, 
 "trueHeadingDegrees": 123.22178, 
 "verticalSpeedFpm": -96.3, 
 "source": "EcodAdapter.1", 
 "timePublished": 1520526488734, 
 "timeArrived": 0 
} 
 

0.9b { 
 "vid": "BOE069", 
 "latDeg": 48.133335, 
 "lonDeg": -111.13718, 
 "altFt": 27004.1, 
 "time": 1523829782000, 
 "gsKt": 389.2, 
 "crsDeg": 123.22178, 
 "vsFpm": -96.3, 
 "src": "EcodAdapter.1", 
 "tpub": 1523829795652 
} 

1.0a 
1.5a 

{ 
 "vid": "BOE069", 
 "latDeg": 48.133335, 
 "lonDeg": -111.13718, 
 "altFt": 27004.1, 
 "time": 1523829782000, 
 "gsKt": 389.2, 
 "crsDeg": 123.22178, 

2.0a { 
 "vid": "BOE069", 
 "latDeg": 48.133335, 
 "lonDeg": -111.13718, 
 "altFt": 27004.1, 
 "time": 1523829782000, 
 "gsKt": 389.2, 
 "crsDeg": 123.22178, 
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 "vsFpm": -96.3, 
 "meta": { 
  "src": "EcodAdapter.1", 
  "tpub": 1561586962076 
 } 
} 

 "vsFpm": -96.3, 
 "meta": { 
  "src": "EcodAdapter.1", 
  "ver": "2.0a", 
  "tpub": 1561586962076 
 }, 
 "_udd": { 
  "registry": { 
   "engine": { 
    "model": "boost", 
    "rpm": "12345" 
   } 
  } 
 } 
} 
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