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Key Points

¢ Data from the CheMin X-ray diffractometer demonstrate a variety of secondary alteration
products on Vera Rubin ridge.
¢ Hematite particle size changes across and below the ridge, and this change may be a
marker of diagenetic reactions.
¢ The aqueous history of Vera Rubin ridge was complex, with several fluid episodes that
varied in temperature, salinity, and pH.
Abstract
Vera Rubin ridge (VRR) is an erosion-resistant feature on the northwestern slope of Mount
Sharp in Gale crater, Mars, and orbital visible/short-wave infrared measurements indicate it
contains red-colored hematite. The Mars Science Laboratory Curiosity rover performed an
extensive campaign on VRR to study its mineralogy, geochemistry, and sedimentology to
determine the depositional and diagenetic history of the ridge and constrain the processes by

which the hematite could have formed. X-ray diffraction (XRD) data from the CheMin

instrument of four samples drilled on and below VRR demonstrate differences in iron,
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phyllosilicate, and sulfate mineralogy and hematite grain size. Hematite is common across the
ridge, and its detection in a gray-colored outcrop suggested localized regions with coarse-grained
hematite, which commonly forms from warm fluids. Broad XRD peaks for hematite in one
sample below VRR and the abundance of FeOr in the amorphous component suggest the
presence of nano-crystalline hematite and amorphous Fe oxides/oxyhydroxides. Well-crystalline
akaganeite and jarosite are present in two samples drilled from VRR, indicating at least limited
alteration by acid-saline fluids. Collapsed nontronite is present below VRR, but samples from
VRR contain phyllosilicate with d(001) = 9.6 A, possibly from ferripyrophyllite or an acid-
altered smectite. The most likely cementing agents creating the ridge are hematite and opaline
silica. We hypothesize late diagenesis can explain much of the mineralogical variation on the
ridge, where multiple fluid episodes with variable pH, salinity, and temperature altered the rocks,

causing the precipitation and crystallization of phases that are not otherwise in equilibrium.

Plain language summary

Vera Rubin ridge (VRR) is an erosion-resistant feature on the northwestern slope of Mount
Sharp in Gale crater, Mars, and it contains the Fe(IIl) oxide mineral hematite. Hematite is an
especially important mineral to study on the martian surface because it commonly forms in the
presence of liquid water. Identifying the processes that formed hematite on VRR can help
constrain the history of liquid water in Gale crater. The Mars Science Laboratory Curiosity rover
performed an extensive campaign on VRR to determine the geologic history of the ridge.
Mineralogical data collected by the CheMin instrument of four rock samples drilled on and
below the ridge demonstrate changes in the mineralogy and provide clues about the aqueous
history of VRR. Red hematite is common across the ridge, but detection of gray hematite in one
sample indicates the presence of localized coarse-grained hematite, which commonly forms
under warm temperatures. Minerals that form in acidic, saline solutions were found in two
samples, indicating localized alteration in acidic and relatively salty waters. We hypothesize that
multiple episodes of groundwater with variable pH, salinity, and temperature altered the

sediments after they lithified.
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1 Introduction

Gale crater was selected as the landing site for the Mars Science Laboratory (MSL)
Curiosity rover because of orbital detections of a variety of minerals and diversity of potentially
habitable geologic environments in the ancient layered sedimentary rocks that comprise the
lower slopes of Aeolis Mons, informally known as Mount Sharp (Golombek et al., 2012). Orbital
visible/short-wave infrared (VSWIR) reflectance spectra acquired from portions of lower Mount
Sharp by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on the Mars
Reconnaissance Orbiter show distinct units containing minerals that likely formed from aqueous
alteration, including hematite (a-Fe.Os), smectite, and sulfates (Milliken et al., 2010; Fraeman et
al., 2013; 2016). These sediments were deposited ~3.5 Ga ago and may preserve evidence for a
dramatic change in climate early in Mars’ history. Through analysis of the sedimentology and
composition of these units, data collected by Curiosity can help characterize the depositional and
diagenetic environments and help evaluate differences in these environments that caused the
distinct mineralogical changes observed from orbit. Furthermore, quantitative in-situ
mineralogical measurements provide ground truth for orbital mineral detections and better
constrain the physical surface properties that lead to positive mineral detections from orbit.

Sedimentological observations from images collected by Curiosity demonstrate Gale
crater was the site of an ancient fluvio-lacustrine environment (e.g., Grotzinger et al., 2014;
2015). Curiosity has traversed through over 350 m of vertical stratigraphy since landing in
August 2012 (Figure 1). Conglomerate and sandstone on the Gale crater plains are indicative of
deposition in fluvial and deltaic environments, respectively (e.g., Williams et al., 2013; Rice et
al., 2017), whereas massive and laminated mudstone are markers of deposition in low-energy

lake environments (e.g., Grotzinger et al., 2014; 2015). Mudstone deposits are especially
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prevalent on the lower slopes of Mount Sharp, and rarity of desiccation features suggests the
lakes were long-lived (Grotzinger et al., 2015).

Vera Rubin ridge (VRR) is an erosion-resistant feature on the northern flank of Mount
Sharp that was identified from orbit as having a distinct spectral signature of red hematite across
much of its length (e.g., Fraeman et al., 2013). The ridge is ~6.5 km long, ~200 m wide, and
oriented in a northeast-southwest direction. CRISM spectra of the ridge show pixels that have
absorption features near 0.55 and 0.86 um (consistent with crystalline red hematite), and a lack
of hydration features (e.g., at 1.9 um) demonstrates the ridge is less hydrated than surrounding
units (Fraeman et al., 2013; 2016).

The mineral assemblages of samples drilled by Curiosity from VRR provide constraints
on the ridge’s geological history and allow us to test and refine previous hypotheses about its
formation. On Earth, for example, hematite forms via different mechanisms and under a variety
of conditions, including direct precipitation from Fe-bearing oxic lake waters or hydrothermal
fluids, thermal dehydration of crystalline or amorphous Fe oxyhydroxide(s), thermal oxidation of
magnetite-bearing lavas, or transformation of amorphous or crystalline Fe oxides and
oxyhydroxides in aqueous fluids (e.g., Christensen et al., 2000; Schwertmann and Cornell,
2000). Prior to Curiosity’s arrival at VRR, hematite on VRR was hypothesized to have formed at
a redox interface where aqueous Fe*" was oxidized to Fe*" and precipitated as a-Fe,O; (e.g.,
Fraeman et al., 2013; 2016). This oxidation may have occurred in the lake sediments from
photooxidation in shallow lake waters, or may have formed by a later diagenetic episode and
migration of anoxic Fe**-bearing fluids that mixed with oxidizing fluids or atmosphere. The
hematite has also been hypothesized to have formed by mildly acidic alteration of olivine in oxic
fluids, causing the precipitation of Fe,O; and amorphous silica (Fraeman et al., 2013). The
minerals that are found in association with hematite on VRR and their geologic context allow us
to test these hypotheses and evaluate the formation mechanisms for these deposits.

Here, we report on the mineral and amorphous abundances from three rock samples
drilled from VRR and one from immediately below the ridge, the calculated composition of the
amorphous materials, and the unit-cell parameters and crystal chemistry of major phases. We
then use the combined mineralogical, geochemical, and sedimentological data to propose a
model for the depositional and diagenetic history of VRR.

2 Methods
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2.1 Vera Rubin ridge campaign

Curiosity executed an extensive scientific campaign on the ridge from September 2017 to
January 2019, and details of the campaign are reported by Fraeman et al. (this issue). In-situ
sedimentological observations indicate the ridge is primarily comprised of laminated mudstone,
suggesting the sediments were deposited in a lacustrine setting, similar to the conformable
sediments stratigraphically below it (e.g., Grotzinger et al., 2015; Edgar et al., this issue). The
Blunts Point member is directly below VRR, and the Pettegrove Point and Jura members
comprise the lower and upper portions of the ridge, respectively. All three members are part of
the Murray formation in the Mount Sharp group, which Curiosity first began studying in
September 2014 with its arrival at the Pahrump Hills outcrop (Figure 1; Grotzinger et al., 2015;
Stack et al., 2018). For a detailed description of the sedimentology of VRR, please refer to Edgar
et al. (this issue).

Curiosity drilled three mudstone samples on the ridge and one from the Blunts Point
member immediately below the ridge (Figures 1, 2, and 3). The successful drilling of the rocks
on and just below VRR was especially exciting because an anomaly with the drill feed
mechanism on sol 1536 temporarily precluded drilling and delivery of drilled rock samples to the
internal laboratories, Chemistry and Mineralogy (CheMin) and the Sample Analysis at Mars
(SAM), for over 500 sols. Engineers addressed this anomaly with a new method of drilling called
“feed-extended drilling” in which the drill feed remains extended to its full length and is pressed
into the rock surface by the rover arm. With feed-extended drilling, a powdered rock sample can
no longer pass through the sample handling system on the arm, so it cannot be sieved or
portioned by the Sample Acquisition, Processing, and Handling (SA/SPaH) subsystem. Instead,
drilled rock samples are delivered to CheMin and SAM by holding the drill bit over an
instrument inlet while the drill bit is reversed and vibrated to allow material in the sleeve to drop
into the inlet.

The return to drilling was marked with a sample called “Duluth” collected from the
Blunts Point member on sol 2057 at an elevation of -4192.5 m. The “Stoer” sample was collected
on sol 2136 at an elevation of -4169.9 m from the Pettegrove Point member near some of the
strongest hematite spectral signatures observed from orbit. The science team attempted to drill
samples from Pettegrove Point within the pixels with the deepest hematite-related absorptions in

CRISM-based maps, but these locations proved too hard to drill to the optimum sampling depth
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of ~4 cm (e.g., Jacob et al., this issue). As a result, Stoer came from a region without a strong
orbital hematite signature. Curiosity drilled two samples from the Jura member. The Jura is
heterogeneous in color, with red, gray, and purple tones (Horgan et al., this issue). The
“Hightield” sample was drilled on sol 2223 at an elevation of -4146.9 m from a gray portion of
the Jura, and the “Rock Hall” sample was drilled on sol 2261 at an elevation of -4143.6 m from a
red portion of the Jura right before Curiosity ended the VRR campaign and descended the ridge
to the south.
2.2 CheMin analyses

We determined the quantitative mineralogy of drill samples from VRR using Curiosity’s
CheMin instrument. X-ray diffraction (XRD) data from CheMin provide quantitative abundances
of well-crystalline phases with a detection limit of ~1 wt.% and quantitative abundances of X-ray
amorphous materials with larger errors on their abundance (Blake et al., 2012). CheMin is an X-
ray diffractometer (XRD) and X-ray fluorescence (XRF) spectrometer located in the body of the
rover (Blake et al.,, 2012). The instrument uses a Co X-ray source and is in transmission
geometry. A collimated X-ray beam is transmitted through a powdered sample in one of 27
reusable sample cells that have Kapton or Mylar windows. Piezoelectric actuators on each pair of
sample cells induce convective motion of the sample powder allowing grains in different
orientations to be exposed to the beam. Diffracted photons are recorded by an energy-sensitive
two-dimensional charge-coupled device (CCD). Data are collected in 30-minute intervals called
“minor frames.” Samples are typically measured on three separate nights, with 15 minor frames
collected each night, for a total of 45 minor frames. The energy of the detected photons produces
an XRF spectrum that provides qualitative geochemical data, whereas the position of the
detected photons on the CCD produces a 2D XRD pattern. Diffraction rings in the Co-Ka 2D
pattern are summed circumferentially using a modified version of the GSE_ADA software (Dera
et al., 2013) to produce a traditional 1D diffraction pattern.

Each of the four samples collected on and immediately below VRR was analyzed in
Mylar cells for 22.5 hours (i.e., 45 minor frames) over three nights for Stoer, Highfield, and
Rock Hall and over four nights (but still 45 minor frames) for Duluth. The first sample delivery
of Duluth to CheMin did not fill the sample cell, so data collected from the initial night were not
used to produce the Duluth XRD pattern. The second delivery filled the cell, and only 6 minor

frames were commanded for that first night of analysis. This tactical decision was made to
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ensure the cell was filled without wasting instrument consumables. Fifteen minor frames were
collected for Duluth on nights two and three, and nine minor frames were collected on the fourth
night. Stoer was analyzed in a pristine cell (number 10a) because the CheMin team wanted to
minimize cross-contamination for the type sample from VRR. Duluth, Highfield, and Rock Hall
were all analyzed in reused cells, after analyses of the emptied cells demonstrated that the cells
were free of material from the previous samples. Duluth was analyzed in cell 13b, which
previously held the sample John Klein (Vaniman et al., 2014); Highfield was analyzed in cell
10a, which previously held Stoer; and Rock Hall was analyzed in cell 7b, which previously held
Big Sky and later Okoruso (Yen et al., 2017).

The quality of grain motion in each analysis is evaluated by counting the number of
photons that hit the same pixel on the CCD over the course of one minor frame. Based on
experience with previous samples, poor grain motion corresponds to 20 or more pixels with >5
hits and generally produces bright spots on the diffraction rings of the 2D patterns.

The Duluth and Stoer drill powders moved freely in the cell throughout all nights of
analysis (Figure 4). Highfield moved very poorly each night of analysis, showing the poorest
grain motion of any sample measured by CheMin to date. The Rock Hall drill powder moved
well throughout most of the first night of analysis, but showed poor grain motion at the end of
the first night and throughout the second and third nights’ analyses. Grain motion may have a
significant effect on the mineral abundances because a small, perhaps unrepresentative, fraction
of the sample may preferentially interact with the beam when the sample is not moving well. To
examine the effects of grain motion on mineral abundances, we performed Rietveld refinements
on 1D patterns from two samples that showed different grain motion behaviors. Stoer moved
well during all three nights of analysis, so we refined the 1D patterns from each night to examine
whether mineral abundances vary when grain motion is nominal. A previous mudstone sample
drilled from the Murray formation, Marimba, delivered to CheMin on sol 1423, showed poor
grain motion for the first two nights of analysis (30 minor frames), then good grain motion for
the last two nights of analysis (30 minor frames). We refined the 1D patterns from a portion of
the analysis with poor grain motion (minor frames 3-17) and from a portion of the analysis with
good grain motion (minor frames 31-45) to test whether the difference in grain motion affected

derived mineral abundances. The aim of this test was to evaluate how poor grain motion may
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generally affect mineral abundances derived from CheMin data and how this could impact our
interpretations of Rock Hall data.

Variations in the machining of the sample cells caused individual cells to be offset from
their ideal diffraction position on the order of 10s of micrometers. These offsets have little effect
on mineral identification or abundances from Rietveld refinement, but can affect determination
of unit-cell parameters. Offsets are corrected using an internal calibration method based on the
refined unit-cell parameters of plagioclase feldspar in each sample (Morrison et al., 2018).
Briefly, natural plagioclase crystals show a linear relationship between unit-cell parameters y
and ¢. CheMin 1D patterns with different offsets from the ideal diffraction position are refined,
and the refined plagioclase parameters y and c are plotted against those of natural plagioclase
samples. The intersection between the line that describes the natural plagioclase y and ¢
parameters and the line that describes the plagioclase y and ¢ parameters from the offset CheMin
pattern defines the offset of each sample. The calculated offsets for Duluth, Stoer, Highfield, and
Rock Hall are -87, -110, -81, and -69 um, respectively.

Quantitative mineral abundances and refined unit-cell parameters of major phases were
determined by Rietveld refinement on the offset-corrected 1D patterns using the MDI Jade
program. The scale factor, the full-width at half-maximum (FWHM) term {0, and the
exponent/Lorentzian term p0 of each phase were allowed to refine, as were the unit-cell
parameters for phases in abundances >~5 wt.%. A linear background was fit, and an amorphous
hump was refined using a pseudo-Voigt profile without skewness. Phyllosilicate contributions to
the patterns were modeled using overlay patterns of a variety of fully dehydrated smectite (i.e.,
with d(001) = 10 A) measured on a laboratory version of CheMin. Six independent refinements
were conducted, and the reported mineralogy, refined unit-cell parameters, and crystal chemistry
are an average of the independent refinements. Phyllosilicate and X-ray amorphous abundances
were quantified using a modified version of the FULLPAT program (Chipera and Bish, 2002;
Chipera and Bish, 2013). The modified version for CheMin includes patterns of fully dehydrated
smectite (i.e., full H,O loss without loss of structural OH) and X-ray amorphous materials
including basaltic and rhyolitic glass, ferrihydrite, palagonite, and allophane, in addition to
common igneous minerals. The phyllosilicate structure was modeled from the (021) peak in the

Duluth pattern using BGMN software (Bergmann, 2005).
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Bulk mineralogies of the Duluth, Stoer, and Highfield samples were determined by
analyzing the 1D patterns from the sum of all 45 minor frames (Figure 5). The relative
abundances of Ca-sulfate minerals (gypsum, bassanite, and anhydrite) were constrained by
Rietveld refinement of the 1D pattern from the first night’s analysis because gypsum (CaSOs,-
2H,0) dehydrates to bassanite (CaSO.+0.5H,0) within the relatively warm environment inside
the CheMin instrument (Vaniman et al., 2018), and the first night’s analysis best represents the
Ca-sulfate mineralogy of the original sample. Bulk mineralogy of the Rock Hall sample was
determined by analyzing the pattern from the first four minor frames because obvious changes in
the pattern were detected after the fourth minor frame (Figure 6) and degradation in grain motion
after the 12" minor frame suggest the first four minor frames best represent the mineralogy of the
original sample. The chemical composition of the plagioclase in each sample was calculated
from the refined unit-cell parameters (Morrison et al., 2018).

The chemical composition of the X-ray amorphous component in each sample was
estimated from mass balance calculations using the compositions of the crystalline phases
derived from Rietveld refinements and the bulk compositions of samples dumped from the drill
bit and measured by the Alpha Particle X-ray Spectrometer (APXS). APXS is mounted on the
arm of the rover and uses ***Cm sources to analyze rock, loose sediment, or dumped sample
using X-ray fluorescence and particle-induced X-ray emission spectroscopy (Campbell et al.,
2012). Chemical composition of total crystalline phases is calculated using mineral abundances
from Rietveld refinement and phyllosilicate abundances from FULLPAT analyses, with the
crystal chemistry of major igneous minerals derived from unit-cell parameters, and the nominal
anhydrous chemical formulae of all other minerals (e.g., CaSO, for bassanite, Fe,O; for
hematite). The augite composition measured in the martian meteorite EETA79001 was used for
the pyroxene composition in samples Duluth and Stoer. A nontronite composition was used for
the phyllosilicate composition of Duluth based on SAM data (Nova Ves sample from Novak and
Cigel, 1978), and a ferripyrophyllite chemical formula was used for the phyllosilicate
composition of Stoer, Highfield, and Rock Hall based on the d(001) position in CheMin XRD
patterns (Badaut et al., 1992). For the amorphous compositions reported here, we do not
incorporate errors in amorphous and mineral abundances and crystal chemistry of plagioclase
derived from unit-cell parameters. The methods for estimating the uncertainties in the amorphous

calculations will be the subject of a paper in the near future.
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3 Results

Analyses of CheMin data from the samples drilled on and just below VRR show that the
samples are comprised of igneous minerals, iron oxides and oxyhydroxides, sulfates,
phyllosilicates, and X-ray amorphous materials (Figure 7). A carbonate or phosphate phase may
also be present in one sample (Rock Hall) from VRR. Here, we report on the specific minerals
and their abundances (Table 1), the refined unit-cell parameters of the major phases (Table 2),
the plagioclase crystal chemistry calculated from refined parameters (Table 3), and the
composition of the amorphous component (Table 4). We also report on the effects of grain
motion on the mineralogy derived from Rietveld refinements.
3.1 Igneous silicates

The igneous silicates identified in each sample were feldspar and pyroxene. Plagioclase
feldspar is the most abundant igneous mineral in every sample. Plagioclase unit-cell parameters
are generally consistent with andesine, with a range from An,si;) in Highfield to Anasz) in Rock
Hall. Pyroxene is the next most abundant igneous mineral in each sample. We report total
pyroxene abundances because the low angular resolution of CheMin commonly precludes a
consistent pyroxene identification (i.e., augite vs. pigeonite vs. orthopyroxene) among the
independent refinements. Refinements of Highfield and Stoer, however, resulted in the
identification of orthopyroxene as the sole pyroxene in those two samples based on the results
from all of the refinements, but the CheMin team cautions that we are not certain of the
identification of orthopyroxene because of the low angular resolution of the instrument.
Potassium feldspar (var. high sanidine) and quartz are minor to trace constituents of every
sample, except for Rock Hall, in which they are absent or below the detection limit of CheMin.
We specifically investigated for the presence of olivine in each sample, but it was not present
above the detection limit of the instrument.
3.2 Iron oxides and oxyhydroxides

The assemblage of iron oxides and oxyhydroxides (Figure 8) is especially important on
and near VRR because of the identification of hematite from orbital visible/short-wave infrared
data. CheMin data show that hematite (a-Fe,O;) is present in every sample and is the most
abundant iron oxide in the samples Duluth, Stoer, and Highfield. The Stoer sample, from the
Pettegrove Point member, has the most hematite of any sample drilled to date (~15 wt.% of the

bulk sample). Prior to Curiosity’s investigation of VRR, the Oudam sample, drilled from the
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Murray formation ~250 m stratigraphically below VRR, had the most hematite (~14 wt.% of the
bulk sample; Bristow et al., 2018; Achilles et al., submitted). The refined a and ¢ unit-cell
parameters of hematite in Duluth and the a unit-cell parameter of hematite in Rock Hall are
within the 1-sigma error of the nominal hematite structure (i.e., @ = 5.038 and ¢ = 13.7772 A
measured from single-crystal diffraction data; Blake et al., 1966). The refined unit-cell
parameters of hematite in Stoer are significantly smaller than the nominal hematite structure, the
a cell parameter for the hematite in Highfield is slightly larger whereas the ¢ cell parameter is
smaller, and the ¢ cell parameter in Rock Hall is smaller. The FWHM of the hematite varies
among the samples. We measured the FWHM of the hematite (104) peak of each sample because
it is a strong reflection with no interference from peaks of other phases. The FWHM of these
peaks was measured with the Jade software, using a beryl-quartz standard measured by CheMin
on sol 740 to create an instrument profile calibration curve. The FWHM of the hematite from
Duluth is significantly larger than those from the samples collected on VRR (Table 5), and the
FWHM of the hematite from the samples collected on VRR are close to the angular resolution of
CheMin (FWHM ~0.35 °26).

Akaganeite (B-Fe**O(OH,Cl)) is present in trace amounts in Stoer and is the most
abundant iron oxide/oxyhydroxide in Rock Hall (~6 wt.% of the bulk). The akaganeite peaks in
the Rock Hall XRD pattern were sufficiently strong to refine the akaganeite unit-cell parameters,
and the refined parameters are consistent with Cl in the mineral structure (Peretyazhko et al.,
2019).

Magnetite is present in Duluth, Stoer, and Highfield in abundances near the CheMin
detection limit. The six independent refinements identified magnetite (Fe;O4) and/or maghemite
(y-Fe20s) in these three samples, and the “magnetite” group in Table 1 incorporates both phases.
The peaks from these phases were too weak to allow meaningful refinement of the unit-cell
parameters, so we cannot define the detailed structure of this phase. Magnetite was not identified
in refinements of the Rock Hall pattern.

3.3 Sulfates and phosphates or carbonates

Each sample has abundant Ca-sulfate minerals, and the proportions of the different types
vary between samples (Figure 9). Bassanite (CaSO,*0.5H,0) is the most abundant Ca-sulfate in
Duluth, with minor anhydrite (CaSO4) and gypsum (CaSO,-2H,0) at the detection limit of

CheMin. Stoer has equal proportions (within the 1-sigma error) of anhydrite and gypsum, with
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bassanite near the detection limit. Anhydrite is the most abundant Ca-sulfate in Highfield, and
gypsum and bassanite are present in trace amounts. Anhydrite is the only Ca-sulfate mineral in
Rock Hall.

Jarosite (KFes(SO.)(OH)e) is present in trace amounts in Stoer and Rock Hall. The
jarosite peaks were not sufficiently strong to refine the jarosite unit-cell parameters, but jarosite
fit the patterns better than natrojarosite (NaFe;(SO4)2(OH)s) or hydronium jarosite
(H3OFes(S04)2(OH)e). Jarosite was not identified in Duluth or Highfield.

Trace amounts of fluorapatite (Cas(PO,);F) improved the fit to the Rock Hall pattern,
although its peaks were not sufficiently strong to refine unit-cell parameters. The most intense
fluorapatite peak (at ~37.2 °20) is located on a shoulder of a peak from plagioclase, and the other
peaks from fluorapatite are not strong enough to affect the pattern, making its presence less
certain. Furthermore, the most intense peak of fluorapatite occurs at nearly the same location as
the most intense peak of siderite (FeCOs3), and siderite similarly fits the shoulder at ~37.2 °26.
Like fluorapatite, the other peaks from siderite are not strong enough to be detected in the Rock
Hall pattern. APXS reported 0.87 wt.% P,Os in the drill fines dumped from the drill bit. This
would allow for up to ~2 wt.% fluorapatite in the sample, which is consistent with CheMin
refinements. SAM reported a CO; release in Rock Hall that may be consistent with the presence
of a carbonate (McAdam et al., this issue), which strengthens the argument for siderite. We
report fluorapatite in Rock Hall in Table 1, but emphasize that we are not confident in this
assignment and siderite instead may be present. Interpretations of the aqueous history of Rock
Hall should not hinge upon the presence or absence of either fluorapatite or siderite.

3.4 Phyllosilicates

Phyllosilicates are present in each sample. Of these four samples, Duluth has the most
phyllosilicate with 15+4 wt.%, and Highfield has the least with 5+1 wt.%. The basal
phyllosilicate peak in the Duluth pattern is at 10 A (Figure 10), consistent with collapsed
smectite or illite. The relatively low abundance of K,O in the APXS measurement of the Duluth
dump pile (0.94 wt.%) suggests that the phyllosilicate in Duluth is collapsed smectite, rather than
illite (e.g., Bristow et al., 2018). The position of the phyllosilicate (02]) peak is a measure of the
compositionally sensitive b-axis of the structure, and the positions of the (021) peaks in the
Duluth, Stoer, and Rock Hall patterns are consistent with a dioctahedral occupancy (Figure 10).

The phyllosilicate abundance in Highfield is too low to produce a distinct (021) peak. Evolved
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gas analysis of Duluth from the SAM instrument is consistent with the presence of nontronite
based on the temperature of the H,O, release (McAdam et al., this issue). Modeling the (02I)
peak in Duluth using BGMN software suggests Fe(Ill) content in the dioctahedral sheet is ~0.66,
consistent with nontronite (Supplementary Figure 1). The (021) peaks in Stoer, Highfield, and
Rock Hall are too weak for BGMN model determination of the b unit cell.

The positions of the (001) peaks in the diffraction patterns of the three samples collected
from VRR suggest that the phyllosilicates present in those samples are different from the
nontronite in Duluth. Their basal spacings are ~9.6 A, rather than 10 A (Figure 10). This slightly
smaller interlayer spacing could be consistent with a completely collapsed smectite that is devoid
of any H>O in the interlayer site through low-temperature heating (e.g., Komadel et al., 2002;
Morris et al., 2009), a smectite altered by acid (e.g., Craig et al, 2014), or the Fe(IlI)-bearing 2:1
phyllosilicate ferripyrophyllite (Fe,S14010(OH); Bristow et al., 2018). CheMin and SAM data are
insufficient to distinguish among these possibilities. The distinctly different (i.e., H.O-poor)
phyllosilicate on VRR compared to surrounding units is consistent with the absence of a 1.9 um
hydration band in orbital data from the ridge (Fraeman et al., 2013; 2016).

We considered mixed-layer phyllosilicates as an explanation for the 9.6 A basal spacing.
Nontronite-talc is a mixed-layer phyllosilicate that forms from hydrothermal alteration in
seafloor sediments and has been proposed as a Mars-analog phyllosilicate (Cuadros et al., 2013;
Michalski et al., 2015). Assuming the nontronite is dehydrated, nontronite-talc would have a
basal spacing at ~9.6 A. SAM EGA data, however, do not support the presence of a trioctahedral
phyllosilicate like talc because of the lack of a high-temperature H,O evolution (McAdam et al.,
this issue).

3.5 X-ray amorphous materials

X-ray amorphous materials are significant components of each sample. The modeled
positions of the amorphous hump from Rietveld refinements of Duluth, Stoer Highfield and
Rock Hall were ~26, ~27, ~25, and ~27°260, respectively. For amorphous silicates, the position of
the hump is dependent on SiO2 content, where opal-A has a maximum at ~25°26 and basaltic
glass has a maximum at ~30°20 (e.g., Morris et al., 2015). FULLPAT models indicate about a
third to a half of each sample’s mass is comprised of X-ray amorphous materials. FULLPAT
models primarily used diffraction patterns of rhyolitic glass with minor amounts of ferrihydrite

to model the amorphous scattering. Diffraction patterns of X-ray amorphous materials, however,
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do not have distinct peaks and can be broadly similar to one another, so the types of amorphous
materials used in FULLPAT analyses do not necessarily correspond to the types of X-ray
amorphous materials actually present. FULLPAT models also identified opal-CT in the
Highfield pattern (Supplementary Figure 2). Opal-CT is paracrystalline (e.g., Smith, 1998) and
has reasonably sharp peaks in its X-ray diffraction pattern, so this identification by FULLPAT is
more robust than other non-crystalline materials.

X-ray amorphous abundances from FULLPAT and X-ray amorphous abundance minima
from mass balance calculations are similar for all four samples. Mass balance calculations
demonstrate that the amorphous component in each sample has variable amounts of FeOr, SiO,,
SOs, AlLOs, CaO, and MgO, and that the amorphous compositions vary significantly between
samples. For example, the amorphous compositions based on mass balance calculations show
that the X-ray amorphous component of Duluth is highly enriched in FeOr (~22 wt.% of the total
amorphous fraction) and depleted in SiO, (~36 wt.%) compared to the other three samples. The
X-ray amorphous component of Stoer is highly enriched in MgO (~11 wt.%), relatively enriched
in Si0; (~57 wt.%), and has no FeOr. Highfield’s amorphous component has the highest SiO, of
the samples (~65 wt.%), consistent with the identification of minor amounts of opal-CT and
indicative of abundant opal-A, but has the lowest SO; (~3 wt.%). The amorphous component in
Rock Hall has the highest SO; (~23 wt.%) and the lowest SiO, (~37 wt.%). Because the
calculated amorphous compositions do not take errors into consideration (e.g., errors associated
with mineral and amorphous abundances and crystal chemistry), the amorphous compositions
reported here should not be considered exact. In reality, the calculated amorphous composition
for each sample represents a single composition within a range of potential compositions.

3.6 Effects of grain motion on mineral abundances

For the Stoer sample, refinements of the three separate nights of analysis produced
mineral abundances that were very similar to the abundances from the refinement of the
combined three-night pattern (Supplementary Table 1). All mineral abundances, except for the
Ca-sulfate minerals, were within the 2-sigma error reported for the refinement of the three-night
pattern, and most mineral abundances were within the 1-sigma error. The variability in Ca-
sulfate abundances was expected across the three nights of analysis because of the dehydration of

gypsum to bassanite within the CheMin instrument over time (Vaniman et al., 2018).
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Refinements of 15 minor frame patterns from the Marimba drill powder demonstrated
that grain motion significantly affects abundances of some minerals in the samples. Most mineral
abundances between the two patterns were within the 1-sigma errors reported by Achilles et al.
(submitted), but sanidine, anhydrite, and pyroxene abundances were significantly different
(Supplementary Table 2). Refinement of minor frames 3-17 (when grain motion was poor)
resulted in significantly less sanidine and pyroxene but more anhydrite, whereas refinement of
minor frames 31-45 (when grain motion was good) resulted in significantly more sanidine and
pyroxene but less anhydrite. We might expect an increase in anhydrite over time as hydrated
CaSO, dehydrates in the CheMin instrument (although only the gypsum to bassanite transition
has been documented so far), but we should not expect a significant decrease over time unless
that mineral was preferentially ejected from the cell. We have no reason to suspect that material
was ejected over time (e.g., we do not see an increase in the intensity of the peak from the Mylar
window), so we hypothesize that differences in grain motion in the Marimba drill powder
affected peak intensities and, therefore, mineral abundances in the pattern over time. In the case
of Marimba, anhydrite grains may have been immobilized in the center of the cell when minor
frames 3-17 were collected to increase the intensity of the anhydrite peaks and increase its
abundance in the refinement. This grain sorting may have also occurred during the Rock Hall
analysis while minor frames 14-45 were collected (Figure 6). We caution that the reported
mineral abundances from samples that showed poor grain motion throughout the analysis (e.g.,
Highfield) may not accurately reflect the true mineral abundances. It is important to note,
however, that although grain motion affects mineral abundances, it does not appear to affect the
mineral assemblages that are identified by CheMin.

4 Discussion

CheMin XRD data of the three samples drilled from VRR and the sample drilled from
immediately below the ridge demonstrate mineralogical diversity across the ridge that could not
be appreciated from orbital data alone. In addition to differences in hematite abundances, we see
evidence for differences in hematite crystallite size, in the types of iron (oxhydr)oxides present,
the sulfate mineralogy, and phyllosilicate structures. This variability in secondary phases may
indicate multiple fluid episodes with different pHs, temperatures, and/or water activities were
responsible for minerals identified on VRR. Here, we discuss the types of fluids implicated by

the mineral assemblages and propose an alteration history for the ridge.
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4.1 Mineralogical indicators of aqueous processes
4.1.1 Hematite

Hematite can form in a variety of environments and from a variety of parent materials on
Earth, from hydrothermal deposits in rhyolites (e.g., Seeger et al., 1989) to highly weathered
tropical soils (i.e., oxisols; e.g., Schwertmann and Latham, 1986; Fontes and Weed, 1991).
Although laboratory conditions do not always mimic natural conditions, laboratory syntheses of
hematite provide insight into the aqueous conditions under which it forms. Hematite is typically
synthesized by (1) thermal dehydration of crystalline goethite (a-FeOOH) at temperatures over
~250 °C, (2) forced hydrolysis in strongly acidic (pH 1-2) Fe*'-bearing solutions, or (3)
transformation of ferrihydrite in aqueous suspension under weakly acidic to weakly alkaline pH
(Schwertmann and Cornell, 2000) or ageing in warm, humid air (e.g., Torrent et al., 1982).
Although hematite itself is not diagnostic of a specific formation mechanism, its crystallite size
and the mineral assemblage can help infer the process by which it formed.

Hematite with relatively small crystallite sizes typically forms from a ferrihydrite or
nanophase FeOOH precursor, including goethite, akaganeite, and lepidocrocite (e.g.,
Schwertmann and Cornell, 2000; Guo and Barnard, 2013). This transition is common in tropical
soils on Earth or from elevated temperatures during burial (e.g., Weibel and Grobety, 1999; Guo
and Barnard, 2011). Ferrihydrite is a poorly crystalline hydrated Fe(IlI) oxyhydroxide that forms
nm-scale crystallites from rapid oxidation of Fe** or rapid hydrolysis of Fe*. It is important here
to make the distinction between crystallite size and grain or particle size. Crystallite size refers to
a single crystal (i.e., a solid with a regularly repeating atomic arrangement). Grains can be
comprised of one or many crystallites. Gray hematite (also called specular or microplaty
hematite; Lane et al., 2002) is typically coarser-grained than red hematite, where hematite with
grain sizes <~5 um appear red to the human eye and coarser hematite grains >~5 um appear
black or gray (e.g., Catling and Moore, 2003; Morris et al., this issue). Large particles made up
of aggregates of ~10-200 nm hematite crystallites can appear gray or black (Madden et al., 2010;
Egglseder et al., 2019). Gray hematite has been found to form by many different mechanisms
(Catling and Moore, 2003), including crystallization from ferrihydrite in aqueous hydrothermal
environments at ~100-200 °C, precipitation in acid-sulfate hydrothermal solutions from the
breakdown of jarosite (Golden et al., 2008), vapor phase condensation in fumaroles, and high-

temperature oxidation of basalts (e.g., Minitti et al., 2005). Gray hematite has been identified in
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banded iron formations, in which it may form from a variety of mechanisms, including
transformation from ferrihydrite at low-grade metamorphic temperatures (e.g., Sun et al., 2015)
and dissolution of hematite-bearing quartz layers by warm, saline solutions, resulting in the
aggregation of hematite nanoparticles into mm-scale hematite bands (Egglseder et al., 2019). The
dehydration of large (>1 wm) goethite crystallites, generally at temperatures >80 °C, can produce
large hematite crystallites that maintain the acicular goethite morphology (Weibel and Grobety,
1999). The most common formation mechanisms for gray hematite require elevated
temperatures, but freeze drying suspensions of hematite nanoparticles in confined spaces can
also produce gray hematite (Madden et al., 2010).

CheMin’s discovery of abundant hematite in the Highfield sample from a gray outcrop in
the Jura member suggests that the hematite in the gray Jura is more coarsely crystalline than
other locations on VRR and across Curiosity’s traverse. This is further corroborated by the Fe-
rich mm-sized hexagonal crystals interpreted to be hematite found in Ca-sulfate veins in portions
of the gray Jura (L’Haridon et al., this issue). Finely ground gray hematite typically produces a
red powder (e.g., just as scraping a sample of specular hematite on a streak plate creates a red
streak), but the drill fines from Highfield remained gray in images collected by Curiosity (Figure
3). Analyses of drilled rock powders in the Curiosity rover test bed at the Jet Propulsion
Laboratory showed that particles created by Curiosity’s drill are generally >5 um in diameter,
suggesting the hematite particles in the Highfield drill tailings were not small enough to produce
ared color.

The Scherrer equation (e.g., Patterson, 1939) is applied to XRD patterns to calculate

crystallite size:

T= KA
PBcosO

T = mean crystallite size (diameter)
K = dimensionless shape factor (0.9 for spherical particles)
A = wavelength of the X-ray source (1.79027 A for CheMin)
f = FWHM of the diffraction peak
0 = Bragg angle of the diffraction peak
The mean crystallite size is inversely related to the FWHM of the diffraction peaks, so

smaller crystallite sizes produce XRD patterns with broader peaks. Because of the low angular
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resolution of CheMin (~0.35 °20), the XRD peaks of crystalline phases would be broad
compared to those for patterns measured on laboratory instruments, and we cannot use the
Scherrer equation to constrain crystallite sizes larger than ~40 nm. We can apply the Scherrer
equation to phases whose peaks are broader than ~0.35 °26, like the hematite in Duluth. The
FWHM of the hematite (104) peak in the three samples from VRR is close to that of the angular
resolution of CheMin, but the FWHM of the hematite (104) peak in Duluth is 0.66(18) °260
(Table 5). Qualitatively, this difference in FWHM suggests that the hematite in Duluth has a
smaller crystallite size than the hematite on VRR. Quantitatively, the Scherrer equation indicates
the mean hematite crystallite size in Duluth is ~18 nm, if we assume a spherical crystallite shape.
We speculate that the relatively small hematite crystallite size in Duluth implies a nanophase
precursor (e.g., ferrihydrite or goethite) that formed at low temperatures. The hematite may have
formed larger grains on VRR as a result of warmer temperatures and/or the aggregation of
smaller hematite particles in saline solutions.

The deviations from the ideal hematite structure (Blake et al., 1966) in the hematite
identified in Stoer, Highfield, and Rock Hall may provide further clues into its formation. Many
factors affect the hematite structure, including the speciation and concentration of cationic and
anionic substitutional impurities and the discrete particle size, shape, and strain (e.g., see
discussion by Morris et al., this issue). Cationic substitutions for Fe’" in the structure and/or the
introduction of vacancies coupled with OH™ can lead to a smaller unit-cell volume than ideal
hematite (e.g., Stanjek and Schwertmann, 1992; Dang et al., 1998; Schwertmann et al., 2000).
Studies of synthetic hematite with Al incorporated into its structure demonstrate that Al
substitution also introduces OH into the structure. A decrease in the a cell parameter correlates to
an increase in Al whereas a decrease in the ¢ cell parameter correlates to an increase in OH
(Stanjek and Schwertmann, 1992). The ¢ parameters of the hematite in all four samples are
relatively similar to one another and are consistent with the ¢ parameters of unsubstituted natural
and synthetic hematite (Morris et al., this issue). The a cell parameter of the hematite in Stoer is
especially small compared to hematite detected in other samples in Gale crater (Morris et al., this
issue), which could result from Al substitution in the structure. Al is commonly incorporated into
hematite in terrestrial soils because of the availability of Al in solution (e.g., Schwertmann et al.,
2000), and Al may have been available in diagenetic fluids on VRR from the dissolution of

phyllosilicates. Although the a and ¢ cell parameters for hematite in Stoer are consistent with Al
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substitution, note that some unsubstituted hematite structures have similarly small cell
parameters (Morris et al., this issue), so we cannot say with certainty that Al substitution in
hematite controls the difference in cell parameters between the VRR samples.
4.1.2 Akaganeite and jarosite

The well-crystalline akaganeite and jarosite detected in the Stoer and Rock Hall samples
are indicative of saline, acid-sulfate fluids. Well-crystalline akaganeite forms from the hydrolysis
of Fe&’" in Cl-bearing solutions under acidic pH (~1-6; Refait and Genin, 1997; Rémazeilles and
Refait, 2007; Zhao et al., 2012; Peretyazhko et al., 2016; 2018). It is relatively rare on Earth, but
has been found in sulfidic/acidic soils, intertidal marshes or lagoons, hydrothermal brines,
volcanic vents, iron meteorites, and iron metal corroded by seawater (e.g., Holm et al., 1983;
Buchwald and Clark, 1989; Morris et al., 2000; Holtstam, 2006; Bibi et al., 2011). Akaganeite
can form at alkaline pH but has a small crystallite size under those conditions; for instance,
akaganeite crystallites formed at pH 8 are 2-6 nm in diameter and produce broad XRD peaks
(Deliyanni et al., 2001). The sharp XRD peaks of akaganeite in both Stoer and Rock Hall (Figure
5) indicate it is well crystalline, suggesting it formed under acidic conditions (Peretyazhko et al.,
2018). Akaganeite commonly forms with hematite, goethite, and/or ferrihydrite (e.g., Johnston,
1977, Peretyazhko et al., 2016; 2018). It also transforms to hematite at temperatures of ~250-300
°C (Stahl et al., 2003; Glotch and Kraft, 2008; Fu et al., 2020) and can alter to form hematite or
goethite under alkaline conditions (Cornell and Giovanoli, 1990).

Jarosite forms from the hydrolysis of Fe*" in SO4*-bearing solutions at a pH of ~1.5-4
(e.g., Driscoll and Leinz, 2005). On Earth, it commonly forms during the aqueous alteration of
pyrite (FeS) and other Fe-sulfates, and is found as a precipitate in acid mine drainage, acid-
sulfate soils, acid saline lakes, volcanic fumaroles, and acid leaching solutions in the
metallurgical industry (e.g., Johnston, 1977; Kunda and Veltman, 1979; Van Breemen, 1982;
Alpers et al., 1992; Morris et al., 2000; Espafia et al., 2005). Jarosite can alter to form hematite in
low-temperature acidic or neutral solutions (Barrdn et al., 2006; Elwood Madden et al., 2012).

The detection of both akaganeite and jarosite in the same samples on VRR can constrain
past aqueous environments if we assume they precipitated from the same solution (although we
note that the minerals in the samples are not in equilibrium, so the rock was likely affected by
different fluids during different episodes and akaganeite and jarosite may not have co-

precipitated). Peretyazhko et al. (2016) synthesized akaganeite and natrojarosite from hydrolysis
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of an Fe**-bearing solution with 0.1 M SO,* and a S/C1 molar ratio of 0.17 at pH 1.5. Increasing
the pH resulted in the precipitation of hematite and goethite, and decreasing the SO4*
concentration precluded the precipitation of natrojarosite. Akaganeite and jarosite were found
together on andesitic boulders in streams with pH 1-2 near White Island volcano on New
Zealand’s North Island (Johnston, 1977). Bibi et al. (2011) reported the co-occurrence of
akaganeite and jarosite in sulfide-bearing freshwater inlands in New South Wales, Australia.
These surface waters had 0.03 M SO,*, a S/CIl molar ratio of 0.007, and a pH of 2. These studies
suggest the coprecipitation of akaganeite and jarosite occurs in solutions with a pH of 1.5-2 with
a SO4* concentration of 0.03-0.1 M, but they do not help constrain CI" concentration.
4.1.3 Ca-sulfate

The type of Ca-sulfate mineral present can be used as an indicator of salinity,
temperature, and hydrologic conditions. Anhydrite and gypsum are the most common forms of
Ca-sulfate on Earth and are usually found in evaporite deposits (e.g., Buick and Dunlop, 1990),
but anhydrite is reported in hydrothermal environments (e.g., Sleep, 1991; Hannington et al.,
2001). Bassanite is rare on Earth because it is a metastable phase at Earth’s surface conditions
(e.g., Van Driessche et al., 2017), but it is stable on the surface at Gale crater, where
temperatures reach up to 12 °C and relative humidity is <2% during the day (e.g., Rapin et al.,
2016; Vaniman et al., 2018). Thermodynamic calculations and solubility measurements indicate
that anhydrite precipitates from dilute sulfate solutions at slightly elevated temperatures (~40-60
°C) compared to gypsum, but anhydrite can form from concentrated brines at lower temperatures
(e.g., Hardie, 1967; Dixon et al., 2015; Miller et al., 2016; Miller, 2017). Anhydrite can be
difficult to precipitate in the laboratory at relatively low temperatures because of slower reaction
kinetics than gypsum and bassanite, but it has been synthesized by transformation of gypsum or
bassanite in saline solutions similar to those found in terrestrial sedimentary environments at
temperatures >80 °C (Ostroff, 1964; Ossario et al.,, 2014). Anhydrite has been successfully
synthesized at low temperatures in flow-through jarosite dissolution experiments in CaCl, brines,
whereas gypsum and bassanite were only precipitated in batch reactor dissolution experiments
(Dixon et al., 2015; Miller et al., 2016; Miller, 2017). These results suggest anhydrite can be a
marker of open hydrologic conditions. Laboratory experiments demonstrate that the precipitation
of gypsum vs. bassanite is controlled primarily by salinity, where bassanite forms at lower water

activity than gypsum (Cruft and Chao, 1970; Ossario et al., 2014).
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The differences in relative abundances of anhydrite, bassanite, and gypsum in Duluth,
Stoer, Highfield, and Rock Hall suggest differences in the salinity of the fluids, the duration of
fluid activity, fluid flow, and possibly temperature. The Ca-sulfate minerals in Duluth are
dominated by bassanite and anhydrite, with very little gypsum, suggesting precipitation of Ca-
sulfate from relatively saline fluids or transition from gypsum during extended aqueous activity.
It is important to note, however, that Duluth was delivered to CheMin 12 sols after drilling,
compared to six sols for Stoer and five sols for Highfield and Rock Hall, and gypsum may have
dehydrated to bassanite while in the drill bit (e.g., Vaniman et al., 2018). The presence of
abundant gypsum and anhydrite in Stoer and Highfield may suggest multiple fluid episodes;
gypsum may have precipitated from fluids with higher water activity and/or closed hydrologic
conditions, and anhydrite may have precipitated from fluids with lower water activity, under
higher flow conditions, or may have transformed from gypsum in contact with saline fluids. The
dominance of anhydrite in Rock Hall may be a marker of saline fluids, longer lived aqueous
activity to allow for the transition of gypsum and/or bassanite to anhydrite, an open hydrologic
system in the presence of saline fluids, or slightly elevated temperatures >~60 °C. The presence
of light-toned fractures in all targets indicates at least some of the Ca-sulfate is a late-stage
diagenetic product. We cannot rule out the presence of Ca-sulfate in the matrix, and the
observation of swallowtail-shaped crystal molds in the gray Jura suggests gypsum precipitation
during deposition or early diagenesis (L’Haridon et al., this issue). Therefore, some of the Ca-
sulfate detected by CheMin may have also formed as the sediments lithified during early
diagenesis.
4.1.4 Phyllosilicates

Phyllosilicates are especially important indicators of aqueous alteration on ancient Mars
because they are recognized across the planet from orbital VSWIR spectral data (e.g., Bibring et
al., 2006; Ehlmann and Edwards, 2014; Carter et al., 2015). X-ray diffraction data from CheMin
allow us to investigate the phyllosilicate structures and crystal chemistry to characterize the
specific aqueous conditions under which they formed. CheMin and SAM data from Duluth are
consistent with the presence of nontronite, a dioctahedral smectite. Nontronite commonly forms
on Earth from hydrothermal alteration or weathering of mafic minerals in soils (e.g., Sherman et
al., 1962; Meunier, 2005). Two of the common nontronite standards from the Clay Minerals

Society, NAu-1 and NAu-2, formed from hydrothermal alteration of biotite and amphibole in
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schist, gneiss, and amphibolite (Keeling et al., 2000). Nontronite is also found in basaltic soils
with leaching under anoxic conditions to allow for the release of Fe from mafic minerals and to
maintain Fe*" in solution (e.g., Sherman et al., 1962; Baker and Neill, 2017). Nontronite
decomposes to Fe-oxides over time by desilication in these soils. Nontronite generally forms in
poorly drained soils, and the transition to well-drained soils promotes formation of aluminous
clay minerals, including montmorillonite and kaolinite (e.g., Baker and Neill, 2017). The
oxidation of synthetic ferrous smectite can lead to the formation of nontronite and the
concomitant precipitation of nanophase hematite from the ejection of Fe** from the nontronite
structure (Chemtob et al., 2017). Nontronite has also been synthesized at relatively low
temperatures between 3 and 150 °C (Harder, 1976; Decarreau et al., 2008). These syntheses
require a ferrous starting material, reducing conditions, and relatively low dissolved silica to
prevent the precipitation of Fe-oxides and amorphous silica. Nontronite can be synthesized at
much higher temperatures of ~350 °C with ferric starting materials (e.g., Kloprogge et al., 1999).
Ferripyrophyllite, which may be present on VRR based on d(001) = 9.6 A observed in the Stoer,
Highfield, and Rock Hall XRD patterns, has been identified in sediments from the Red Sea that
experienced early diagenesis at temperatures 55-65 °C (Badaut et al., 1992).

The phyllosilicate species identified in the samples from and just below VRR are
suggestive of relatively intense aqueous alteration compared to previous samples drilled from
older strata in Gale crater. Mudstone samples from the base of the stratigraphic section
investigated by Curiosity in the Yellowknife Bay formation contain Fe-substituted saponite, a
trioctahedral smectite (Treiman et al., 2014; Vaniman et al., 2014). The presence of Fe*"- and
Mg-bearing smectite requires abundant basic cations in solution and relatively low Eh (e.g.,
Vaniman et al., 2014). Smectite detected by CheMin and SAM in the Murray formation below
the Blunts Point member and the location of the Duluth drill hole is a mix of trioctahedral and
dioctahedral structures, but becomes increasingly dioctahedral up section (Bristow et al., 2018).
This mineralogical change is coupled with a geochemical change that suggests more intense
open system alteration up section (Mangold et al., 2019). The nontronite in Duluth is the first
fully dioctahedral smectite detected by Curiosity and suggests a lower concentration of basic
cations in solution (perhaps from leaching) and more oxidizing conditions than the solutions
responsible for smectite formation lower in the section. Orbital VSWIR data of phyllosilicate-

bearing terrains on Mars suggest ~75% of all smectite detected has high or very high Fe
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(Michalski et al., 2015). The high-Fe dioctahedral smectite detected at Duluth may be
structurally and chemically similar to high-Fe smectite detected elsewhere on Mars.

Ferripyrophyllite is also a dioctahedral phyllosilicate. If ferripyrophyllite is present on
VRR, natural formation conditions imply it formed under warm temperatures (~60 °C) and
acidic pH. Bristow et al. (2018) identified ferripyrophyllite based on the 9.6 A basal peak in a
sample from the Murray formation called Oudam previously analyzed by CheMin. They
speculated it was detrital, but the discovery of a similar mineral assemblage on VRR and the
evidence for diagenesis on VRR suggests it may have formed in situ in both locations.
Alternatively, the 9.6 A basal peak in VRR samples may be from a smectite altered by acidic
fluids (Craig et al., 2014), in which case warm temperatures are not necessary but relatively
intense alteration is inferred. Data from CheMin and SAM cannot help us distinguish between
ferripyrophyllite and acid-altered smectite on VRR, but both suggest the rocks of VRR
experienced a higher degree of alteration than surrounding units. Ferripyrophyllite has not been
detected from orbit on Mars, perhaps because no one has looked for this particular mineral. We
recommend the clay mineralogists and spectroscopists in the Mars community consider the
presence of ferripyrophyllite when considering mineralogical assignments from CRISM spectra.

The alteration of preexisting phyllosilicates may also be tied to the precipitation of Fe-
oxides and oxyhydroxides and opaline silica. Conformable units below VRR and the Blunts
Point member contain abundant smectite (Bristow et al., 2018), and units that are
stratigraphically equivalent to Jura in the Glen Torridon locale to the south of VRR contain the
most smectite observed to date (Bristow et al., 2019). Fe-bearing smectite alteration on VRR
could result in a relatively low abundance of phyllosilicate on VRR, in addition to precipitation
of Fe-oxides and oxyhydroxides from the Fe present in the smectite structure and the
precipitation of opaline silica from leaching of silica from clay mineral tetrahedral layers (e.g.,
Sherman et al., 1962; Chemtob et al., 2017).
4.1.5 X-ray amorphous materials

The identification of opal-CT in the Highfield XRD pattern suggests a diagenetic origin
from the transformation of opal-A. On Earth, silica typically matures in sedimentary
environments during early diagenesis from opal-A = opal-CT - cryptocrystalline quartz, and
opal-CT forms from opal-A through a dissolution-reprecipitation reaction (e.g., Kastner et al.,

1977). Opal-CT is common in deep sea sediments, where the silica is usually sourced from
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siliceous ooze, in silica sinters from hot springs, where the silica is from hydrothermal alteration
of volcanic rocks, and in volcanic rocks that have experienced early diagenesis (e.g., Riech and
von Rad, 1979; Altaner and Grim, 1990; Lynne and Campbell, 2004). The transformation from
opal-A to opal-CT typically occurs at slightly elevated temperatures (~18-56 °C), but it has been
observed at much colder temperatures (0-4 °C) in shallowly buried Antarctic deep-sea sediments
(Botz and Bohrmann, 1991).

The composition of the X-ray amorphous components in each sample may also hold
clues for the nature of aqueous solutions that interacted with the sediments in ancient Gale crater.
Although FULLPAT analyses modeled much of the amorphous component in each sample as
volcanic glass, none of the calculated amorphous chemical compositions is consistent with a
volcanic glass composition. Glass could be a constituent of the amorphous materials, but the
variable enrichment in Si0,, FeOr, and SO; suggests a secondary origin for at least a portion of
the amorphous component. The concentration of SO; in the amorphous component of all
samples, particularly Rock Hall, indicates the presence of amorphous sulfates (e.g., Vaniman et
al., 2004). XRD patterns of amorphous Fe- and Mg-sulfates are similar to those of volcanic glass
(Morris et al., 2015), and SAM evolved SO, emissions indicate the presence of Mg sulfate in all
samples and Fe sulfate in all samples except Highfield (McAdam et al., this issue). The lack of
Fe in the amorphous component in Stoer and the elevated MgO inferred from mass balance
calculations suggest that all Fe-sulfate in Stoer is crystalline (i.e., jarosite) and the amorphous
sulfate is magnesian. The combined SAM and CheMin data indicate the presence of amorphous
Mg-sulfate in Duluth, Stoer, Highfield, and Rock Hall and amorphous Fe-sulfate in Duluth and
possibly Rock Hall. These amorphous sulfates may have formed by rapid precipitation from the
evaporation or freezing of sulfate-bearing fluids, and the very high abundance of SOj; in the Rock
Hall amorphous component suggests those fluids were particularly concentrated in SO,*.

Elevated concentrations of SiO, in the amorphous component of Stoer and Highfield, the
position of the X-ray amorphous hump, and the detection of opal-CT by FULLPAT in Highfield
indicate the presence of opaline silica in these two samples. The presence of opal suggests
precipitation of silica from solution, which could have been mobilized at elevated temperature,
elevated pH, or by the dissolution of other silicates, like mafic silicates or clay minerals (e.g.,

Iler, 1979; McLennan, 2003).
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The especially high concentration of FeOr in Duluth suggests an amorphous Fe phase,
like two-line ferrihydrite, is abundant just below VRR. The presence of ferrihydrite-like
materials suggests rapid hydrolysis of Fe’™ in solution (e.g., Schwertmann and Cornell, 2000).
Fe** can be mobilized in solutions with extremely acidic pH. Alternatively, the amorphous Fe
phase may have formed by rapid oxidation of Fe*" in solution followed by Fe** hydrolysis, which
would imply that reducing conditions mobilized Fe. A ferrihydrite-like phase may also be
present in Highfield and Rock Hall, although the FeOr in the amorphous component in Rock
Hall may be associated with the elevated SOs in that sample.

The abundance of amorphous materials in all VRR samples is also important to consider
when constraining the diagenetic history of the ridge. Amorphous materials in rocks and soils on
Earth commonly mature to crystalline phases as a result of aqueous alteration and diagenesis
(e.g., opaline silica matures to quartz, and ferrihydrite matures to hematite or goethite; e.g.,
Kastner et al., 1977; Schwertmann and Cornell, 2000), although amorphous materials have been
recognized in ~30 Ma old paleosols (Smith et al., 2018). The presence of opaline silica and
nanophase Fe-oxides/oxyhydroxides on VRR indicates that, although aqueous alteration may
have been relatively intense on the ridge, fluids may not have been sufficiently long-lived to
allow for the maturation of amorphous materials (e.g., Tosca and Knoll, 2009).

4.2 Conceptual model to explain the mineral assemblages on Vera Rubin ridge

Any conceptual model to explain the history of Vera Rubin ridge must account for
variations in hematite crystallite size on and just below the ridge, detection of akaganeite and
jarosite in Stoer and Rock Hall, phyllosilicate with d(001) = 9.6 A on the ridge, presence of opal-
CT in Highfield, differences in Ca-sulfate mineralogy, and formation of the erosion-resistant
ridgeline. Without petrography and knowledge of the textural relationships between minerals at
the grain scale, it is difficult to identify a sequence of events and characterize each phase as
detrital or authigenic. Although the model we put forward is consistent with Curiosity’s results, it
is certainly not the only model that can explain the observations, and other reasonable models are
presented in other papers in this issue. Below, we present a model to explain the mineralogy and
sedimentology from sediment deposition through late diagenesis and erosion to the current
topography (Figure 11).

The generally small grain size and fine laminations of the rocks on the ridge indicate

deposition of sediments in a lacustrine environment (Edgar et al., this issue). Feldspar and
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pyroxene were likely detrital inputs, and the variation in plagioclase composition may indicate
different sources or may result from local variations in alteration intensity. Ca-rich plagioclase is
more susceptible to alteration than Na-rich plagioclase (e.g., Lasaga, 1984), and the low anorthite
number for the plagioclase in Highfield may point to more intense alteration in that sample. We
speculate that Fe-substituted saponite formed relatively early in the history of the ridge, either as
detrital input or as an authigenic phase (e.g., similar to early diagenetic smectite formation
hypothesized at the base of the Gale crater section; McLennan et al., 2014; Vaniman et al., 2014;
Bristow et al., 2015). The minerals and amorphous materials discovered in the Duluth, Stoer,
Highfield, and Rock Hall samples imply localized alteration of these lacustrine sediments under
variably acidic and saline conditions and slightly elevated temperatures. Because of the presence
of abundant FeOr in the amorphous component of Duluth and the implication of small hematite
crystallite sizes from the large FWHM, we propose that the hematite found on VRR and
throughout much of the Murray formation below VRR formed from a ferrihydrite-like precursor.
The ferrihydrite-like material could have formed at the sediment-water interface or in the near
subsurface, while the lake waters were present, from the oxidation of Fe*" followed by Fe®*
hydrolysis. Fe** could be released into solution from alteration of mafic igneous minerals, like
pyroxene and olivine, or of Fe*"-bearing smectite (e.g., Chemtob et al., 2017). It may also have
formed during diagenesis and the alteration of Fe*"-bearing minerals by groundwater.

We hypothesize that much of the alteration and the precipitation of many of the
secondary phases occurred after lithification during multiple late diagenetic episodes because of
the geologic evidence for late diagenesis across Curiosity’s traverse and because the mineral
assemblages are not in equilibrium, suggesting different aqueous conditions and relatively short-
lived aqueous events. Diagenesis in terrestrial sedimentary basins is notoriously complex, where
a number of variables (e.g., the structure of the basin, permeability of units, composition of
diagenetic fluids, number of diagenetic events) controls mineralogical variations on the micro- to
basin-scale (e.g., Elmore et al., 2016; Egenhoff, 2018). The differences in mineralogy across
VRR and between stratigraphically equivalent units on VRR and Glen Torridon suggest
diagenesis played a significant role in the history of VRR. The non-equilibrium assemblage
could also suggest that the secondary components formed elsewhere and are detrital, but we
favor in-situ formation through multiple fluid events because of the visual and compositional

evidence for late diagenesis in Gale crater.
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Although there is a general lack of element mobility across VRR (Thompson et al., this
issue), there is evidence on VRR and throughout the Murray formation for fluids moving along
geologic contacts and within fractures post lithification. Loss of Mg, Al, Mn, Fe, Ni, Zn, and
other elements was recognized in fracture-associated halos in the Stimson formation (Yen et al.,
2017), an eolian sandstone that unconformably overlies the Murray formation (Banham et al.,
2018). These halos extend into the Murray formation, particularly at a location called Marias
Pass, where there is a beautiful exposure of the Stimson and Murray contact. Depletion of basic
cations along the fractures suggests leaching from fluids with variable pH (Yen et al., 2017;
Hausrath et al., 2018). Bright-toned deposits have been recognized elsewhere along the Murray-
Stimson contact, suggesting deposition of secondary materials from fluids. Abundant Ca-sulfate
bearing veins observed along the traverse suggest late-stage SO.*-bearing solutions (Nachon et
al., 2014; Rapin et al., 2016; VanBommel et al., 2016; L’Haridon et al., 2018). Complex veins,
including the Ronan target on VRR (Kronyak et al., 2019) and the Garden City outcrop near
Marias Pass (Berger et al., 2017; VanBommel et al., 2017), imply multiple late fluid episodes.
Some fractures near the top of VRR are especially unique, containing a Ca-sulfate matrix and
euhedral Fe-rich crystals consistent with hematite along with halos in the surrounding mudstone
(L’Haridon et al., this issue). A quantitative measure of relatively young diagenetic fluids is the
age of the jarosite measured from K-Ar analysis of the Mojave2 target in the Pahrump Hills
section of the Murray formation (2.124+0.36 Ga; Martin et al., 2017). Although there is some
evidence for localized elemental mobility along fractures within VRR rocks (L’Haridon et al.,
this issue; David et al., this issue), the bulk chemistry of rocks on VRR does not differ from the
bulk chemistry of the rocks measured in other parts of the Murray formation (Thompson et al.,
this issue). The lack of elemental mobility across the ridge suggests that aqueous alteration
during diagenetic episodes occurred at a relatively low water-to-rock ratio and/or occurred in a
closed system. Hydrous alteration models indicate alteration at VRR, however, occurred at a
higher water-to-rock ratio than at the base of the section in Yellowknife Bay (Turner et al., this
issue).

Vera Rubin ridge lies near the base of the Greenheugh pediment capping unit (Figure 12),
which is an unconformable unit that is part of the Siccar Point group (Fraeman et al., 2016). The
contact between the Murray formation and the overlying Siccar Point group (which includes the

Stimson formation and Greenheugh pediment capping unit; Fraeman et al., 2016; Bryk et al.,
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2019) may have provided a pathway for late diagenetic fluids. Although the Siccar Point group
sediments in the Greenheugh capping unit are not in direct contact with VRR, projection of the
capping unit based on regional dips places it directly on top of VRR, from which it may have
since eroded (Bryk et al., 2019). After lithification, fracturing, and erosion of the Murray
formation and the deposition and lithification of the Siccar Point group sediments, we speculate
that episodic warm, acidic, and/or saline fluids moved along the contact, where the change in
rock properties may have permitted a conduit. Unconformities in sedimentary basins on Earth
can serve as conduits for warm diagenetic fluids, resulting in higher temperatures of alteration
along the contact than would be expected from burial diagenesis and the regional geothermal
gradient (e.g., Harper et al., 1995; Laverret et al., 2006; Chi et al., 2015).

There are a few hypothetical sources of heat in Gale crater. The warm fluids that
interacted with portions of VRR may have been sourced from burial diagenesis and associated
thermally driven fluid convection. These warm fluids would have been transported from depth
along vertical fractures, then flowed horizontally or subhorizontally along contacts or more
permeable units. Burial diagenesis in Gale crater may have produced temperatures up to 125 °C
in rocks that are currently exposed at the surface (Borlina et al., 2015), and buried sediments
likely extend another 2 km below the floor of the crater (Grotzinger et al., 2015). This suggests
burial diagenetic temperatures in the lowest strata of the Gale crater sedimentary basin may have
exceeded 125 °C. We favor warm fluids causing the precipitation of gray hematite on VRR
because elevated temperatures are typically required for gray hematite formation on Earth, but
other low-temperature mechanisms may have led to the precipitation of gray hematite.
Specifically, Ostwald ripening, during which small particles are dissolved and reprecipitated as
larger particles, may have transformed red hematite to gray hematite on VRR and may explain
coarse-grained hematite detected at Meridiani from orbit and in situ (Glotch and Kraft, 2008).
This process could have occurred at relatively low temperatures, but would require fluids to
persist for longer periods of time. In this scenario, groundwater would have been transported
preferentially along the contact between the Murray formation and Siccar Point group, but it
would not have been warm.

Alternatively, warm fluids may have been sourced from geothermal plumes, in which
groundwater was warmed at depth (perhaps from regional shallow magmatism infiltrating into

fractures in the crust underlying Gale crater) and ascended as a result of its relative buoyancy.
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Seismic data collected by the Insight lander from Elysium Planitia ~600 km north of Gale crater
indeed indicate the upper 8-11 km of the martian crust is heavily fractured and/or altered
(Lognonné et al., 2020). Elysium Planitia is the site of some of the most recent volcanism on
Mars, with lava flows dating to 2-250 Ma from crater counts (Vaucher et al., 2009). Modern
seismic activity detected by InSight furthermore suggests that the interior is still moderately
active (Banerdt et al., 2020). Numerical models of hydrothermal fluid circulation in bedrock
surrounding magmatic intrusions and sills indicate warm, circulating groundwater can extend
hundreds of meters to kilometers from the heat source (e.g., Gulik, 1998; Iyer et al., 2013).
Models that incorporate weakly permeable layers within more permeable bedrock indicate fluids
may extend further from the heat source along the contact with these weakly permeable layers
(Gulik, 1998). With the high smectite abundance in much of the Murray formation, the Murray
may have been weakly permeable compared to the overlying Siccar Point group rocks, creating a
conduit for warm groundwater.

A final potential source of heat in the Gale crater basin is radiogenic heat from the decay
of ¥K, #*U, *U, and **Th in the sediments. The half-lives of these unstable isotopes are
sufficiently long to provide heat to sediments deposited in the basin for billions of years (e.g., the
half-lives of “*K and **Th are 1.3 and 14.1 Ga, respectively). Curiosity does not have the ability
to measure U and Th, but both have been detected on Mars via orbital gamma-ray spectroscopic
data (e.g., Boynton et al., 2007) and in martian meteorites (e.g., Meyer, 2003). U and Th
abundances and have been used to calculate radiogenic heat flux in the martian crust (e.g., Hahn
et al.,, 2011) and were accounted for in the burial diagenetic models by Borlina et al. (2015).
Curiosity can quantify K abundances with APXS and laser-induced breakdown spectroscopy on
ChemCam. Geochemical data from APXS and ChemCam show that Gale crater sediments are
enriched in K,O relative to average Mars crust. The average Mars crust has 0.45 wt.% K,O
(Taylor and McLennan, 2009), whereas the Murray and Bradbury formations have averages of
approximately 1 wt.% K,O, with maximum concentrations of 4 wt.% in APXS data and over 11
wt.% in ChemCam data from the Bradbury (e.g., Le Deit et al., 2016; Siebach et al., 2017;
Bedford et al., 2019; Mangold et al., 2019). The excess K,O in Gale crater sediments could
provide an additional source of heat in this basin. Future work should examine these potential
heat sources and model the diagenetic fluid temperatures that could be achieved in each scenario

to determine which heat source is most consistent with the mineralogical observations.
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Acidic fluids may have been sourced from the dissolution and oxidation of Fe-sulfides
(e.g., Nordstrom, 1982). The acidic fluids would have been neutralized by the consumption of H”
during the dissolution of mafic minerals (e.g., pyroxene), potentially causing large pH gradients
and explaining the intermittent precipitation of minerals that precipitate from acidic fluids (i.e.,
jarosite and akaganeite).

These late-stage diagenetic fluids facilitated the crystallization of amorphous ferrihydrite-
like material to hematite. Where the fluids were locally warmer, larger hematite crystallites (i.e.,
gray hematite) would have formed. Acidic fluids could have altered preexisting smectite to make
them more susceptible to enhanced structural collapse, giving rise to the d(001) = 9.6 A observed
in the Stoer, Highfield and Rock Hall patterns (e.g., Craig et al., 2014), or warm acid-saline
fluids could have led to the precipitation of ferripyrophyllite (e.g., Badaut et al., 1992).
Alteration of Fe-bearing saponite on VRR under oxidizing conditions could have caused the
oxidation of Fe*" and the ejection of Fe*" from the octahedral sites of smectite and dissolution of
silica from clay mineral tetrahedral sheets to contribute to the crystallization of hematite and
precipitation of opaline silica, respectively (Chemtob et al., 2017). Hematite and amorphous
silica may be the materials cementing the sediments on VRR, making them relatively resistant to
erosion and forming a ridge. Evaporation (if sediments were in communication with the
atmosphere), cooling, and/or possibly freezing of the fluids would have lowered the solubility of
salts in solution and may have concentrated the acid-saline fluids in pockets, causing
precipitation of akaganeite and sulfates. Evolution of the fluid compositions with
cooling/freezing and the changes in saturation indices for different minerals could result in
mineralogical heterogeneities at small spatial scales. The assemblage in Rock Hall might
represent one of these concentrated pockets of acid-saline solutions, where abundant akaganeite
and anhydrite and minor jarosite precipitated. Mastcam multispectral data of Rock Hall and other
red Jura targets demonstrate that Rock Hall is an outlier in the red Jura, further suggesting the
acid-saline fluids that altered the Rock Hall target were localized (Horgan et al., this issue). The
relative timing of the formation of hematite in Stoer and Highfield and akaganeite in Rock Hall
is unconstrained. Both minerals could have formed contemporaneously from a ferrihydrite-like
precursor, but under different local aqueous conditions, or akaganeite could have been more
widespread on the ridge and altered to red and gray hematite from further aqueous alteration on

portions of VRR.
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This late-stage diagenesis potentially along the contact between the Murray formation
and the Siccar Point group also explains mineral assemblages of drill samples lower in the
Murray. The mineralogy of the Sebina, Quela, and Marimba samples drilled ~100-200 m
stratigraphically below Duluth is dominated by plagioclase, hematite, Ca-sulfate, and smectite
with trace amounts of jarosite (Bristow et al., 2018). These samples have more smectite than the
samples on VRR, but slightly less (red) hematite, so they may have experienced diagenesis by
lower-temperature and less acidic fluids such that gray hematite did not precipitate and the
smectite was not altered. The diagenetic episode(s) that caused crystallization of hematite on
VRR may have been contemporaneous with the episode(s) that caused the crystallization of
hematite stratigraphically below VRR. The mineralogy of the Oudam sample, drilled ~250 m
below Duluth, is much like that of Highfield, with abundant gray hematite and plagioclase,
minor opal-CT, but small amounts of phyllosilicate with d(001) = 9.6 A (Bristow et al., 2018;
Achilles et al., submitted). These sediments at Oudam may have also experienced diagenesis by
warm, acidic fluids and indicate that warm fluids were not limited to VRR. The presence of a
resistant ridge at VRR, however, suggests these diagenetic fluids may have been more
widespread at VRR.

5 Conclusions

CheMin XRD analyses of mudstone samples collected from VRR suggest a complex
aqueous alteration history and confirm the orbital detection of hematite. The concentration of
hematite on VRR varies in the three samples collected, comprising ~3-15 wt.% of the bulk
material. The Stoer sample had the most hematite of any sample drilled to date, but it was not
drilled from a portion of the ridge with a strong orbital hematite spectral signature, suggesting
physical properties of the surface control hematite detection from orbit (Fraeman et al., this
issue). The identification of abundant hematite in some samples stratigraphically below VRR
from surfaces that did not show strong orbital hematite signatures (e.g., Bristow et al., 2018)
further demonstrates that hematite concentration is not the only factor that controls its detection
from orbit. The relatively low abundances of phyllosilicates on VRR compared to surrounding
units (e.g., Bristow et al., 2018) are consistent with the relatively weak hydration features
observed from orbit (Fraeman et al., 2013; 2016).

The mineralogical information from CheMin suggests multiple episodes of variably

warm, saline, and/or acidic fluids preferentially altered the rocks on VRR. The detection of gray
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hematite in the Highfield sample from the gray Jura member is the strongest evidence for warm
fluids because it commonly forms from alteration at 100-200 °C (Catling and Moore, 2003). The
presence of a 9.6 A phyllosilicate peak in all samples from VRR and opal-CT in Highfield also
suggest preexisting smectite was altered by the diagenetic fluids. Jarosite and well-crystalline
akaganeite in the Stoer sample from the Pettegrove Point member and the Rock Hall sample
from the red Jura member are both indicative of acidic fluids with low water activity. The high
abundance of anhydrite in Rock Hall in particular is further evidence for waters with high ionic
strength. Because of some mineralogical similarities between samples from VRR and those
collected lower in the Murray formation (i.e., abundant hematite, phyllosilicate, and Ca-sulfate;
Achilles et al., submitted), we suggest the late-stage diagenetic fluids that altered rocks on VRR
may have also altered other portions of the Murray formation, but alteration was most intense
along VRR. The abundant and, in some locations, coarse-grained hematite and hypothesized
alteration of smectite to precipitate opaline silica may have made the rocks of VRR more
resistant to physical weathering compared to underlying units. In our proposed scenario, poorly
crystalline Fe’" oxyhydroxides (e.g., ferrihydrite) precipitated from lake waters while the Murray
formation was being deposited. After lithification and erosion of the Murray and the deposition
and lithification of the uncomformably overlying Siccar Point group, variably warm, acidic,
saline fluids moved along the contact between the two units during multiple episodes. These
diagenetic fluids caused crystallization of gray hematite where the fluids were warmer and red
hematite where the fluids were relatively cool. They could have altered preexisting smectite to
precipitate ferripyrophyllite, amorphous and paracrystalline silica, and hematite on the ridge, but
cooler, less acidic fluids would not have had a significant impact on the smectite. Akaganeite,
jarosite, and Ca-sulfate would have precipitated where these fluids accumulated and became
concentrated through evaporation or freezing. Curiosity is currently studying a smectite-bearing
unit identified from orbit and is approaching a contact between the Murray formation and Siccar
Point group. Studying the composition and sedimentology of the rocks at, above, and below the
contact will allow the science team to test the hypothesis that the contact served as a conduit for
diagenetic fluids.
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improved the manuscript. CheMin XRD data presented in this paper are archived in the

Planetary Data System (PDS) and the CheMin Open Data Repository (ODR). Within the PDS,

the Duluth 1D diffraction pattern can be found here: https://pds-geosciences.wustl.edu/msl/msl-

m-chemin-4-rdr-vl/mslecmn_1xxx/data/rdr4/cmb_581124537rda20690701752ch00111pl.csv,

the Stoer 1D diffraction pattern can be found here: https://pds-geosciences.wustl.edu/msl/msl-m-

chemin-4-rdr-vl/mslecmn_1xxx/data/rdr4/cmb_587626717rda21420721316ch00111pl.csv, the

Highfield 1D diffraction pattern can be found here: https://pds-geosciences.wustl.edu/msl/msl-m-

chemin-4-rdr-vl/mslemn_1xxx/data/rdr4/cma_595174954rda22270730550ch00111pl.csv, the
Rock Hall 1D diffraction pattern of the first four minor frames can be found here: https:/pds-

eosciences.wustl.edu/msl/msl-m-chemin-4-rdr-v1/mslecmn_1xxx/data/rdr4/

cma_598547494rda22650731206¢ch00111pl.csv, and the Rock Hall 1D diffraction pattern from

the last two nights of analysis when grain motion was poor can be found here: https://pds-
eosciences.wustl.edu/msl/msl-m-chemin-4-rdr-v1/mslemn_1xxx/data/rdr4/

cma_599656708rda22770731206c¢h00113pl.csv. The CheMin ODR provides diffraction data,

fluorescence data, grain motion data, crystallographic information files used in the Rietveld
refinements, descriptions of the analysis, and mineral abundances for all drill samples. Within
the ODR, Duluth data can be found here:
https://odr.io/CheMin#/view/288511/84/eyJkdF9pZCI161jQzIn0/1, Stoer data can be found here:
https://odr.io/CheMin#/view/288516/84/eyJkdF9pZCI61jQzIn0/1, Highfield data can be found
here: https://odr.io/CheMin#/view/288517/84/eyJkdF9pZCI161j0QzIn0/1, and Rock Hall data can
be found here: https://odr.io/CheMin#/view/288518/84/eyJkdF9pZCI61jQzIn0/1.
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Technology, under a contract with the National Aeronautics and Space Administration.
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Tables

Table 1. Mineral and X-ray amorphous abundances for Duluth, Stoer, Highfield, and Rock Hall.
1-sigma errors are reported in parentheses, where the error is applied to the last decimal place(s).
Mineral abundances in the “xtal” columns are renormalized without phyllosilicate and

amorphous abundances.

Duluth Stoer Highfield Rock Hall

Phase xtal Bulk xtal bulk xtal bulk Xtal Bulk
Plagioclase 56.4(12) 27.1(6) 44.5(20) 23.2(10) 47.3(21) 19.9(9) 38.2(41) 20.2(22)
K-spar 6.6(10) 3.2(4) 3.1(26) 1.6(13)  3.7(10) 1.6(5) -- --
Pyroxene 9.5(25) 4.5(11)  6.4(16) 3.309) 10.1(34) 4.2(15) 17.1(19) 9.1(10)
Hematite 12.6(21) 6.1(10) 28.4(14) 14.7(8) 20.2(13)  8.5(5) 5.4(4) 2.9(2)
Magnetite 1.7(10) 0.7(4) 0.6(5) 0.3(3) 1.4(13) 0.5(5) -- --
Akaganeite -- -- 2.4(13) 1.2(7) -- -- 11.3(9) 6.0(5)
Jarosite - - 2.0(5) 1.0(3) -- - 4.3(9) 2.3(5)
Anhydrite 3.4(10) 1.7(4) 6.0(6) 3.13) 8.2(10) 3.5(5)  21.2(26) 11.2(14)
Bassanite 7.4(6) 3.5(3) 0.93) 0.5(2) 2.6(6) 1.1(3) -- --
Gypsum 0.4(3) 0.1(1) 4.6(14) 2.4(8) 5.2(10) 2.2(5) - --
Quartz 2.1(8) 1.0(4) 1.2(7) 0.7(4) 1.3(7) 0.5(3) - --
F-apatite” -- -- -- - -- - 2.5(8) 1.3(4)
Phyllosilicate -- 15(4) -- 10(3) -- 5(1) -- 13(3)
Opal-CT -- -- -- -- -- 4(1) -- --
Amorphous -- 37 -- 38° -- 49° -- 34(8)°

"Siderite provides a similar fit as fluorapatite to Rock Hall.
*Minimum amorphous abundance based on mass balance calculations

® Amorphous abundance based on FULLPAT analyses



1823 Table 2. Refined unit-cell parameters in angstroms of the major phases in Duluth, Stoer,
1824  Highfield, and Rock Hall. 1-sigma errors are reported in parentheses, where the error is applied
1825 to the last decimal place(s).

1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844

Mineral Parameter Duluth Stoer Highfield Rock Hall
Plagioclase a 8.165(6) 8.151(3) 8.177(8) 8.155(5)
b 12.864(6) 12.865(9) 12.879(12) 12.875(1)
c 7.116(2) 7.104(5) 7.106(3) 7.113(2)
o 93.46(4) 93.32(4) 92.86(30) 93.43(5)
p 116.27(2) 116.23(2) 116.33(4) 116.25(2)
Y 90.08(2) 90.11(2) 90.27(3) 90.15(2)
Sanidine a 8.557(28)
b 13.182(43)
c 7.143(7)
p 116.67(19)
Hematite a 5.039(8) 5.028(2) 5.042(3) 5.039(3)
c 13.753(21) 13.728(6) 13.753(3) 13.736(7)
Akaganeite a 10.566(10)
b 3.026(6)
c 10.457(8)
p 89.66(14)
Anhydrite a 7.023(24) 6.987(11) 7.005(10) 7.002(3)
b 7.036(36) 7.004(18) 6.995(14) 6.991(3)
c 6.195(34) 6.184(9) 6.231(15) 6.239(2)
Bassanite a 12.069(31)
b 6.935(26)
c 12.564(90)
B 31.13(28)




1845 Table 3. Crystal chemistry of plagioclase in Duluth, Stoer, Highfield, and Rock Hall.
Mineral Duluth Stoer Highfield Rock Hall
Plagioclase Al’l34(4)Ab64(4) Al’l4 1 (4)Ab 59(4) Al’lzg(3)Ab72(3) Al’l44(7)Ab 56(6)

1846

1847

1848 Table 4. Calculated composition of X-ray amorphous component in Duluth, Stoer, Highfield, and
1849 Rock Hall in wt.% oxides. Values in the “renorm” columns have been renormalized to 100%.

DU DU ST ST HF HF RH RH

renorm renorm renorm renorm
Si0, 13.22 35.60 21.97 57.45 31.94 65.49 12.65 37.21
TiO, 1.06 2.87 1.04 2.71 0.88 1.80 1.00 2.95
ALO; 0.00 0.00 2.18 5.71 3.57 7.32 242 7.10
Cr,0; 0.32 0.87 0.34 0.89 0.28 0.57 0.31 0.91
FeOr 7.99 21.52 0.00 0.00 3.63 7.44 4.09 12.03
MnO 0.21 0.57 0.17 0.45 0.15 0.31 0.08 0.24
MgO 2.06 5.54 4.21 11.00 3.59 7.36 1.86 5.48
CaO 2.75 7.41 1.59 4.15 0.01 0.03 1.71 5.02
Na,O 0.16 0.42 0.90 2.35 1.04 2.13 0.41 1.21
K,O 0.56 1.50 0.62 1.62 0.66 1.36 0.40 1.19
P>0s 1.13 3.03 0.84 2.21 0.79 1.62 0.08 0.25
SO; 6.77 18.23 3.72 9.72 1.31 2.69 7.97 23.43
Cl 0.90 243 0.67 1.75 0.92 1.89 1.01 2.98
Total 37.14° 99.99 38.25*  100.01 48.77* 100.01  33.99°  100.00

1850 *Minimum amorphous abundance based on mass balance calculations
1851 "Amorphous abundance based on FULLPAT analyses
1852
1853 Table 5. FWHM of the hematite (104) peaks in Duluth, Stoer, Highfield, and Rock Hall. 1-sigma
1854  errors are reported in parentheses, where the error is applied to the last decimal place(s).
Sample Hematite (104) FWHM
Duluth 0.66(18)
Stoer 0.33(1)
Highfield 0.38(1)
Rock Hall 0.30(9)

1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
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1871 Figure 1. Stratigraphic column of units investigated by Curiosity from landing through the Vera
1872  Rubin ridge campaign. Figure credit: the MSL sedimentology and stratigraphy working group.
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Figure 2. Map of Vera Rubin ridge drilling locations. Yellow line represents Curiosity’s traverse.
Stars denote successful drill sample locations and blue circles denote locations where drilling did
not reach the full depth. Red and yellow pixels represent areas of strong and moderate hematite
spectral signatures, respectively, from CRISM mapping (Fraeman et al., 2013; 2016).
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Figure 4. Grain motion assessments for the samples Duluth, Stoer, Highfield, and Rock Hall.
When grain motion during an analysis is off-nominal, the number of photons that hit each pixel
(i.e., the number of pixels with >5 photon events) increases. Vertical dashed lines designate
different sols of analysis, and the sol numbers are listed at the top of each graph. Note the
different y-axis for Highfield.
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Figure 5. CheMin XRD patterns of the four drill samples collected from on and near Vera Rubin
ridge. Major peaks are labeled. Ak = akaganeite, An = anhydrite, B = bassanite, H = hematite, J
= jarosite, Ph = phyllosilicate, and P1 = plagioclase. The Rock Hall pattern consists of the first
four minor frames and has been scaled to a total of 45 minor frames. Patterns are offset for

clarity.
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Figure 6. CheMin 1D diffraction patterns from different minor frames of the Rock Hall analysis.
Peak heights from anhydrite (An) and plagioclase (PI) vary significantly between frames 1-4, 7-
12, and 14-45. The pattern from frames 5-6 (green pattern) resembles that of the empty Mylar
cell (gray pattern).
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Figure 7. Bar graph showing the abundances of all crystalline phases and X-ray amorphous
materials from all four drill samples collected on or near Vera Rubin ridge. DU = Duluth, ST =
Stoer, HF = Highfield, and RH = Rock Hall.
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Figure 8. Bar graphs showing bulk mineral abundances of Fe-oxides, Fe-oxyhydroxides, and Fe-
sulfates in the four drill samples collected from on and near Vera Rubin ridge. DU = Duluth, ST

= Stoer, HF = Highfield, RH = Rock Hall.
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Figure 10. CheMin XRD patterns from 5-28 °20 showing the position of the 001 and 02I
phyllosilicate peaks. The bold dashed black line is at 10 A, the bold dashed red line is at 9.6 A,
and the fine dashed black line is at 4.48 A. The Rock Hall pattern consists of the first four minor
frames and has been scaled to a total of 45 minor frames. Patterns are offset for clarity.
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Figure 11. Conceptual model to explain the mineralogy of Vera Rubin ridge and the underlying
Murray formation. (1) Layered fine-grained sediments are deposited in a lake, a ferrihydrite-like
phase precipitates at the sediment-water interface, and smectite is a detrital component or forms
as sediments are buried. (2) Lacustrine sediments are lithified. Smectite may form during early
diagenesis if it is not detrital or formed syn-depositionally. (3) Lithified lacustrine mudstone
fractures and is eroded, then the Siccar Point group is emplaced unconformably and becomes
lithified. (4) Warm, acidic, and/or saline fluids permeate episodically along the contact between
the Murray formation and Siccar Point group and within fractures. (5) Warm fluids cause the
precipitation of gray hematite from ferrihydrite-like materials in select locations (shown as gray
patches) and red hematite throughout much of the Murray formation (shown in red). As fluids
cool and/or freeze, pockets of concentrated acid-saline fluids form. (6) Ca-sulfate, jarosite, and
akaganeite form in the concentrated acid-saline pockets and Ca-sulfate precipitates in fractures
(shown as yellow patches and fractures). Multiple late-stage fluid episodes could have
precipitated Ca-sulfate in fractures and veins. (7) The Murray formation and Siccar Point group
rocks are eroded to the modern topography, where VRR is resistant because of the precipitation
of gray hematite and opaline silica from warm fluids. Warm fluids may have been concentrated
in the contact just above VRR to allow for significant cementation of the sediments, but warm
fluids also interacted with the Murray at the Oudam sample location. This model only shows the
lake sediments in the Murray formation and the Siccar Point group sandstone for simplicity, but
it is likely that the Murray formation was thicker or other units may have overlain it to allow for
its lithification. Similarly, it is likely that other units were stratigraphically above the Siccar Point
group to allow for its lithification. The depth of burial of these sediments is not well constrained,




1950 and late diagenetic processes in steps 4-6 may not have occurred close to the surface as depicted
1951 here.
1952

1953 (RS V. o i oy i AN N
1954  Figure 12. HiRISE mosaic showing the location of Vera Rubin ridge (highlighted in red) and its
1955 proximity to the Greenheugh capping unit (highlighted in brown). Curiosity’s traverse through
1956  sol 2370 is shown in white.




