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Materials and Structures Division
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What are Aerogels?
Aerogels are a class of porous solids which exhibit many extreme 
properties which originate from a nanoporous skeletal architecture

• Highly porous solids made by drying a wet gel without shrinking
• Pore sizes extremely small (typically 10-40 nm)—makes for 

very good insulation 
• 2-4 times better insulator than fiberglass under ambient 

pressure, 10-15 times better in light vacuum
• Invented in 1930’s by Prof. Samuel Kistler

Sol Gel Aerogel
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Silica Aerogel Monoliths
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Aerogel Fabrication

𝑷𝑷𝒄𝒄𝒄𝒄𝒄𝒄 =
𝟐𝟐𝜸𝜸 𝐜𝐜𝐜𝐜𝐜𝐜𝜽𝜽

𝒓𝒓

Aerogel Fabrication Steps:
1. Dissolve monomeric precursors into solution (sol)
2. Gel network forms incorporating monomers into skeleton
3. Removal of solvent occurs either by sublimation 

or supercritical extraction

Supercritical Extraction
1. Avoids liquid/vapor boundary by solvent removal above 

critical point
2. No liquid-vapor interface exists thus no capillary stresses
3. Based on capillary pressure equation, a small diameter (r), 

leads to a huge force resulting in compaction

γ = Interfacial Tension
θ = Wetting Angle
r = Pore Radius
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…but are extremely fragile 
and moisture sensitive

Monolithic silica aerogels provides superior insulation

…and limited to a few 
exotic applications

Data provided by Institution of Civil Engineers
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Potential applications for durable aerogels in 
aeronautics and space exploration

Cryotank Insulation

Insulation for EVA suits 
and habitats

Antenna substrates

Ultra-lightweight, multifunctional 
structures for habitats, rovers

Heat shielding

Sandwich 
structures

Fan engine containment
(Ballistic protection)

Propellant tanks Inflatable aerodynamic 
decelerators
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http://www.frassanito.com/exploration/hirez/MrsOptMicroscope.1k.jpg
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Insulation for Future Mars Concepts
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Hypersonic inflatable 
aerodynamic decelerator concept

• Hard aeroshells used to land rovers on Mars limit size 
of payload

• Inflatable structure overcomes this limitation
• Concept is a series of stacked inflatable tori tied with 

a network of straps
• Flexible thermal protection system on fore body 
• Baseline insulation was Aspen silica Aerogel 

composite blanket 
• Loses fragile silica aerogel on handling

10
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Polyimide aerogels

• Entire aerogel skeletal architecture synthesized from a 
polymer should be flexible as a thin film

• Polyimides are known for their high temperature stability
• Family of polymer aerogels made by cross-linking 

polyimide oligomers to form gel network
• Supercritical fluid extraction to remove liquid from gels

11

Meador, US Patent application filed 9-30-2009
Meador and Guo, US Patent application filed 2/4/2012

Monomers Polyamic
Acid Gel

Polyimide 
Gel

Polyimide 
Aerogel



National Aeronautics and Space Administration

www.nasa.gov

Two approaches to cross-linked PI aerogels developed
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• Made by cross-linking polyimide 
oligomers to form gel network 

• POSS decorated with eight 
aminophenyl groups or aromatic 
triamine (TAB)

• Supercritical fluid extraction same 
as silica aerogels
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Polyimide Aerogels much stronger 
than silica aerogels at similar density
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This formulation is actually stronger and 
lighter than one shown in picture

Silica aerogel is 
easily broken by 
light finger press 
while PI aerogel 
easily supports 

the weight 
of a car
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Cross-linked polyimide aerogels cast as 
thin film are flexible

• Density of film is similar to molded cylinder 
• Middle picture is 9” x 13” pan; film is folded multiple times
• Currently can cast up to 18” inches wide, 33 feet long at a film casting 

line in the University of Akron
• Surface area, porosity and thermal conductivity similar to monolithic 

silica aerogels

14

As-cast wet films Dry aerogel
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Baseline insulation for HIAD is Pyrogel-2250
• Composite insulation made up of silica aerogel 

particles in O-PAN batting
• Flexible but sheds dust particles on handling
• Begins to out gas at 380 oC
• High heat flux testing at Large Core Arc Tunnel 

(LCAT) facility at Boeing
• Time to 300 oC of bottom thermocouple measured
• Related to weight of insulation 
• Pyrogel layers lose 20-34 % weight during test
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LCAT test—Saffil in combination with PI 
aerogel

• Layer of Saffil backed by two equivalent thicknesses PI aerogel
– 50% DMBZ \ 50% ODA

• Test stopped after 247 s when the bottom RC reached 300 °C
• Top of PI stack ~590 oC max
• PI lost much less weight than Pyrogel
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Multifunctional, Universal Thermal Insulation 
System

• Current multilayer insulation 
(MLI) only functions in vacuum
– Layers of Mylar separated by 

scrim layers
• Aerogel is best insulation in 

gaseous environment
• MLI incorporating aerogel in 

place of scrim reduces TC by 
23-37%

• Partnership with JSC and GRC

MLI with and without aerogel tested under simulated Mars 
atmosphere (8 Torr Argon, -120 to 20 oC) 
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Mixtures of rigid and flexible diamines give 
better combination of properties

• 100% DMBZ too stiff
• 100% ODA moisture 

sensitive
• 50-50 formulation is 

flexible, strong, moisture 
resistant

18
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Guo et al, ACS Applied Materials and Interfaces, 2012, ASAP 
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Alternative lower cost, commercially 
available cross-linkers

• Much commercial interest in PI 
aerogel for insulation 
– Refrigeration, clothing, sporting goods, 

consumer electronics, building and 
construction, etc.

• Two cross-linkers either not 
commercially available (TAB) or 
expensive (OAPS)

• Some alternatives:
– Benzenetricarbonyl chloride (BTC)—

amide cross-links
– Polymaleic anhydride (PMA)—aliphatic 

cross-links
– Tri-isocyanates—urea cross-links

19
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Polyimide aerogels with alternate commercially 
available cross-linker—BTC
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• Used ODA or DMBZ in 
backbone to compare to 
other cross-linkers

• Modulus, morphology 
depend on backbone, 
not cross-linker

• Surface areas about
100 m2/g higher with 
BTC

Meador et al, ACS Appl. Mater. Interfaces 2015, 7 1240-1249
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Shrinkage of the aerogel is limiting factor for 
higher temperature use 

• High onset of decomposition 
temperature

• Varies based on diamine used
• Shrinkage is lowest for 

DMBZ/ODA aerogels
• Preconditioning at use 

temperature stabilizes shrinkage   
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Meador et al, ACS Appl. Mater. Interfaces 2015, 7 1240-1249
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Use of bulky substituents in polymer chain 
reduces shrinkage after 500 hours aging

• Replacing 50 mol % of 
ODA with BAPF 
reduces shrinkage by 
up to half

• Surface area still above 
300 m2/g after aging

22
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Multifunctional Energy Storage to Improve Efficiency

Challenges
• Producing a structure capable of bearing weight 

and resisting forces associated with flight
Risks
• Current Li-Ion battery technology utilizes 

flammable components
Goals
• Develop a separator/electrolyte system which 

possesses sufficient ionic conductivity with non-
flammability

23

Hybrid electric aircraft with multifunctional storage could reduce emissions by 
80% and fuel consumption by 60%

Enable hybrid electric propulsion for commercial aircraft by coupling load-
bearing structure with energy storage
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Polyolefin Separators used in Li-Ion Batteries

Separator/Properties Celgard 2730 Celgard 2400 Celgard 2325 Asahi Hipore Tonen Setela
Structure Single Layer Single Layer Trilayer Single Layer Single Layer
Composition PE PP PP/PE/PP PE PE
Thickness (μm) 20 25 25 25 25
Porosity (%) 43 40 42 40 41
Melt Temp. (°C) 135 165 135/165 138 137

• Polyethylene and polypropylene are among the most flammable 
polymers

• Limited number of electrolytes wet the polyolefins
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Down Selection to ODA-BPDA-N3300A
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• Many polyimide backbone chemistries were synthesized and characterized
• Several factors were considered in down selection:  film forming, mechanical strength, porosity
• ODA-BPDA-N3300A formed thin, mechanically robust films, with porosities of 93%
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Comparison of Commercial Separator and PI Aerogel

26

Polyimide AerogelCelgard© PE Separator
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• Over fifty different combinations of 
backbone chemistry studied

• Multiple cross-linkers evaluated
• Properties more dependent on backbone
• Formulations identified with

– Best moisture resistance
– Best mechanical properties/density
– Low thermal conductivity
– More optical clarity

Polyimide Aerogel Development
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Polyamide aerogels

• Lower cost monomers and 
cross-linkers

• No catalyst needed
• Slightly less thermally stable

28

Williams et al, Chem. Mater., 2014, 26(14), 4163-4171
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Polyamide aerogels—Kevlar based
• Low cost monomers
• All para substitution kept in solution by 

use of CaCl2
• Salt also gets rid of distortion problem 

of PA gels during solvent exchange
• Different morphology, but still high 

surface area, strong
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PI aerogels are stronger than silica aerogels but PA 
aerogels stronger yet on a density basis
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Summary
• PI aerogels were originally produced for use as thin flexible films for 

use as insulation for inflatable decelerators or space suits

• Same aerogels as thicker parts are stiff and strong

• Development of lower cost options: new cross-linkers and other 
polymer chemistries (polyamide) have led to commercialization

• Commercially available from Aerogel Technologies, LLC (molded 
shapes) and Blueshift (roll-to-roll films)

• Due to their porous architecture and flexibility, PI aerogels can be 
used as non-flammable battery separators

31

Aerogel 
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NASA Glenn Research Center, Cleveland, OH
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