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1 Introduction and Purpose

The search for an effective, feasible solution to radiation protection in
space using electromagnetic fields, i.e. active shielding, has a lengthy
history spanning more than five decades. There is no question of the
impact this method of shielding could have on the future of human space
exploration. The risk of Radiation Exposure Induced Death (REID)
resulting from astronaut radiation exposure is a substantial risk that
must be dealt with if humans are ever going to progress beyond Low
Earth Orbit (LEO) for extended periods of time.

Passive shielding techniques are not a viable solution for mitigating
exposure from galactic cosmic rays (GCR). GCR kinetic energies often
exceed a few GeV per nucleon and may interact with matter via frag-
mentation, which results in lighter ions with greater ranges. Passive
shielding required to shield GCR is mass prohibitive; it is not possible to
build, launch, and operate space vehicles with shielding materials that
are several meters in thickness.

This report outlines development of a source code package, titled
Active Shielding Particle Pusher (ASPP) for tracking charged particles
through electromagnetic fields. The prime development objective was to
produce a tool enabling fast, ’rapid-prototyping’ of active shielding field
configurations utilizing the latest technology in graphical processing unit
(GPU) architecture to drastically lower computation time. Moreover,
the code is structured to enable users to add additional field types in
a plug-and-play fashion, allowing the code to expand in capability over
time. This has the added benefit of expanding the utility of the package
beyond active shielding studies into other applications where particle
tracking simulations in electromagnetic fields is needed.

This report is organized as follows. We first give a brief overview
of relativistic dynamics pertaining to a charged particle moving in the
presence of electromagnetic fields. This is done in a general fashion
from the perspective of the covariant and contravariant tensor forms of
electrodynamic fields, including the radiation reaction. Assumptions are
presented on simplifying the resultant equations to derive a generalized
set of particle equations of motion. Justification of assumptions is pre-
sented in the appendices sections. We then discuss the development
of the ASPP source code for numerically integrating the particle equa-
tions of motion, including integration routines, specific applicability of
each integration method, particle initialization, a collection of analytic
field calculation routines included in the source code, and methods to
ingest user-defined fields on a Cartesian grid. SI units are used through-
out. Table 1 lists conventions used to describe the characteristics of a
charged particle and the electromagnetic fields. Baseline testing results
of source code are included in the Appendices along with code compila-
tion specifics, sample input files, and an overview of past active shielding
studies for completeness.
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Table 1. Standard conventions used to de-
scribe a charged particle and electromagnetic
fields.

Rest-mass Energy E0

Speed of light in vacuum c

Permittivity of Free Space ε0
Permeability of Free Space µ0

Electron Charge e

Atomic Number Z

Atomic Mass Number A

Number of Nucleons n

Non-Relativistic Mass m

Position 3-vector ~r(t) = (x(t), y(t), z(t))

Position 4-vector ~x(t) = (ct, x(t), y(t), z(t))

Relativistic Momentum 3-vector ~p(t)

Kinetic Energy Ek
Lorentz Factor γ

Relativistic Velocity 3-Vector ~u(~r, t),~v(~r, t)

Relativistic Mass γm

Relativistic Velocity 4-Vector ~U = (u0, ~u)

Covariant Velocity 3-Vector uα
Contravariant Velocity 3-Vector uα

Covariant Momentum 4-Vector pα
Contravariant Momentum 4-Vector pα

Kinetic Energy Units MeV/n

Electric Field ~E(~r, t)

Magnetic Field ~B(~r, t)

Magnetic Dipole Moment ~M

Electric Dipole Moment ~Me

8



2 Generalized Equations of Motion

The goal of the developed toolset is to enable accurate calculation of
particle trajectories, and hence spatially-dependent particle flux density
as a function of the 3d field distribution, in a manner that enables rapid
iteration over many field configurations. This translates to source code
that must run within an order of hours instead of days per single run,
with high accuracy, including relativistic effects.

For relatively low incident particle energy, dynamics can be success-
fully modeled with classical theory, i.e. non-relativistic Newtonian dy-
namics. For a particle of kinetic energy Ek and speed v, this regime can
be characterized by the Lorentz factor

γ =
1√

1− v2

c2

= 1 + Ek/E0 (1)

where c is the speed of light in vacuum. In the limit γ ≈ 1, or Ek � E0,
Newtonian dynamics sufficiently describes the particle physics.

It should be noted that there is not a discrete cut between Newtonian
and relativistic dynamics. Consider Figure (1), where the relativistic
speed as a function of incident proton energy in MeV is shown along
with the Lorentz factor γ (inset). It is not until proton energy exceeds
10 MeV that γ begins increasing substantially from a value of unity and
the proton speed begins to deviate from classical E1/2 behavior. For
this reason, we assume that relativistic dynamics must be utilized for
the entire proton energy range of interest related to human space flight
(≥ 10 MeV), and generalize it to include all ions and species of kinetic
energy Ek ≥ 10 MeV/n. The question then arises as to what forces
should be included in the description of particle motion. For motion
in an external electric ( ~E) and a magnetic field ( ~B), the force of each
field on the particle must be used to describe the resultant dynamics.
For completeness, the radiation reaction force, ~f must also be included,
although it can in many cases be neglected. This force manifests due
to the acceleration of the charged particle in an external field, and its
own self-field, and subsequent recoil due to it radiating away some of
its energy. It is a highly non-trivial force term to include in particle
dynamics due to the singular nature of the Coulomb force.

Study of the radiation reaction problem has a long history dating
back roughly nine decades. The problem was first addressed classi-
cally by Abraham, followed by Lorentz, and then by Dirac. Relativistic
treatment that includes the radiation reaction is given by the Lorentz-
Abraham-Dirac (LAD) equation. Numerous studies have investigated
solutions to this equation. There is no intention here to give an in-depth
derivation of the LAD equation or possible solutions. This is left to past
reviews [1–12]. In tensor form, the covariant LAD equation for a particle

9
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Figure 1. Relativistic speed and Lorentz factor, γ as a function of
incident proton kinetic energy, Ek.

of charge q can be written as

dpα
dτ

= Fα,ext +
2

3
q2 (gαβ − pαpβ)

d2pβ

dτ2
, (2)

where pα is the covariant 4-momentum, gαβ the metric tensor, defined
as,

gαβ =




1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1,


 (3)

and Fα,ext the external force tensor due to external electric and magnetic
fields. The proper time, τ is defined as

τ =

∫
dt

γ
=

∫ (
1− u2(t)

c2

)1/2

dt. (4)

The left-hand side of Eq. 2 is the derivative of the relativistic 4-momentum
with respect to proper time. The second term in the right-hand side rep-
resents the self-interaction of the particle with it’s own field, including
the reaction force imparted due to radiating away some of its energy.
Note that it depends explicitly on the first derivative of the acceleration
4-vector. In what is presented in the next two subsections, all velocities
will be represented by the four-velocity U = (u0, ~u) = (u0, u1, u2, u3)
where the indices (1, 2, 3) correspond to the (x, y, z) components respec-
tively, q the particle charge in units of elementary electric charge e, Ek
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the particle kinetic energy, E0 the particle rest-mass energy, t is the nor-
mal time, and τ is the proper time. Note that although it is common
to denote the velocity vector as ~v, we are reserving that notation for
the three-dimensional velocity used to formulate the particle equations
of motion. ~u is commonly used to denote the relativistic velocity four-
vector. We first proceed by neglecting the radiation reaction force. Jus-
tification for this assumption will be discussed in detail in Appendix D2.

2.1 Covariant Form of the Lorentz Force Law

A proper description of particle motion can only be done within the con-
struct of full 3d relativistic dynamics for the high-energy particles that
must be considered in any active shielding study. For a charged particle
of charge q and mass m moving in the presence of an electromagnetic
field, the equations describing its motion can be written in covariant
form as

m
dUα

dτ
= qFαβUβ, (5)

where Uβ(β = 0, 1, 2, 3) is the covariant four-velocity and Fαβ is the
contravariant electromagnetic field tensor. Standard tensor notation is
used throughout where covariant tensors are denoted with a subscript
(α, β) and contravariant with a superscript. Note that both 3- and 4-
vectors are tensors of rank one. We assume that the electromagnetic
field can be time dependent and magnetic and electric components can be
expressed in terms of a magnetic vector potential, ~A and scalar potential,
φ, as

~B(x, y, z, t) = ∇× ~A(x, y, z, t) (6)

~E(x, y, z, t) = −∇φ− ∂ ~A

∂t
. (7)

The total energy of a particle of mass m is given by

E = γmc2 =
mc2

√
1− u2/c2

=
√
c2p2 +m2c4, (8)

where ~u = c2~p/E and the invariant length of the momentum four-vector
is

p2
0 − ~p · ~p = pαp

α = m2c2, (9)

where pαp
α is the inner product of the relativistic momentum 4-vector.

The contravariant electromagnetic field tensor is

Fαβ =




0 −Ex/c −Ey/c −Ez/c
Ex/c 0 −Bz By
Ey/c Bz 0 −Bx
Ez/c −By Bx 0


 (10)
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For non-relativistic particles, the equation of motion in the presence
of external electric and magnetic fields is given by the Lorentz force

d~p

dt
= q

(
~E + ~u× ~B

)
, (11)

where ~p = m~u and ~u are the non-relativistic particle momentum and
velocity. This can be transformed in a rather simple fashion to the
appropriate relativistic form by transforming ~p to the space part of the
four-vector of joint energy and momentum as

pα = (p0, ~p) = m(u0, ~u) (12)

u0 =
dx0

dτ
=
dx0

dt

dt

dτ
= γc. (13)

Thus, transforming the time derivative as γdτ = dt, the relativistic form
of the Lorentz force law is

d~p

dτ
= q

(
~E + ~u× ~B

)
, (14)

where now ~p = γm~u.
Before proceeding further, a few points should be mentioned. For

cases where there is no external electric field component (‖ ~E‖ = 0),
Eq. 14 reduces to

d~p

dt
= q~u× ~B. (15)

Taking the dot product between ~p and both sides of Eq. 15

~p · d~p
dt

= q(~p · (~u× ~B)) = 0. (16)

This implies that
d

dt

p2

2m
= 0, (17)

and thus the kinetic energy of the particle is conserved. For the case
where the electric field component is nonzero this conservation does not
hold. For a current density ~J the change in energy E with time is given
by

dE

dt
=

∫

V

~J · ~Ed3r. (18)

When addressing the case of a single particle, the current density is
~J = q~u, and the time rate of change of kinetic energy is

dE

dt
= q

∫

V
~u · ~Ed3r (19)

Thus, any active shielding system that employs only magnetic fields
will shield habitable volumes by only redirecting the incoming particles,
whereas any system that employs either electric fields only or a combi-
nation of electric and magnetic fields will change both the direction and
energy of the incoming charged particles.
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2.2 Lorentz Force Law Via the Relativistic Lagrangian

These equations can also be derived directly from either the relativistic
Lagrangian or Hamiltonian. For a free particle, the Lagrangian can-
not depend on particle position. The only Lorentz invariant function of
the velocity available is uαu

α = c2. The relativistic Lagrangian in the
absence of external forces is

Lfree = −mc
2

γ
. (20)

The interaction with an external field is included through the four-vector
magnetic potential Aα, where

Lint = − q
γ
uαA

α = −qφ+ q~u · ~A. (21)

The full relativistic Lagrangian including both the free particle and in-
teraction terms is given by

L = −mc
2

γ
− qφ+ q~u · ~A, (22)

The ith equation of motion for a charged particle then follows directly
from

d

dt

(
∂L
∂ẋi

)
− ∂L
∂xi

= 0, (23)

where xi are the generalized coordinates, and in Cartesian space (x1, x2, x3) =
(x, y, z).

Consider first the x1 component. Substituting Eq. 22 into the first
term in Eq. 23 yields,

d

dt

(
∂L
∂ẋi

)
=

d

dt
(γmu1) + q

dA1

dt

=
dp1

dt
+ q

∂A1

∂t
+ q~u · ∇A1, (24)

where the vector potential has been broken down into components ~A =
(A1, A2, A3) and the convective derivative(d/dt = ∂/∂t+ ~u · ∇) has been
used to recast dA1/dt. The second term in Eq. 23 yields,

∂L
∂x

= −q∂φ
∂x

+ q

(
u1
∂A1

∂x
+ u2

∂A1

∂y
+ u3

∂A3

∂x

)
. (25)

Equating (24) and (25), and noting that the first term in Eq. (24) is the
x-component of the force, Fx,

Fx = q

(
−∂φ
∂x
− ∂A1

∂t

)
+ qu2

(
∂A2

∂x
− ∂A1

∂y

)

− qu3

(
∂A1

∂z
− ∂A3

∂x

)
. (26)
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Noting that

~E = −∇φ− ∂ ~A

∂t
, (27)

~u× ~B = ~u× (∇× ~A), (28)

the x-component of the force due to the electromagnetic fields on a
charged particle of charge q reduces to

Fx = qEx + q(~u× ~B)x, (29)

where the subscript x denotes the component of the vector operation.
Similar expressions can be derived for Fy and Fz such that the final form
for the vector force is

~F = q
(
~E + ~u× ~B

)
. (30)

Since the particulate radiation field of concern is that of positively
charged ions Eq. 30 can be re-written in a more standard form conducive
to generating the ion equations of motion. We write the Lorentz force
(Eq. 30) in standard vector notation using the relativistic momentum,
denoting the velocity in terms of the standard three-dimensional form,
giving

d~p

dt
= Ze

(
~E + ~v × ~B

)
, (31)

where the particle charge, q has been replaced by Ze, the ion atomic
number and elementary electron charge. It is this form of the Lorentz
force equation that is solved numerically within ASPP.

3 Code Development

The backbone of any particle trajectory simulation is the method used
to integrate the equations of motion. The Runge-Kutta (RK) has often
been used to solve second-order differential equations. Although algo-
rithms such as the fourth-order RK (RK4) have relatively low cumulative
error across integration steps, RK is an inherently non-symplectic inte-
grator, i.e. it does not conserve energy. For the purposes here intrinsic
to active shielding where there is zero work done for the case of a purely
magnetostatic field on a charged particle and thus energy is conserved,
an alternative integrator has been chosen. The Velocity-Verlet (VV) al-
gorithm, used for decades in molecular dynamics simulations including
those originally done by Störmer for investigation of the aurora, is ideally
suited for active shielding simulations. It has an added advantage over
the RK4 algorithm in that it requires only two function calls as opposed
to the four needed in RK4, and thus provides a significant reduction in
computational time without the sacrifice of accuracy.

Development of source code has been focused around the following
guiding principles:
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• Portability: to allow for continual adaptation and leveraging of
computing technology development, standard ANSI C++ program-
ming architecture has been maintained throughout development.

• Flexibility: there is no reason to suspect that a single field con-
figuration will suffice. Thus all code has been structured to have
an inherent capability to ingest any given field geometry with no
re-write of fundamental propagation and analysis routines.

• Speed: Due to the nature of the space radiation environment, i.e.
large range of incident particle energy, incident particle flux and
particle species, simulations containing at least 106 particles are
required to fully capture deflection statistics. As such, code must
be written that utilizes fast array indexing, minimization of func-
tion calls, and adaptive step size techniques while maintaining high
precision.

3.1 Integration Methods

Any particle dynamics simulation is only as good as the integration
method. Simulation methods are required to handle both position and
velocity dependent forces. This presents specific challenges in terms of
which integration scheme should be chosen. The vast majority of stan-
dard integration schemes for second-order Ordinary Differential Equa-
tions (ODEs) are limited to spatially-dependent forces that can be ex-
panded in a Taylor series in (x, y, z). There is no issue then for applica-
tion here as long as the magnetic field component of the Lorentz force
(Eq. 31) is set to zero.

Throughout the development of ASPP multiple integration schemes
were written and tested. It was decided to incorporate all tested schemes
into the final version as a tool for users to assess simulation output
characteristics. The six different integrators included are

• Euler: Non-symplectic; only applicable for position-dependent forces;
greatest step-size error of all included methods.

• Velocity-Verlet: Symplectic; only applicable for position-dependent
forces.

• Adaptive Velocity-Verlet: Symplectic; adapted for velocity-dependent
forces by adjusting the step-size dynamically utilizing the cyclotron
frequency.

• 4th Order Runge-Kutta: Non-Symplectic; only applicable for position-
dependent forces; integration error 5th order in time.

• Boris-Buneman: Non-symplectic but conserves phase space; appli-
cable to both position and velocity-dependent forces;
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Nearly all integration schemes employ some form of the finite differ-
ence equation. For particle tracking simulations, the generic equations
that must be solved are a pair of first-order differential equations of the
form

d~r

dt
= ~u(~r, t) (32)

d~u

dt
=

~F (~r, ~u, t)

m
(33)

Each of the integration methods and how they are applied to Eqs. (32)
and (33) are discussed in the following sections. The major bottleneck
to particle tracking simulations through fields is the number of function
calls made during each time step. How this varies from one method to
another will be discussed below. To maintain flexibility to add additional
configurations in the future as well as reduce computational overhead all
field functions are written as function pointers.

Consider the Lorentz force given by Eq. 31. We first re-write this as

d

dt
(γm~v) = Ze( ~E + ~v × ~B). (34)

Assume a generalized case where both electric and magnetic fields are
present and each can be time-dependent. For non-zero electric fields, the
particle kinetic energy, and hence γ, will change as a function of time.
Expanding the first-order derivative in time and recalling the explicit
dependence of γ on v, Eq. 34 is written as

m~v
dγ

dt
+ γ(v)m

d~v

dt
= Ze( ~E(~r, t) + ~v × ~B(~r, t)). (35)

γ is not explicitly dependent on time and thus the derivative of γ is given
as

dγ

dt
=

∂γ

∂vx

dvx
dt

+
∂γ

∂vy

dvy
dt

+
∂γ

∂vz

dvz
dt

(36)

=
vx
c2
γ3 vx
dt

+
vy
c2
γ3 vy
dt

+
vz
c2
γ3 vz
dt

(37)

=
γ3

c2
~v · d~v

dt
. (38)

The total time derivative of relativistic momentum is then,

~F =
d~p

dt
=
mγ3

c2
~v

(
~v · d~v

dt

)
+mγ

d~v

dt
(39)

= mγ~a+
mγ3

c2
~v(~v · ~a). (40)

Note that the first term represents the classical form of Newton’s Second
Law with a multiplicative factor of γ. The second term couples each of
the three component equations in velocity.
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The above relativistic expression for the force can be decoupled by
considering the projection of the force with the particle velocity. Taking
the dot product between the velocity vector and vector force,

~F · ~v =

(
mγ3

c2
(~v · ~a)~v

)
· ~v +mγ(~a · ~v) (41)

=
mγ3

c2
((~v · ~a)~v · ~v) +mγ(~v · ~a) (42)

=

(
mγ3

c2
~v · ~v

)
(~v · ~a) +mγ(~v · ~a) (43)

=

(
mγ3

c2
v2 +mγ

)
(~v · ~a) (44)

= m(~v · ~a)

(
γ3

(
1− 1

γ2

)
+ γ

)
(45)

= mγ3(~v · ~a). (46)

Using Eq. (46) and replacing the (~v · ~a term in Eq. (40),

~F = mγ~a+
mγ3

c2
(~v · ~a)~v (47)

= mγ~a+ (~F · ~v)
~v

c2
. (48)

Solving Eq. (48) for ~F and setting equal to the Lorentz force equation
yields,

mγ~a = ~F − (~F · ~v)
~v

c2
(49)

= q ~E + q~vx ~B − q( ~E · ~v)
~v

c2
− q(~vx ~B) · ~v ~v

c2
. (50)

Since (~vx ~B) is a vector perpendicular to ~v the last term is zero. The
resulting equation to be numerically solved to give the particle trajectory
in an external electric and magnetic field is

mγ~a = mγ
d~v

dt
= q ~E + q(~vx ~B)− q( ~E · ~v)

~v

c2
. (51)

Solving for the position and velocity of a charged particle then follows
from standard techniques of solving second-order ODEs, namely splitting
into two first-order ODEs. In what follows, we assume that the equations
of motion can be split into the form:

d~v(~r, ~F (~r,~v, t), t)

dt
= ~F (52)

d~r(t)

dt
= ~v(~r, t), (53)

where ~F (~r,~v, t) is the corresponding relativistic Lorentz force. In three
dimensions, these two equations form a set of six, coupled first-order
ODEs that must be numerically solved to map the trajectory of a charged
particle.
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3.1.1 Euler Method

The Euler method is the one of the simplest integration schemes. It
utilizes only the first-order term in the Taylor series expansion of the
force, ~F . As a result, for step size ∆t, the error at each step is O(∆t).
Each integration step is accomplished by the following:

~r(t+ ∆t) = ~r(t) + ∆t~v(t) +
∆t2

2
~a(t), (54)

~v(t+ ∆t) = ~v(t) + ∆t~a(t) (55)

Although inherently a fast algorithm, it suffers from large numerical
error. Often, this error is reduced by decreasing the time step at the
cost of large increases in run time. It is included here for completeness
but not recommended for use in large scale runs. The Boris-Buneman
(see below) utilizes an Euler-like step to perform the propagation through
combined electric/magnetic field configurations with relatively low error
propagation.

3.1.2 Velocity-Verlet (VV)

The Velocity-Verlet algorithm is a commonly used integrator in molecu-
lar dynamics simulations [13–15]. It is reversible, symmetric, and sym-
plectic. The method is also referred to as the Störmer-Verlet method
because it appeared in early work by Störmer on explaining the Aurora
from trajectory simulations of particles moving in Earth’s geomagnetic
field [16].

The algorithm is similar to the Euler method with the addition of an
additional velocity update. It can be derived by keeping terms out to
third order in the Taylor series expansion of positions and velocities. By
performing the expansion forwards and backwards in time (t+ ∆t) and
(t−∆t), and subtracting the two, the resulting equation only contains a
term second order in t. Thus, the local error is O((∆t)4) in position and
O((∆t)2) order in velocity. This is considerably better than the Euler
method, with minimal additional overhead of two function calls.

The method proceeds by first updating the positions by one time
step, ∆t. After the positions are updated, the velocity is propagated by
a half step (∆t/2), and the force (acceleration) is updated with the new
positions. The velocity is then updated to a full step value with the new,
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half-step update of acceleration. Mathematically this is given by,

~a(t) =
~F (~r(t), γ(v(t))

m
, (56)

~r(t+ ∆t) = ~r(t) + ∆t~v(t) +
∆t2

2
~a(~r(t), t) (57)

~v(t+ ∆t/2) = ~v(t) +
∆t

2
~a(t), (58)

~a(t+ ∆t) =
~F (~r(t+ ∆t), γ(v(t+ ∆t/2)))

m
, (59)

~v(t+ ∆t) = ~v(t+ ∆t/2) +
∆t

2
~a(t+ ∆t) (60)

This method has been implemented in a relativistic fashion by up-
dating the Lorentz factor as a two-step process, once after each velocity
update (Eqs. 58 and 60) as,

γ(t+ ∆t/2) =

(√
1− |~v(t+ ∆t/2)|2

c2

)−1

(61)

γ(t+ ∆t) =

(√
1− |~v(t+ ∆t)|2

c2

)−1

(62)

Caution must be stressed here when used with velocity-dependent forces.
Note that the force function (~F ) in the above routine is expressed as
only a function of position (~r), as it should be for the standard Velocity-
Verlet algorithm. This can produce large errors when using for velocity-
dependent forces as will be discussed in Appendix C.1.

3.1.3 Adaptive Velocity-Verlet (AVV)

The AVV algorithm is identical the VV method with the exception of
modification of ∆t with the cyclotron frequency. For external magnetic
fields ~B the field is first calculated at the current position, ~r(t). The
time step is then calculated from the inverse cyclotron frequency as

∆t = 0.001
2πγm

e| ~B|
. (63)

The prefactor of 0.001 has been added to ensure that any move in po-
sition translates the particle at most 0.001Rc where Rc is the cyclotron
radius, ensuring high-accuracy in high magnetic field regions by limiting
the step size in time. By restricting the time step, the resulting tra-
jectory in regions where momentum transfer is high will be of sufficient
resolution. This can result in an increase in total simulation run time
but provides a way to ensure the trajectory is captured without large
spatial steps. In regions of low magnetic field strength it is possible that
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Eq. 63 could result in very large ∆t values causing large jumps in par-
ticle trajectories between steps. To avoid this the modified step size is
used only if ∆t < ∆t0 where ∆t0 is the step size set by the user. The
precise value of the prefactor is somewhat arbitrary. The value of 0.001
was chosen to yield enough resolution in the trajectory to be able to
visualize with common plotting routines when running simulation where
the magnetic field intensity is on the order of several Tesla. Note that
the same cautions hold for this algorithm as for the VV algorithm with
respect to velocity-dependent forces.

3.1.4 Fourth-Order Runge-Kutta (RK4)

Although the RK4 algorithm continues to enjoy wide-spread use in nu-
merical integration, it is non-symplectic, i.e. non-energy conserving. In
many applications this does not present a problem, as the total propaga-
tion time is short enough that accumulated error remains low. However,
for purposes including tracking charged particle motion through Earth’s
dipole-like field, where particles need to be tracked over distances span-
ning more than 104 km, accumulated error can be substantial. RK4
is included here as a user option mainly due to the advantage of very
low truncation error of O((∆t)5), making it useful for testing of active
shielding configurations over short distances.

The largest disadvantage of RK4 is the four function calls to calculate
the force made at each integration step. VV and AVV require only two.
Each of the force function calls is used to estimate the slope between two
consecutive points in time, calculated by a weighted sum of coefficients,
KXi,j , where X = r for position and v for velocity, respectively. Each of
the four is indexed by i = 1..4 and each of the Cartesian components by
j = 1...3, forming a set of six coefficients. Note that although there are
two first-order ODEs to solve, one for position and one for velocity, there
are only four calls to evaluate the force due to the ODEs being coupled.
The routine iterates consecutively through the following to propagate
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the particle from time t to time t+ ∆t:

Kr1j = ∆t vj(t) (64)

Kv1j = ∆t F (~r,~v, t) (65)

r ′j = rj(t) + 0.5Kr1j (66)

v ′j = vj(t) + 0.5Kv1j (67)

t = t+
∆t

2
(68)

Kr2j = ∆t vj(t) + 0.5Kv1j (69)

Kv2j = ∆t F (~r ′, ~v ′, t) (70)

r ′j = rj(t) + 0.5Kr2j (71)

v ′j = vj(t) + 0.5Kv2j (72)

Kr3j = ∆t vj(t) + 0.5Kv2j (73)

Kv3j = ∆t F (~r ′, ~v ′, t) (74)

t = t+ ∆t (75)

Kr4j = ∆t vj(t) +Kv3j (76)

Kv4j = ∆t F (~r ′, ~v ′, t) (77)

vj(t+ ∆t) = vj(t) +
1

6
(Kv1j + 2Kv2j + 2Kv3j +Kv4,j) (78)

rj(t+ ∆t) = rj(t) +
1

6
(Kx1j + 2Kx2j + 2Kx3j +Kx4,j). (79)

Note that all of the Kv terms contain ~r ′ and ~v ′, all three vector com-
ponents of the spatial and velocity components in the calculation of the
force, F . This is due to the fact that the force term is coupled across
the three components in velocity space, i.e. the cross product ~v × ~B.

3.1.5 Boris-Buneman

The Boris-Buneman (BB) integration scheme dates back to the 1970s. It
was initially introduced by Boris in the form of the CYLRAD plasma sim-
ulation code that integrates the equations of motion of a fully relativistic
system with retarded, self-consistent electric and magnetic fields [17]. It
has become the standard integration method for a wide variety of plasma
physics simulations.

The BB scheme is broken down into three serial steps: (1) propaga-
tion by a half step through the external electric field; (2) propagation by
a full step through the external magnetic field, and; (3) propagation by a
second half step through the electric field. By breaking the electric field
’push’ steps into two sections, one before the magnetic field step and
one after, irreversibility is maintained over the entire integration step.
Steps 1 and 3 utilize and ’Euler-like’ approach and will not be discussed
further. Step (2) however is more complex. Boris determined that incor-
poration of the velocity-dependent force due to the magnetic field could
be done by rotating to a new frame of reference.
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The idea is relatively simple but highly effective. Under the assump-
tion that | ~EX ~B| < | ~B|2 there exists a frame of reference where the
electric field is zero. The integration step thus proceeds by first propa-
gating a half step with ~B = 0, then rotating to a frame of reference where
~E = 0 and propagating a full step using only the magnetic field B, and
finally, propagating another half step with ~B = 0. Although not sym-
plectic, this method is highly stable, is highly accurate and surprisingly
conserves the phase space. The only drawback is in cases of high electric
field gradients. Here, the step size would likely need to be substantially
reduced since the initial and final half-time step push uses a standard
Euler method.

The Boris algorithm contained within ASPP proceeds as follows.
First, copy positions at time t to new vector ~r ′(t) and update to time
t = t+ ∆t/2 assuming ~B = 0

~r ′(t+ ∆t/2) = ~r(t) +
∆t

2
~v(t). (80)

Define a pseudo-momentum vector as

~p(t) = γ(t)~v(t). (81)

We then iterate consecutively through each the following steps,

~p− = ~p(t) +

(
Ze∆t

2m

)
~E(~r, t) (82)

γ− =
√

1 + |~p−|2/c2 (83)

~t =
Ze~B

m

∆t

2
(84)

~s =
2~t

1 + |~t|2
(85)

~p ′ = ~p− + ~p− × ~t (86)

~p+ = ~p− + ~p ′ × ~s (87)

~p(t+ ∆t) = ~p+ +

(
Ze∆t

2m

)
~E(~r, t) (88)

~v(t+ ∆t) =
~p(t+ ∆t)

γ(t+ ∆t)
(89)

~r(t+ ∆t) = ∆t~v(t+ ∆t). (90)

The last two equations define the final position and velocity vectors at the
end of the step ∆t. Note that relativistic effects are taken into account
by updating the value of γ. Although there is not an increase in function
calls over the VV method, the calculation of matrix multiplication does
come at a cost. As a result, the Boris method is not as computationally
efficient as the VV, but is more accurate when including magnetic field
components.
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3.2 Particle Initialization

ASPP contains two different particle initialization methods aimed at
investigating active shielding configuration shielding efficacy in the pres-
ence of the in-space particle field and ground-based measurements using
particle beams. For in-space modeling, it is crucial that particles are
initialized according to the appropriate initial velocity distribution and
initial charge state. For particle beam simulations, the initialization
routine assumes a mono-energetic distribution of particles with a single,
non-zero velocity vector component aligned with the beam axis.

3.2.1 Directionally-Isotropic Field

The ion population in free space is largely isotropic in direction. Thus,
to perform an assessment of deflection characteristics, ion velocities must
be distributed accordingly. It should be noted that interaction of ions
with the Interplanetary Magnetic Field (IMF) are neglected in this anal-
ysis since the IMF magnitude is on the order of nT, much too weak
to cause substantial particle deflection over length scales comparable to
shield field thicknesses. Assuming the absence of a CME shock front, the
energetic ion distribution is, in general, uniform in regions of the helio-
sphere where crewed-missions will be conducted. Cartesian coordinates
are used throughout the following analysis.

The method implemented here to ensure any field configuration is
illuminated with a directionally-isotropic particle field was presented by
Rajon and Bolch [18]. For each run the incident particle distribution is
assumed monoenergetic with particle speeds, v0 defined as

v0 = c
(
1− γ−2

)1/2
, (91)

γ = 1 + Ek/E0. (92)

Taking the entire 4π steradians to distribute ion velocities would be
highly inefficient as half of the ions would have trajectories directed away
from the field region. Instead, this method ensures that all particles ini-
tialized have at least one component of the velocity directed towards the
field source.

The algorithm is as follows. First, we calculate the angles of the ith

particle associated with a vector position from the origin as

θi = cos−1(1− 2R1) (93)

φi = 2πR2, (94)

where R1 and R2 are uniformly distributed random numbers on [0, 1].
We then calculate a random vector in the plane tangent to the surface
of the launch sphere from

ρp,i = RL
√
R3 (95)

φp,i = 2πR4 (96)
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where R3 and R4 are also uniformly distributed random numbers on
[0, 1], and RL is denoted as the launch radius. The starting positions
of ith particle is then calculated from the position on the tangent plane
defined by solid angle direction and disk sampling, as,

xi = RL sin(θi) cos(φi) + ρp,i(sin(φi) cos(φp,i) (97)

+ cos(θi) cos(φi) sin(φp,i)),

yi = RL sin(θi) sin(φi)− ρp,i(cos(φi) cos(φp,i) (98)

− cos(θi) sin(φi) sin(φp,i)),

zi = RL cos(θi)− ρp,i sin(θi) sin(φp,i), (99)

where ρp,i and φp,i is the polar distance and angle, respectively, within the
tangent plane. The cartesian components of the initial particle velocity
are then calculated as

vx,i = −v0 sin(θi) cos(φi) (100)

vy,i = −v0 sin(θi) sin(φi) (101)

vz,i = −v0 cos(θi). (102)

It is important to note that the the initial particle positions are not
confined to the surface of a sphere of radius RL. This is due to the
nature of generating locations uniformly over the surface of the tangent
plane. Figure 2 shows the distribution of positions as the square of the
position vector r2 = |~r|2. Note that it is distributed uniformly between
R2
L and 2R2

L. One could make the distribution narrower by making
the size of the tangent plane disk much smaller than the radius of the
launch sphere, RL. However, this would result in particle velocities being
radially directed, destroying the isotropic nature of the incident field. In
general, the tangent plane disk radius should be on the order of RL.

An example distribution of initial velocity components is shown in
Figure 3. It is plotted as a ratio of vi/v0 where v0 is the maximum speed
corresponding to the kinetic energy selected at run time. Each velocity
component is clearly distributed uniformly over [−v0, v0], as expected for
an directionally-isotropic particle field.

For 3d simulations of active shielding configurations, one of the key
metrics when performing trajectory calculations is the degree of flux
reduction. This is simulated by finding the fraction of particles that
cross the surface of a spherical volume of radius Rcr to be protected.
Even with zero electric and/or magnetic fields, the number of particles
crossing this surface will always be less than the number initialized except
in the limit Rcr → RL. A series of simulations were conducted with zero
external fields to verify that the flux density at the protected volume
surface is the same as flux density initialized. This was accomplished
by counting particles crossing the surface, which is expected to scale
as R2

cr/R
2
L if the incident particle field is truly modeled in an isotropic

fashion. Results are shown in Figure 4.
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Figure 2. Distribution of initial particle radial position plotted as r2 for
a modeled directionally-isotropic particle field according to Eqs 97- 99.
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Figure 4. Number of particles crossing inner protected volume surface as
a function of the launch radius, RL. The red solid line is a least-squares
regression to the simulation results.

3.2.2 1d Beamline Initialization

ASPP is capable of initializing particles to simulate particle beams. This
allows the user to simulate beam line measurements for comparison.
Here, particles are assumed to be initialized within a circular disk, of
radius Rd, whose normal vector is aligned with the ion beam axis. Initial
velocity components are generated as

vx,i = −δxv0 (103)

vx,i = −δyv0 (104)

vx,i = −δzv0, (105)

where δx(yz) = ±1 is the Kronecker delta. The beam axis is set from
within the user input file and this in tern sets one of the delta functions
to a value of one and the other two to zero. Positions are then defined
in the transverse plane to the beam axis according to

ρi = RdR1 (106)

φi = 2πR2 (107)

wi = ρicos(φi) (108)

ti = ρisin(φi), (109)

where wi and ti are the two Cartesian coordinates in the (x, y, z) triplet
defining the plane transverse to the beam axis defined by the user at run
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time, and R1 and R2 are uniformly distributed random numbers. For
instance, if the beam axis is aligned with the x-axis then (wi, ti) = (yi, zi).
Example output using this algorithm for the initial particle positions is
shown in Figure 5. Note the visual uniformity in points, as expected.
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Figure 5. Initial particle positions for a beam of Np = 20000 protons in
the (y, z) plane with velocity directed along the x-axis, generated using
Eqs. 106-109. Note the isotropic distribution of positions.

.

3.3 Angular Binning

ASPP incorporates an angular binning method that determines the an-
gular fluence (or flux density) distribution over a user-defined sphere of
radius R centered about the origin. The utility of this feature is that
differences in particle penetration through the shield can be probed to
find locations where the electric and/or magnetic fields need to be tai-
lored to increase shielding efficacy. Figure 6 displays an example of the
output generated by the angular binning method.

The method used to determine the angular fluence distribution is
described below. The particle fluence at some arbitrary position in a
radiation field, Φ, is commonly defined as the number of particles per unit
area crossing a surface. This definition of the particle fluence is readily
understood, but a more useful definition of the fluence can be expressed
in terms of particles which traverse through a volume. Consider a volume
∆V that is penetrated by I particles. The total path length traversed
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Figure 6. Example angular fluence distribution. For this example, 100
point charges of charge magnitude 1.111× 10−3 C were approximately
evenly distributed over the upper hemisphere (0 < θ < π/2) of a sphere of
radius R = 100 m. The sphere was isotropically irradiated with 100 MeV
protons. This image shows that most particles are entering the angular
binning sphere from the region which is devoid of shielding (π/2 < θ <
π).

within volume ∆V by the ith particle is expressed by si. The particle
fluence at a point can be expressed as [64]

Φ = lim
∆V→0

[∑
i si

∆V

]
'
∑

i si
∆V

. (110)

The average fluence over a non-infinitesimal volume, used in ASPP and
described below, is found as

Φavg =

∑
i si

∆V
. (111)

ASPP’s particle propagation methods currently follow a fixed time-
step approach, where the number of propagation steps and the time-step
duration, ∆t, are specified by the user before the beginning of each run.
During each propagation step, each particle’s position vector is updated.
Express the position vector of particle i during the previous propagation
step as ~ri(t) and call the position vector of particle i for the current
propagation step ~ri(t+ ∆t). The total path length traversed by particle
i through the angular binning sphere of radius R can be found via the
following method.

1. If |~ri(t)| > R and |~ri(t + ∆t)| ≤ R, particle i enters the an-
gular binning sphere during this propagation step. Determine
the entry point of the sphere (via sphere intersection method),
~ri,entry. Determine the path length traversed over this step as
∆si(∆t) = |~ri(t + ∆t) − ~ri,entry|. Note that the solid angle di-

rection in which particle i enters the angular binning sphere, ~Ω , is
determined via ~Ω = (~ri,entry − ~ri(t+ ∆t))/|~ri,entry − ~ri(t+ ∆t)|.
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2. If |~ri(t)| ≤ R and |~ri(t + ∆t)| ≤ R, particle i has been within
the angular binning sphere throughout this propagation step. The
path length traversed over this step is simply ∆si(∆t) = |~ri(t +
∆t)− ~ri(t)|.

3. If |~ri(t)| < R and |~ri(t+∆t)| ≥ R, particle i exits the sphere during
this propagation step. Determine the exit point of the sphere (via
sphere intersection method), ~ri,exit. Determine the path length
traversed over this step as ∆si(∆t) = |~ri(t)− ~ri,exit|.

4. Otherwise, ∆si(∆t) = 0.

5. Determine the total path length traversed by particle i through the
angular binning sphere of radius R via si =

∑
∆t ∆si(∆t).

The previous method references a sphere intersection method. Given
a sphere of radius R and two points, ~ri(t) and ~ri(t+∆t), whose associated
line segment intersects the surface of the sphere, the point at which the
connecting line segment intersects the sphere can be determined. This
method is described below.

1. Let ~ri(t) = x0ı̂+ y0̂+ z0k̂ and let ~ri(t+ ∆t) = x1ı̂+ y1̂+ z1k̂.

2. The parametric equation for the intersection of a line which passes
through (x0, y0, z0) and (x1, y1, z1) and a sphere of radius R is given
by:

Aλ2 +Bλ+ C = 0 (112)

A = (x0 − x1)2 + (y0 − y1)2 + (z0 − z1)2 ,

B = 2 (x0 (x1 − x0) + y0 (y0 − y1) + z0 (z1 − z0)) ,

C = x2
0 + y2

0 + z2
0 +R2, and

λ ∈ (−∞,∞).

Solving for λ determines the intersection points.

3. Let the discriminant of Eq. 112 be ∆ = B2 − 4AC. If ∆ ≤ 0,
particle i does not intersect with the sphere. Only the case where
∆ > 0 is considered.

4. Solve for both values of λ via the quadratic formula, λ+ = (−B +√
∆)/(2A) and λ− = (−B −

√
∆)/(2A).

5. If λ+ ≤ λ−, then the entry point is associated with λ+. Thus,
let λentry = λ+ and λexit = λ−. Otherwise, λentry = λ− and
λexit = λ+.

6. The entry and exit positions can be determined via ~ri,entry = (1−
λentry)~ri(t)+λentry~ri(t+∆t) and ~ri,exit = (1−λexit)~ri(t)+λexit~ri(t+
∆t).
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After determining the total path length traversed by each particle
through the angular binning sphere, all particles which enter the sphere
in the direction ~Ω about ∆Ω are grouped into angular bins. Angular
bins are defined by the user, who selects the number of bins in the
polar direction θ and azimuthal direction ψ. Specifically, angular bin
increments ∆θ and ∆ψ are defined by Eqs. 113 and 114. Nθ and Nψ are
the number of angular bin divisions in the polar and azimuthal directions
respectively.

∆θ =
π

Nθ
(113)

∆ψ =
2π

Nψ
(114)

The angular fluence in a single angular bin is given by Eq. 115.

Φ(~Ω) =
Φ

∆Ω
, (115)

where ∆Ω is given by

∆Ω = (cos θlow − cos θhigh) (ψhigh − ψlow) (116)

The subscripts “high” and “low” simply refer to the upper and lower
boundaries of the angular bin, i.e., θhigh = θlow+∆θ. Once each angular
bin is assigned an angular fluence value, a plot such as the one in Figure 6
is generated and the angular binning method is complete.

3.4 Sphere Shadowing

Charged conducting spheres are used to generate an electric dipole field
in the experimental case. When these spheres are irradiated by a beam
of charged particles, a void results. The electric field generated by charg-
ing up the conducting spheres is well approximated in ASPP using the
electric field due to point charges in place of actual conducting spheres.
However, when the physical conducting spheres are irradiated when no
voltage is applied to either sphere, a void area (typically two, depending
on orientation) still appears in the image. This phenomenon is due to
the presence of the physical spheres. The spheres shield charged parti-
cles whose trajectories intersect with the sphere (or the rod connecting
them to the voltage supply). The team refers to this behavior as “sphere
shadowing”, as the shadow of each sphere is usually visible in the image
data. See Figure 7 for an example of this behavior.

Using a point charge approximation to simulate the electric field pro-
duced by these charged spheres is adequate for reproducing the electric
field in ASPP, but does not capture the sphere shadowing behavior ex-
hibited during measurement. For this reason, the team added a “sphere
shadowing” mode to ASPP. The purpose of this mode is to identify par-
ticles whose trajectories intersect one of the conducting spheres at any
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Figure 7. Sphere shadowing behavior for 0 kV spheres of 1 inch diameter.
Beam consisted of fully-stripped 6 MeV He ions.

point during particle propagation. The user is able to specify a shadow
radius Rshadow which represents the conducting sphere radius. If particle
i passes within Rshadow of any point charge, particle i is flagged and prop-
agation continues as normal. In other words, if |~ri(t) − ~rp| < Rshadow,
particle i is flagged. ~ri(t) is the position of particle i at time t, and ~rp
is the position of the point charge. After the simulation is complete, the
user is able to discriminate particles which intersected the hypothetical
charged spheres from those which did not. Figure 8 shows the differences
that can be uncovered by implementing sphere shadowing into ASPP.

Figure 8. Example of sphere shadowing in ASPP. Orange points repre-
sent particles which intersected at least one of the spheres during prop-
agation while blue points represent particles which did not. The charge
magnitude of each point charge is zero for this example.

In general, the significance of the shadow decreases as the charge
magnitude on each sphere increases. Shadowed particles become more
concentrated toward the edge of the void region until the area covered
by shadowed particles is no longer significant compared to the area of
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the void region. An example of this behavior is shown in Figure 9.

Figure 9. Example of sphere shadowing effects diminishing as the mag-
nitude of the voltage on each sphere increases. Blue points represent
particles with trajectories that did not intersect with either sphere; or-
ange points represent particles that did intersect.

3.5 User-Defined Charge States for Projectile Ions

Particle charge state is a user-defined quantity. It is well-known that
GCR ions are essentially fully stripped of electrons. However, to accu-
rately simulate beamline measurements, non-fully stripped ions can be
represented by making the charge state a user-defined quantity in the
input file. The user is able to specify the projectile ion’s mass number
A, atomic number Z, and number of electrons Ne per ion. The charge
of the ion, qion, is calculated according to

qion = (Z −Ne) e, (117)

mion = Zmp + (A− Z)mn, (118)

where mion, is the mass of the ion in kg, e is the electron charge in C, and
mp and mn are the mass of the proton and neutron in kg, respectively.

4 Platform Dependencies

Source code has been written to be executed in a variety of ways while
keeping portability at a maximum. ASPP is written in C++, imple-
menting C++ classes and data structures for easy code readability and
adding functions. ASPP integrates Message Passing Interface (MPI) for
cross node communication, OpenMP for multi-threading capability, and
CUDA for Graphic Processor Units (GPU). The inclusion of OpenMP
and MPI allows for simulations to be performed on systems ranging
from a single-core processor (laptop and desktop) to multi-core multi-
node server systems. CUDA gives the capability to expoit the power of
GPU-based systems. CMake is used to configure and build the source
code for various platforms and operating languages. ASPP has been
tested on Linux, Mac OS-X, and Windows environments successfully.
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At code runtime, the main class reads command-line arguments and
initializes the run manager. The run manager class initiates the simula-
tion by reading input files, initializing particles, and initializing particle
propagation classes. The initialization class creates arrays for all the
particles, initiates the particle position based on user-method selected,
initiates the particle velocity, and then initiates class objects that handle
electromagnetic field calculations selected by the user. The run manager
then starts the propagation of particles by calling either GPU or CPU
propagation kernels. After all the particles have been propagated, the
data is analyzed and output as a comma-separated value (CSV) file.

Each particle occupies a single thread. The ensemble of particles
is managed within ASPP by spreading the collection of particles across
multiple threads for CPU and GPU propagation. Data sharing between
nodes is performed with MPI. OpenMP is used to create multiple threads
per node.

4.1 GPU Capability

Compute Unified Device Architecture (CUDA) is a proprietary library
by NVIDIA for parallel computing on enabled NVIDIA GPUs for general
processing. ASPP implements CUDA to propagate particles at the same
time quickly. Multiple GPU cards per node can be supported if OpenMP
is enabled with the ability to run on multiple nodes with MPI.

At runtime, ASPP creates the particles, then creates one OpenMP
thread per GPU card. Each thread transfers a subset of the particles
to the GPU memory and initiates the calculation. After all the threads
have completed, the threads then transfer back the particles from the
GPU memory to the CPU, where results are combined across nodes and
written out to files according to user input. CUDA assigns one particle
to each thread on the GPU with 512 threads per block and 64 blocks per
multiprocessor; however, these values can be changed to increase perfor-
mance depending on the GPU architecture. Each thread propagates a
single particle through each time step. Since all the threads are propa-
gating particles through the same amount of time steps, the thread block
is loaded, increasing performance as all threads are completely busy ex-
ecuting code during the run. After the block has completed analyzing
the trajectory of all the particles within the block, the block then ana-
lyzes another block of particles. This simple parallelism allows for fast
computation of particle trajectories.

4.2 OpenMP

OpenMP implements multi-threading capability through compiler direc-
tives and libraries that are easily integrated into C, C++, and Fortran
compilers. OpenMP is available on GCC, Intel, and Clang compilers.
If configured using CMake, OpenMP is used to make multiple threads
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for particle creation and propagation. At runtime, OpenMP automat-
ically determines the number of threads available per node, which can
be changed by setting environment variables for OpenMP. Upon parti-
cle initialization, the particles are split between the number of threads
available in the thread pool with each thread creating a subset of parti-
cles. At propagation time, each thread individually propagates a single
particle for every time step and then proceeds to another particle.

4.3 Message Passing Interface (MPI)

MPI is a specification established to allow for the point-to-point com-
munication between different processes, which may reside on the same
processors or across computational nodes in a cluster. Several imple-
mentations of MPI have been created, including the OpenMPI and Intel
libraries. ASPP has been written based on OpenMPI; however, testing
of ASPP shows better performance on processors with the Intel library.

ASPP uses MPI to communicate between nodes, allowing ASPP to
quickly and efficiently expand to multiple nodes. If configured with MPI
using CMAKE when building the code, the application is built natively
with MPI capability. During run initialization, a master MPI thread
creates threads across nodes, or the same node, and splits the number of
particles between MPI threads. Each node then initializes a set of par-
ticles based on a reproducible different random number seed per node,
which reduces the amount of data split between nodes during initial-
ization and speeds particle creation. After particles are generated in
each node, ASPP then initiates the propagation of particles across all
the nodes. Each node completes designated propagation tasks and then
waits for all other node propagation to complete. The master node then
collects the resulting data for each particle to be written out as a single
file.

5 Field Configuration Toolset

To increase flexibility of use a collection of analytic field configurations
have been included. Three of these are taken directly from past investi-
gations, two are additions utilizing ideal field constructs, and one is for
testing purposes for visualization in 2d. The fields included are:

1. Constant z-aligned magnetic field confined to a ring in the (x,y)
plane. Ring offset from the origin, thickness and magnetic field
magnitude set by the user. Configuration centered at (0, 0, 0) in
Cartesian coordinates.

2. Constant 3d azimuthal magnetic field confined to a spherical shell.
Shell offset from the origin, thickness and magnetic field magnitude
defined by the user. Configuration centered at (0, 0, 0) in Cartesian
coordinates.
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3. Ideal magnetic dipole field. Magnetic moment specified by the
user. Configuration centered at (0, 0, 0) in Cartesian coordinates.

4. Ideal current loop. Magnetic moment and loop radius specified by
the user.

5. 3d Helmholtz coil configuration. Magnetic moment and loop ra-
dius specified by the user. Configuration centered at (0, 0, 0) in
Cartesian coordinates.

6. 3d Maxwell coil configuration. Magnetic moment and loop radius
specified by the user. Configuration centered at (0, 0, 0) in Carte-
sian coordinates.

7. 3d distribution of ideal magnetic dipoles. Number, position vector
and dipole moment and moment orientation vector specified by the
user through an input file.

8. 3d distribution of ideal electric dipoles. Number, position and
dipole moment specified by the user through an input file.

9. 3d distribution of point charges. Number, position vector and
charge specified by the user through an input file.

10. Array of Line Charges. Number, linear charge density and line
endpoints specified by the user through an input file.

11. Array of Rectangular Charge Sheets. Number, total surface charge
(assumed homogenous distribution), position vector of the center
of planar sheet and side length specified by the user through an
input file.

Details of each configuration are discussed below. In addition to this
set of default configurations, the code includes the ability to read in any
magnetic and electric field values on a 3d Cartesian rectangular grid.
This capability allows for inclusion of magnetic fields that have been
modeled with external static field modeling software.

5.1 Constant z-aligned Magnetic Field

Relativistic motion of a charged particle in a constant magnetic field
is one of the few cases where the equations of motion are analytic and
the resulting trajectories is well-known. Thus, it serves as a benchmark
to using the various integration methods included based on user-defined
initial conditions. The field is defined as

~B = B0ẑ, (119)

where B0 is the field magnitude. The value of B0 is defined by the user.
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5.2 Constant 3d Azimuthal Field

Assuming the magnetic field is not infinite at any point in 3d space, the
configuration with the greatest deflection power is that of a constant
uniform field. This field will serve as a reference point for all analy-
sis presented here. For simplicity, and the greatest spatial coverage, a
spherical shell of thickness δr and azimuthal field orientation will be used.

An azimuthal field in spherical coordinates is given by,

~B = B0φ̂ = B0(− sin(φ)x̂+ cos(φ)ŷ), (120)

where the angular component of the Cartesian unit vectors can be writ-
ten as,

cos(φ) =
x

ρ
, (121)

sin(φ) =
y

ρ
, (122)

ρ2 = x2 + y2. (123)

5.3 Ideal Magnetic Dipole Field

There are several reasons to include the field of an ideal dipole. Earth’s
geomagnetic field is highly effective at shielding energetic particles in
LEO. Some of the first investigations aimed at probing the origin of
the trapped belts, i.e. Van Allen belts, were carried out by Störmer
assuming the geomagnetic field could be represented by that of an ideal
magnetic dipole. Ideal dipole fields can also be easily combined in various
configurations to produce relatively complex field geometries and can
be evaluated numerically with relatively low computational overhead.
The vector field ~B of an ideal point dipole with magnetic vector dipole
moment ~M is defined as

~B(~r) =
µ0

4πr3

[
3( ~M · r̂)r̂ − ~M

]
− 2

3
µ0

~Mδ3(~r), (124)

where the last term represents the delta-function moment of a point
dipole at the origin. Due to azimuthal symmetry and no a priori pre-
ferred field orientation with respect to a spacecraft, dipole orientation
can be fixed along a single axis. Aligning with the z-axis, ~M = M0ẑ.
The magnetic field vector can then be written as

~B(~r) =
µ0M0

4πr3

[
3(M̂ · r̂)r̂ − M̂

]
− 2

3
µ0M0M̂δ3(~r). (125)

The simulation code integrates the equations of motion in cartesian co-
ordinates. The vector field can be converted to Cartesian coordinates by
expressing the radial unit vector as

r̂ = sin(θ) cos(φ)x̂+ sin(θ) sin(φ)ŷ + cos(θ)ẑ. (126)
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Using the Cartesian to spherical coordinate transformation, the Carte-
sian field components of an ideal point dipole can be expressed as,

Bx(x, y, z) =
3µ0M0

4π

xz

r5

By(x, y, z) =
3µ0M0

4π

yz

r5

Bz(x, y, z) =
µ0M0

4π

(3z2 − r2)

r5
(127)

These field components can be generalized for any given collection of
ideal point dipoles. Consider a point dipole located at position ~ri. Given
a particle traveling with velocity vector ~v at time t is located at position
~r, the new field position vector is ~r ′ = ~r−~ri. Thus the total (Bx, By, Bz)
field is a sum over a Nd dipoles, i.e.

Bx(x, y, z) =
3µ0

4π

Nd∑

i=1

Mi,0
x′i
r′5

(128)

By(x, y, z) =
3µ0

4π

Nd∑

i=1

Mi,0
y′iz
′
i

r′5
(129)

Bz(x, y, z) =
3µ0

4π

Nd∑

i=1

Mi,0
(3z′2 − r′2)

r′5
(130)

The above expressions hold for the special case of all point dipoles have
dipole moment oriented along the z-axis. To generalize further, con-
sider that the ith dipole moment unit vector can be written as m̂i =
(mx,i,my,i,mz,i). The Cartesian field components are then given by

Bx =
µ0

4π

Nd∑

i=1

1

r′5

[
(x′2 − r′2

3
)mx,i + x′y′my,i + x′z′mz,i

]
(131)

By =
µ0

4π

Nd∑

i=1

1

r′5

[
x′y′mx,i + (y′2 − r′2

3
)my,i + y′z′mz,i

]
(132)

Bz =
µ0

4π

Nd∑

i=1

1

r′5

[
x′z′mx,i + y′z′my,i + (y′2 − r′2

3
)mz,i

]
(133)

For simulations purposes the code has been developed to read in dipole
moment orientation and position vector components from a user-defined
file and stores the data as a total of six 1d arrays. The arrays are
dynamically allocated and thus there is no hard set limit to the number
of dipoles that can be included.

5.4 Ideal Current Loop

The ideal current loop field included in ASPP assumes an infinitesimally
thin wire of current I (current density ~J(~x)). There is no closed form
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solution for the field of a current loop with the exception of the axial
field. In general, the field can be determined from the magnetic vector
potential, ~A(~x), where

~A(~x) =
µ0

4π

∫ ~J(~x)

|~x− ~x ′|
d3~x (134)

=
µ0I

4π

∫
δ(r′ − a)δ(z′)φ̂(φ′)

|~x− ~x ′|
d3~x, (135)

where
φ̂(φ′) = −sinφ′x̂+ cosφ′ŷ. (136)

The vector magnetic field is then given by the curl of ~A, i.e. ~B = ∇X ~A.
The resulting solution is in the form of elliptic integrals that have to be
evaluated numerically. The Cartesian components of the current loop
field can be written as

Bx(x, y, z) =
Dxz

ρ2

[
(a2 + r2)E(k2)− α2K(k2)

]
(137)

By(x, y, z) =
Dyz

ρ2

[
(a2 + r2)E(k2)− α2K(k2)

]
(138)

=
y

x
Bx(x, y, z) (139)

Bz(x, y, z) = D
[
(a2 − r2)E(k2) + α2K(k2)

]
, (140)

where

D =
C

2α2β
(141)

ρ = x2 + y2

r2 = x2 + y2 + z2

α2 = a2 + r2 − 2aρ

β2 = a2 + r2 + 2aρ

k2 = 1− α2/β2

C = aB0,

with B0 the magnetic field on axis at the center of the coil (Bz(0, 0, 0))
and a the loop radius. The functions K(k2) and E(k2) are the complete
error functions of the first and second kind respectively, defined as

K(k2) =

∫ π/2

0

dα

(1− k2 sin2(α))1/2
(142)

K(k2) =

∫ π/2

0
(1− k2 sin2(α))1/2dα (143)

k2 =
4ar

a2 + r2 + 2ar sin(θ)
(144)

K(0) = E(0) =
π

2
. (145)
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Each of the functions are integrated numerically at each time step. The
numerical algorithm has been taken from [63] and has been checked by
calculating contours in the y− z plane as well as calculating the on-axis
field as a function of distance z. The elliptic integrals are approximated
as a power-series expansion and is computationally fast. Series coeffi-
cients are taken from [63]. One expects the far-field on-axis value to
scale as Bz(0, 0, z) ∝ z−3. Figure 10 show contours and asymptotic axial
field dependency. In general the agreement with the predicted asymp-
totic far-field value of z−3 is quite good. Figures 11 and 12 show field
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Figure 10. Magnetic field of an ideal current loop (Section 5.4). The
inset is a contour plot of the field magnitude in the x-z plane. The figure
shows that for z � a the on-axis field scales as z−3 as predicted.

streamlines in 2d and 3d respectively. As expected the field lines near
the center of the loop in the (x, y) plane are nearly parallel to the loop
axis. The field of a current loop has one large disadvantage similar to
that of an ideal dipole. The center of the coil has field lines that are
parallel to the coil axis. Thus particles with velocity vectors parallel to
this axis see no deflection and can easily traverse vehicles placed at the
center of the loop.

5.5 3d Helmholtz Coil

The field of an ideal current loop can be used to include other field config-
urations built from various combinations and orientations of single loops.
One such configuration is the Helmholtz coil. The 3d Helmholtz configu-
ration is an arrangement of six ideal current loops, where each single-axis
oriented pair is spaced a distance apart equal to the coil radius. If the
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Figure 11. Field streamlines for an ideal current loop (Section 5.4) in
the (x,z) plane. The coil circular cross section is located at positions
(-1,0) and (1,0).

Figure 12. 3d field streamlines for an ideal current loop (Section 5.4).
The coil, shown as a black solid ring, is located in the (x, y) plane and
has a radius of 1 m.
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currents in each loop comprising a pair is in the same direction the
resulting field at the center point on axis of the coils is non-zero and rel-
atively uniform. Three such pairs, each with its axis aligned along one
of the three Cartesian axes are frequently employed in situations where
a constant uniform magnetic field is desired.

If the current in each of a pair of loops flows in opposite directions
the resulting configuration is called an ’anti-Helmholtz’ coil and the re-
sulting midpoint field is zero. This particular configuration would be
preferred for active shielding applications where a vehicle is placed at
the center of the coils. The total field at any position ~r is then a sum
over the contributions from the 6 individual current loops described in
the previous section.

Consider first the case of two sets of anti-Helmholtz coils, one aligned
along the z-axis and the along the x-axis. Field streamlines in the (x, z)
plane are shown in Figure 13. The field magnitude at (0, 0, 0) is | ~B| =
0. Notice that there are four lobes with streamlines that resemble the
equatorial streamlines of a dipole field. Each of these is created by the
currents in neighboring loops flowing in opposite directions analogous to
different poles in a common bar magnet or a pair of opposite charges of
a simple electric dipole.
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Figure 13. Axial field for a set of 3-axis Helmholtz coils. For simulation
purposes each coil is represented by an ideal current loop (Section 5.4).
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Figure 14. Axial field for a set of 3-axis Helmholtz coils. For simulation
purposes each coil is represented by an ideal current loop (Section 5.4).

-20

-10

0

10

20

z 
[m

]

-20 -10 0 10 20
y [m]

10

8

6

4

2

0

B [T]

Figure 15. Field contours for a set of 3-axis Helmholtz coils. For
simulation purposes each coil is represented by an ideal current loop
(Section 5.4).
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Figure 16. Overlay of field streamlines and contours of field magnitude
for a set of 3-axis Helmholtz coils. For simulation purposes each coil is
represented by an ideal current loop (Section 5.4).
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5.6 3d Maxwell Coil

Maxwell coils are utilized to produce relatively large volumes of nearly
constant magnetic field. With respect to spacecraft shielding this coil
configuration would have to be placed away from the spacecraft to limit
field effects on the vehicle and crew. This configuration also uses the
field of an ideal current loop (Section 5.4), with three individual loops
configured as shown in Figure 17.

�
4/7R

�
3/7R

Figure 17. Maxwell coil layout. For simulation purposes each coil is
represented by an ideal current loop of Section 5.4.

5.7 Ideal Electric Point Dipole

The ideal electric dipole is defined by the electric dipole moment vector
~Me. It is functionally the same as the ideal magnetic dipole and is

expressed as,

~E(~r) =
1

4πεr3

[
3( ~Me · r̂)r̂ − ~Me

]
− 2

3
µ0

~Meδ
3(~r), (146)

where the last term represents the delta-function moment of a point
dipole at the origin. The field for an array of ideal electric dipoles follows
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directly from the magnetic dipole analogue as,

Ex =
1

4πε0

Nd∑

i=1

1

r′5

[
(x′2 − r′2

3
)mex,i + x′y′mey,i + x′z′mez,i

]
(147)

Ey =
1

4πε0

Nd∑

i=1

1

r′5

[
x′y′mex,i + (y′2 − r′2

3
)mey,i + y′z′mez,i

]
(148)

Ez =
1

4πε0

Nd∑

i=1

1

r′5

[
x′z′mex,i + y′z′mey,i + (y′2 − r′2

3
)mez,i

]
,(149)

where (mex,i,mey,i,mez,i) are the Cartesian components of the ith electric
dipole moment vector.

5.8 Array of Point Charges

In practice, dipole fields are nearly ideal at best. Physical dipoles can be
generated by using two spherical conductors held at a constant potential
difference ∆V . These are easy to manufacture and can be placed in
various configurations. If the sphere diameter is small compared to their
separation each can be approximated as a point charge. The field of an
array of N such spheres can be approximated then by

~E(~r) =
1

4πε0

N∑

i=1

qi
~r − ~ri
|~r − ~ri|3

(150)

For a spherical conductor of radius a in vacuum, the charge can be
calculated directly from the potential. Inside of the conductor the V =
∆V and | ~E(~r)| = 0 for all r < a. At the surface of the conductor
V (a) = ∆V = q/4πε0a. The charge is then

qi = 4πε0a∆V. (151)

Deflection power of the field is governed by the charge on each conducting
sphere. Since the charge is determined by the product of the sphere
radius and potential difference between the two spheres one can possibly
minimize power requirements by simply increasing the sphere diameter.
Note that this linear expression between sphere surface charge, qi and
voltage ∆V ignores the field effects on a single sphere due to neighboring
spheres. However, for two spheres the charge can be scaled based on the
sphere separation distance. ASPP does not automatically perform this
scaling. It is left to the user to enter scaled charge values via the input
file.

5.9 Array of Line Charges

ASPP is capable of calculating the electric field at any point ~r due to an
array of N finite line charges of linear charge density λi and endpoints
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Figure 18. Electric field contour plot with field streamlines in the
(x, z) plane. Each pair of 12 charges comprising the dipoles is configured
with all negative charges located closest to the origin. The midpoint
between each pair is located at ±0.5 m along each of the three Cartesian
axes. Each point charge has charge q = 8.34486E − 8 C calculated from
Eq. (151) assuming each is a 1 cm sphere and ∆V = 75 kV.
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Figure 19. Electric field streamlines for six electric dipoles. Each pair of
12 charges comprising the dipoles is configured with all negative charges
located closest to the origin. The midpoint between each pair is located
at ±0.5 m along each of the three cartesian axes. Each point charge has
charge q = 8.34486E − 8 C calculated from Eq. (151) assuming each is
a 1 cm sphere and ∆V = 75 kV.
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~r1,i and ~r2,i. The field of an array of N finite line charges is given by,

~E(~r) =
1

2πε0

N∑

i

λi|~r2,i − ~r1,i|
(|~r − ~r1,i|+ |~r − ~r2,i|)2 − |~r2,i − ~r1,i|2

(152)

×
(
~r − ~r1,i

|~r − ~r1,i|
+

~r − ~r2,i

|~r − ~r2,i|

)

5.9.1 Array of Rectangular Charges

ASPP is also able to determine the electric field at any arbitrary point in
space ~r = xı̂+ŷ+zk̂ due to a finite charged plane of user-defined surface
charge density σ, width a, height b, midpoint ~rm = xmı̂ + ym̂ + zmk̂,
normal vector ~w = wxı̂+ wy ̂+ wzk̂, and rectangular orientation vector

~u = uxı̂+ uy ̂+ uzk̂, which specifies the direction in which the length-a
edge of the rectangular charge sheet points, was added to the code. Note
that ~u must be orthogonal to ~w, i.e., ~u · ~w = 0. Also note that the user
may specify an arbitrary number N of finite charged plane structures
within ASPP.

The following steps are taken to determine ~E(~r) due to N indepen-
dent, charged planes. Let n be an index representing the nth plane in
the planar charge array. First, the normal vector ~wn is normalized to
the unit vector ŵn via

ŵn =
~wn
|~wn|

. (153)

The normalized rectangular orientation vector ûn is found in a similar
manner. ŵn defines the vector normal to the nth rectangular charged
sheet. The vector v̂n may be found via the cross product v̂n = ŵn × ûn.
The unit vectors ûn, v̂n, and ŵn define the planar reference frame whose
origin is located at the midpoint (xm,n, ym,n, zm,n) of the nth rectangular
charged sheet, as shown in Figure 20.

Now that the planar reference frame is known, the coordinates of the
point of interest are transformed from the absolute reference frame into
the planar reference frame from ((x, y, z) 7→ (u, v, w)),

un = (x− xm,n)ux,n + (y − ym,n)uy,n + (z − zm,n)uz,n (154)

vn = (x− xm,n)vx,n + (y − ym,n)vy,n + (z − zm,n)vz,n (155)

wn = (x− xm,n)wx,n + (y − ym,n)wy,n + (z − zm,n)wz,n. (156)

The notation ux,n refers to the x-component of the normalized vector
ûn. Knowledge of un, vn, and wn allows for the calculation of the electric
field vector components in the planar reference frame, Eu,n, Ev,n, and
Ew,n. For ease of reading, consider the placeholder variables provided
in Table 2. The components of the field in the frame of reference of the
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Figure 20. Absolute (x, y, z) and planar (u, v, w) reference frames de-
picted with example rectangular charged sheet of dimensions [a× b] and
surface charge density σ.

planar sheet, (Eu,n, Ev,n, Ew,n) are calculated using

Eu,n =
σn

4πε0

[
ln(η1 − β−)− ln(η2 − β−) (157)

− ln(η3 − β+) + ln(η4 − β+)

]

Ev,n =
σn

4πε0

[
ln(η1 − α−)− ln(η2 − α+) (158)

− ln(η3 − α−) + ln(η4 − α+)

]

Ew,n =
σn

4πε0

[
tan−1

(
α−β−
2wnη1

)
+ tan−1

(
−α+β−
2wnη2

)
(159)

− tan−1

(
α−β+

2wnη3

)
− tan−1

(
−α+β+

2wnη4

)]
.

The electric field components due to the nth rectangular charged
sheet in the planar reference frame Eu,n, Ev,n, and Ew,n are then used to
calculate the Ex,n, Ey,n, and Ez,n, the electric field components due to
the nth rectangular charged sheet in the absolute reference frame. Ex,n,
Ey,n, and Ez,n are then given by

Ex,n = Eu,nux,n + Ev,nvx,n + Ew,nwx,n (160)

Ey,n = Eu,nuy,n + Ev,nvy,n + Ew,nwy,n (161)

Ez,n = Eu,nuz,n + Ev,nvz,n + Ew,nwz,n. (162)

To find the electric field due to all N rectangular charged planes, ~E(~r),
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Parameter Value

α− 2un − an
α+ 2un + an
β− 2vn − bn
β+ 2vn + bn

η1

√
α2
− + β2

− + 4w2
n

η2

√
α2

+ + β2
− + 4w2

n

η3

√
α2
− + β2

+ + 4w2
n

η4

√
α2

+ + β2
+ + 4w2

n

Table 2. Placeholder parameter definitions used to calculate Eu,n, Ev,n,
and Ew,n.

we sum over all planar sheets of charge as,

~E(~r) =
N∑

n

~En(~r) (163)

6 Conclusions and Future Work

We have presented here the development of a particle tracking code
aimed at enabling rapid prototyping of active shielding configurations.
The code is portable across the Linux, Mac OS and Windows platforms
as long as each is configured to support OpenMP, MPI and CUDA ar-
chitectures.

One of the future additions is the incorporation of fields generated
with finite-element methods. Work is in progress to generate accurate
field maps on un-structured grids of realistic conductor shapes and con-
figurations. This will add a large degree of flexibility to the utility of
ASPP, even beyond the use for active shielding studies. Unstructured
grids will allow for fast propagation as the time step will be adapted in
real-time to minimize total propagation time while retaining precision.

Another avenue of development is to add the OpenCL libraries to
support non-NVIDIA GPU architecture. This will however, take time
as it requires a large code re-write.
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Appendix A

Installation and Code Execution

A.1 Dependencies

Required

• CMake version 3.7 or later (http://www.cmake.org). CMake con-
figures ASPP for the platform, links to dependencies, and turns
options on or off depending on the computer platform.

Optional

• For GPU installation, at least one NVIDIA GPU with Cuda Capa-
ble GPUs and Driver (https://developer.nvidia.com/cuda-downloads)
are required.

• For multithread installations, an OpenMP Compatible Compiler
(Intel is required. GCC and Intel compilers support OpenMP na-
tively; however, Clang compilers require building with OpenMP.
Linux distributions GCC natively supports OpenMP. Mac users
may either download the Intel compiler, use MACPorts to down-
load GCC, or recompile Clang with OpenMP (https://clang-omp.
github.io).

• For multi-node computing, an MPI compatible compiler is required,
such as OpenMPI (https://www.open-mpi.org, MPICH (https:
//www.mpich.org), Intel (https://software.intel.com/), etc.

A.2 Installation Instructions

Download source from github.

git clone https://github.com/mll36/ASPP.git

Create a build directory.

mkdir build

Change directory to build folder.

cd build

Run CMake to configure project.

cmake ../ASPP

CMake automatically recognizes if CUDA, OpenMP, and MPI are avail-
able, if not ASPP will compile without them. CUDA support may be
turned on or off using:
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-DBUILD_CUDA=OFF

MPI support may be turned on or off using:

-DBUILD_MPI=OFF

OpenMP support may be turned on or off using:

-DBUILD_OpenMP=OFF

To use another compiler use the DCMAKE CXX COMPILER option.
For example:

cmake ../ASPP -DCMAKE_CC_COMPILER=...path-to-compiler../gcc

-DCMAKE_CXX_COMPILER=...path-to-compiler../g++↪→

or you can compile using Intel Compilers by typing:

CC=icc CXX=icpc cmake ../ASPP

Run make. For example, to make with 4 build threads, type:

make -j4

A.3 Code Execution

To run the application, type:

./aspp

To run OpenMP with multiple threads, verify the application has
been compiled with OpenMP by a supported compiler. The application
will automatically grab the maximum number of threads available. To
specify the number of threads used by ASPP, set the environmental
variable OMP NUM THREADS to your desired number of threads. For
example, in bash:

export OMP_NUM_THREADS=16

To run the MPI version on PBS job scheduler with 10 nodes from the
command line, type:

mpirun -np 10 -machinefile $PBS_NODEFILE -bynode ./aspp -i

inputfile.txt↪→

This command can vary by MPI implementation and scheduler. The
option -machinefile gives MPI the list of nodes to run on, -bynode spec-
ifies one MPI version per node. Optimal loading is one simulation per
node since the application will thread out to maximize threads on each
node.

The program defaults to using Earth’s magnetic field, Velocity Verlet
method, and a launch radius of 10 Earth radii. Simulation parameters
are best altered using an input file, but some options may be altered via
command line. Command Line arguments are in the form of (-option)
(argument). Valid command line arguments are:
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• -i Input Filename

• -p Number of Particles

• -s Number of Steps

• -d Time Interval of Each Step

• -r Random Number Seed (8 digits)

• -m Propagation Method: Euler, Leap, Verlet, Gear, Runge, Boris

• -h Displays help screen

A.4 Sample Input Files

Input files consist of commands and options separated by spaces. The
first unbroken string of characters in any line is the command and all
subsequent character strings are options. Here, options are given descrip-
tive names and enclosed by angle brackets <...>. Angle brackets are not
used within the input files themselves. Blank lines and lines which begin
with the pound (#) symbol are ignored. Some commands have default
parameters that are used when left unspecified. These will be noted.

A.4.1 Propagation Options

# Run_Type -- Select architecture: CPU (default) or GPU

Run_Type <architecture>

# Method -- Select propagation method: Euler, Leap, Verlet

(default), Gear, Runge, Boris.↪→

Method <propagationMethod>

# Particles -- Specify number of particles.

Particles <numberParticles>

# Steps -- Specify number of time steps.

Steps <numberSteps>

# Time_Step -- Specify time step duration [seconds].

Time_Step <stepDuration>

# Random_Seed -- Specify random seed (8 digit integer).

Random_Seed <8DigitInteger>

# Launch_Radius -- Specify radius of source sphere (3d mode);

specify position of disk source along chosen Beam_Axis (1d

mode).

↪→

↪→

Launch_Radius <launchRadius>

# Crew_Volume_Radius -- Specify radius of crew volume [meters]

(3d mode).↪→

Crew_Volume_Radius <crewRadius>

A.4.2 Particle Properties

# Ion -- Select fully-stripped ion using abbreviation: e-, H, He,

Li ... As.↪→

Ion <elementSymbol>
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# IonAZ -- Select ion via mass number (A), atomic number (Z), and

number of electrons.↪→

IonAZ <Z> <A> <numberElectrons>

# Energy -- Initial kinetic energy of projectile ion [MeV].

Energy <energy>

A.4.3 Beam Simulation Options

### Note that if Beam_Simulation or Beam_Nonlaminar are not

specified, ASPP generates an isotropic radiation field by

default (3d mode).

↪→

↪→

# Beam_Simulation -- Generates laminar, monodirectional disk

source parallel to Beam_Axis (1d mode).↪→

Beam_Simulation

# Beam_Nonlaminar -- Generates non-laminar beam.

Beam_Nonlaminar

# Beam_Axis -- Axis on which beam is centered: x, -x, y, -y, z,

or -z (e.g., if x is specified, particles are born on disk

centered somewhere along positive x-axis and travel in

negative x-direction).

↪→

↪→

↪→

Beam_Axis <axis>

# Beam_Width -- Radius of beam.

Beam_Width <beamRadius>

# Detector_Position -- (x, y, z) point which exists in the front

plane of the detector slab [meters]; also serves as a normal

vector for the detector slab.

↪→

↪→

Detector_Position <x> <y> <z>

# Detector_Width -- Thickness of the detector slab [meters].

Detector_Width <thickness>

# Oblique_Detector -- Allows for detector slabs whose normal

vectors are not aligned or anti-aligned with any of the three

Cartesian axes; if not specified, the front face of the slab

detector is set at the <x> specified for Detector_Position

and its normal vector is aligned with the x-axis.

↪→

↪→

↪→

↪→

Oblique_Detector

A.4.4 Output Options

# Output_Prefix -- Prefix attached to all output files.

Output_Prefix <prefix>

# No_Initial_Positions -- Initial positions and velocities are

not written to <prefix>-initposvelocities.csv.↪→

No_Initial_Positions

# No_Final_Positions -- <prefix>-closest.csv file is not

generated.↪→

No_Final_Positions

A.4.5 Magnetic Field Options

# Magnetic_Field_Type -- Select magnetic field type: Constant,

Spherical, Dipole (default), Loop, Helmholtz, Maxwell, User.↪→

Magnetic_Field_Type <magFieldType>

54



Constant Magnetic Field Options

# Bx_By_Bz -- Magnetic field strength components [Tesla].

Bx_By_Bz <Bx> <By> <Bz>

Spherical Azimuthal Magnetic Field Options

# Magnetic_Bnot -- Magnetic field strength [Tesla].

Magnetic_Bnot <B0>

Ideal Magnetic Dipole Field Options

# Magnetic_Field_Coefficient -- Magnetic field strength [Tesla].

Magnetic_Field_Coefficient <C>

Current Loop Field Options

# Magnetic_Bnot -- Magnetic field strength [Tesla].

Magnetic_Bnot <B0>

# Magnetic_Loop_Radius -- Current loop radius [meters].

Magnetic_Loop_Radius <loopRadius>

Helmholtz Field Options

# Magnetic_Bnot -- Magnetic field strength [Tesla].

Magnetic_Bnot <B0>

# Magnetic_Loop_Radius -- Current loop radius [meters].

Magnetic_Loop_Radius <loopRadius>

# Magnetic_Coil_1 -- Coil 1 (x, y, z) position [meters].

Magnetic_Coil_1 <x> <y> <z>

# Magnetic_Coil_2 -- Coil 2 (x, y, z) position [meters].

Magnetic_Coil_2 <x> <y> <z>

# Magnetic_Coil_3 -- Coil 3 (x, y, z) position [meters].

Magnetic_Coil_3 <x> <y> <z>

# Magnetic_Coil_4 -- Coil 4 (x, y, z) position [meters].

Magnetic_Coil_4 <x> <y> <z>

# Magnetic_Coil_5 -- Coil 5 (x, y, z) position [meters].

Magnetic_Coil_5 <x> <y> <z>

# Magnetic_Coil_6 -- Coil 6 (x, y, z) position [meters].

Magnetic_Coil_6 <x> <y> <z>

Maxwell Magnetic Field Options

# Magnetic_Bnot -- Magnetic field strength [Tesla].

Magnetic_Bnot <B0>

# Magnetic_Loop_Radius -- Current loop radius [meters].

Magnetic_Loop_Radius <loopRadius>

# Magnetic_Maxwell_Large_Coil -- Large coil radius [meters].

Magnetic_Maxwell_Large_Coil <largeCoilRadius>
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User Defined Magnetic Field Options

# Magnetic_Field_Filename -- Path to TSV data file for magnetic

field strengths.↪→

Magnetic_Field_Filename <filePath>

# Magnetic_Min -- (x, y, z) position of the minimum magnetic

field values [meters].↪→

Magnetic_Min <x> <y> <z>

# Magnetic_Max -- (x, y, z) position of the maximum magnetic

field values [meters].↪→

Magnetic_Max <x> <y> <z>

# Magnetic_Delta -- Linear increments for magnetic field grid

[meters].↪→

Magnetic_Delta <dx> <dy> <dz>

# Magnetic_Number_Points -- Number of grid points for each axis.

Magnetic_Number_Points <Nx> <Ny> <Nz>

### Data file structure:

### The user-defined magnetic field data file must be a TSV (tab

separated value) file with the following structure:↪→

Bx1 By1 Bz1

Bx2 By2 Bz2

### The positions of the magnetic field strengths must conform to

the defined grid. Assume a 10 by 10 by 10 grid with linear

spacing was constructed. The following structure shows which

magnetic field vectors correspond to each position in the

grid.

↪→

↪→

↪→

↪→

(Bx1, By1, Bz1) at (xMin, yMin, zMin)

(Bx2, By2, Bz2) at (xMin, yMin, zMin + 1*dz)

...

(Bx10, By10, Bz10) at (xMin, yMin, zMax)

(Bx11, By11, Bz11) at (xMin, yMin + 1*dy, zMin)

...

(Bx20, By20, Bz20) at (xMin, yMin + 1*dy, zMax)

(Bx21, By21, Bz21) at (xMin, yMin + 2*dy, zMin)

...

(Bx100, By100, Bz100) at (xMin, yMax, zMax)

(Bx101, By101, Bz101) at (xMin + 1*dx, yMin, zMin)

...

(Bx1000, By1000, Bz1000) at (xMax, yMax, zMax)

A.4.6 Electric Field Options

# Electric_Field_Type -- Select electric field type: Constant,

Dipole, Dipole_Array, Point_Charge, Line_Charge,

Plane_Charge, LineAndPoint_Charge, PlaneAndPoint_Charge,

PlaneAndLine_Charge, PlaneAndLineAndPoint_Charge, User.

↪→

↪→

↪→

Constant Electric Field Options

# Ex_Ey_Ez -- Electric field strength components [volts per

meter].↪→

Ex_Ey_Ez <Ex> <Ey> <Ez>
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Ideal Electric Dipole Field Options

# Electric_Field_Coefficient -- Electric field coefficient for

ideal dipole field [volts per meter].↪→

Electric_Field_Coefficient <C>

Ideal Electric Dipole Array Field Options

# Electric_Dipole_Array -- Dipole positions [meters] and

strengths [volts per meter].↪→

Electric_Dipole_Array <x> <y> <z> <Ex> <Ey> <Ez>

### Arrays may also be specified using a separate data file.

# Electric_Field_Filename -- path to TSV data file for ideal

electric dipole parameters.↪→

Electric_Field_Filename <filePath>

### Data file structure (tab separated values):

x1 y1 z1 Ex1 Ey1 Ez1

x2 y2 z2 Ex2 Ey2 Ez2

...

Electric Point Charge Array Field Options

# Electric_Point_Array -- Point charge strengths [Coulombs] and

positions [meters].↪→

Electric_Point_Array <Q> <x> <y> <z>

### Arrays may also be specified using a separate data file.

# Electric_Field_Filename -- path to TSV data file for point

charge parameters.↪→

Electric_Field_Filename <filePath>

### Data file structure (tab separated values):

Q1 x1 y1 z1

Q2 x2 y2 z2

...

Electric Line Charge Array Field Options

# Electric_Line_Array -- Linear charge density [Coulombs per

meter], line endpoint positions 1 and 2 [meters].↪→

Electric_Line_Array <L> <xStart> <yStart> <zStart> <xEnd> <yEnd>

<zEnd>↪→

### Arrays may also be specified using a separate data file.

# Electric_Field_Filename -- path to TSV data file for point

charge parameters.↪→

Electric_Field_Filename <filePath>

### Data file structure (tab separated values):

L1 xStart1 yStart1 zStart1 xEnd1 yEnd1 zEnd1

L2 xStart2 yStart2 zStart2 xEnd2 yEnd2 zEnd2

...

Electric Plane Charge Array Field Options
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# Electric_Plane_Array -- Surface charge density [Coulombs per

square meter], uWidth [meters], vWidth [meters], rectangle

midpoint [meters], rectangle normal vector [unitless], vector

which points parallel to side of length uWidth [unitless].

↪→

↪→

↪→

Electric_Plane_Array <S> <uWidth> <vWidth> <xm> <ym> <zm> <nx>

<ny> <nz> <ux> <uy> <uz>↪→

### Arrays may also be specified using a separate data file.

# Electric_Field_Filename -- path to TSV data file for point

charge parameters.↪→

Electric_Field_Filename <filePath>

### Data file structure (tab separated values):

S1 uWidth1 vWidth1 xm1 ym1 zm1 nx1 ny1

nz1 ux1 uy1 uz1↪→

S2 uWidth2 vWidth2 xm2 ym2 zm2 nx2 ny2

nz2 ux2 uy2 uz2↪→

...

Electric Line and Point Charge Array Field Options

# Electric_LineAndPoint_Array -- Combination of line and point

charges.↪→

Electric_LineAndPoint_Array <L> <xStart> <yStart> <zStart> <xEnd>

<yEnd> <zEnd> <Q> <x> <y> <z>↪→

### Arrays may also be specified using a separate data file.

# Electric_Field_Filename -- path to TSV data file for point

charge parameters.↪→

Electric_Field_Filename <filePath>

### Data file structure (tab separated values):

L1 xStart1 yStart1 zStart1 xEnd1 yEnd1 zEnd1

Q1 x1 y1 z1↪→

L2 xStart2 yStart2 zStart2 xEnd2 yEnd2 zEnd2

Q2 x2 y2 z2↪→

...

Electric Plane and Point Charge Array Field Options

# Electric_PlaneAndPoint_Array -- Combination of plane and point

charges.↪→

Electric_PlaneAndPoint_Array <S> <uWidth> <vWidth> <xm> <ym> <zm>

<nx> <ny> <nz> <ux> <uy> <uz> <Q> <x> <y> <z>↪→

### Arrays may also be specified using a separate data file.

# Electric_Field_Filename -- path to TSV data file for point

charge parameters.↪→

Electric_Field_Filename <filePath>

### Data file structure (tab separated values):

S1 uWidth1 vWidth1 xm1 ym1 zm1 nx1 ny1

nz1 ux1 uy1 uz1 Q1 x1 y1 z1↪→

S2 uWidth2 vWidth2 xm2 ym2 zm2 nx2 ny2

nz2 ux2 uy2 uz2 Q2 x2 y2 z2↪→

...
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Electric Plane and Line Charge Array Field Options

# Electric_PlaneAndLine_Array -- Combination of plane and line

charges.↪→

Electric_PlaneAndLine_Array <S> <uWidth> <vWidth> <xm> <ym> <zm>

<nx> <ny> <nz> <ux> <uy> <uz> <L> <xStart> <yStart> <zStart>

<xEnd> <yEnd> <zEnd>

↪→

↪→

### Arrays may also be specified using a separate data file.

# Electric_Field_Filename -- path to TSV data file for point

charge parameters.↪→

Electric_Field_Filename <filePath>

### Data file structure (tab separated values):

S1 uWidth1 vWidth1 xm1 ym1 zm1 nx1 ny1

nz1 ux1 uy1 uz1 L1 xStart1 yStart1

zStart1 xEnd1 yEnd1 zEnd1

↪→

↪→

S2 uWidth2 vWidth2 xm2 ym2 zm2 nx2 ny2

nz2 ux2 uy2 uz2 L2 xStart2 yStart2

zStart2 xEnd2 yEnd2 zEnd2

↪→

↪→

...

Electric Plane and Line and Point Charge Array Field Options

# Electric_PlaneAndLineAndPoint_Array -- Combination of plane,

line, and point charges.↪→

Electric_PlaneAndLineAndPoint_Array <S> <uWidth> <vWidth> <xm>

<ym> <zm> <nx> <ny> <nz> <ux> <uy> <uz> <L> <xStart> <yStart>

<zStart> <xEnd> <yEnd> <zEnd> <Q> <x> <y> <z>

↪→

↪→

### Arrays may also be specified using a separate data file.

# Electric_Field_Filename -- path to TSV data file for point

charge parameters.↪→

Electric_Field_Filename <filePath>

### Data file structure (tab separated values):

S1 uWidth1 vWidth1 xm1 ym1 zm1 nx1 ny1

nz1 ux1 uy1 uz1 L1 xStart1 yStart1

zStart1 xEnd1 yEnd1 zEnd1 Q1 x1 y1 z1

↪→

↪→

S2 uWidth2 vWidth2 xm2 ym2 zm2 nx2 ny2

nz2 ux2 uy2 uz2 L2 xStart2 yStart2

zStart2 xEnd2 yEnd2 zEnd2 Q2 x2 y2 z2

↪→

↪→

...

User Defined Electric Field Options

# Electric_Field_Filename -- path to TSV data file for electric

field strengths.↪→

Electric_Field_Filename <filePath>

# Electric_Min -- (x, y, z) position of the minimum electric

field values [meters].↪→

Electric_Min <x> <y> <z>

# Electric_Max -- (x, y, z) position of the maximum electric

field values [meters].↪→

Electric_Max <x> <y> <z>
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# Electric_Delta -- Linear increments for electric field grid

[meters].↪→

Electric_Delta <dx> <dy> <dz>

# Electric_Number_Points -- Number of grid points for each axis.

Electric_Number_Points <Nx> <Ny> <Nz>

### Data file structure:

### The user defined electric field data file must be a TSV (tab

separated value) file with the following structure:↪→

Ex1 Ey1 Ez1

Ex2 Ey2 Ez2

### The positions of the electric field strengths must conform to

the defined grid. Assume a 10 by 10 by 10 grid with linear

spacing was constructed. The following structure shows which

electric field vectors correspond to each position in the

grid.

↪→

↪→

↪→

↪→

(Ex1, Ey1, Ez1) at (xMin, yMin, zMin)

(Ex2, Ey2, Ez2) at (xMin, yMin, zMin + 1*dz)

...

(Ex10, Ey10, Ez10) at (xMin, yMin, zMax)

(Ex11, Ey11, Ez11) at (xMin, yMin + 1*dy, zMin)

...

(Ex20, Ey20, Ez20) at (xMin, yMin + 1*dy, zMax)

(Ex21, Ey21, Ez21) at (xMin, yMin + 2*dy, zMin)

...

(Ex100, Ey100, Ez100) at (xMin, yMax, zMax)

(Ex101, Ey101, Ez101) at (xMin + 1*dx, yMin, zMin)

...

(Ex1000, Ey1000, Ez1000) at (xMax, yMax, zMax)

A.4.7 Additional Options

# Shadow_Mode -- Marks particles which intersect with a sphere of

radius <shadowRadius> [meters] surrounding any point charge.↪→

Shadow_Mode <shadowRadius>

# Angular_Binning -- Records the direction at which any particle

enters the sphere of radius <angularBinningRadius> [meters]

as well as the total distance [meters] said particle traveled

within said sphere; allows for the estimation of the incident

angular flux distribution (3d mode). Note that the "1" option

is currently static.

↪→

↪→

↪→

↪→

↪→

Angular_Binning 1 <angularBinningRadius>

# Track_Trajectory -- Generates a <prefix>-trajectory.csv file

where each line consists of a single particle's position

information as a function of time; <stepGap> tells ASPP how

many time steps to take before recording the position of each

particle.

↪→

↪→

↪→

↪→

Track_Trajectory <stepGap>

# Radial_Binning -- Segments space into concentric spheres and

counts the number of particles which enter each radial bin

(3d mode).

↪→

↪→

Radial_Binning
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# Inner_Bin -- Radius of innermost bin for radial binning scheme

[meters].↪→

Inner_Bin <innerBinRadius>

# Bin_Width -- Radial distance between subsequent radial bins

[meters].↪→

Bin_Width <binWidth>

# Number_Bins -- Number of radial bins.

Number_Bins <numberBins>

A.4.8 1d Beam Simulation Input File Example

# PROPAGATION OPTIONS

Run_Type CPU

Method Verlet

Particles 400000

Steps 150000

Time_Step 5E-12

Random_Seed 28706043

Launch_Radius 2.0

# PARTICLE PROPERTIES

IonAZ 1 1 0

Energy 2.0

# BEAM SIMULATION OPTIONS

Beam_Simulation

Beam_Axis x

Beam_Width 0.1

Detector_Position -2.0 0 0

Detector_Width 0.0005

# OUTPUT OPTIONS

Output_Prefix output

# MAGNETIC FIELD OPTIONS

Magnetic_Field_Type Constant

Bx_By_Bz 0 0 0

# ELECTRIC FIELD OPTIONS

Electric_Field_Type LineAndPoint_Charge

Electric_LineAndPoint_Array 6.4E-07 0.0 5.715E-02 0.0 0.0

5.715E-02 3.048E-01 8.1E-08 0.0E+00 5.715E-02 0.0↪→

Electric_LineAndPoint_Array -6.4E-07 0.0 -5.715E-02 0.0 0.0

-5.715E-02 3.048E-01 -8.1E-08 0.0 -5.715E-02 0.0↪→

# ADDITIONAL OPTIONS

Shadow_Mode 0.0127

A.5 3d Simulation Input File Example

# PROPAGATION OPTIONS

Run_Type GPU
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Method Verlet

Particles 2500000

Steps 12500

Time_Step 5.00E-10

Random_Seed 49070871

Launch_Radius 250.0

Crew_Volume_Radius 5

# PARTICLE PROPERTIES

Ion H

Energy 30

# OUTPUT OPTIONS

Output_Prefix dakota

No_Initial_Positions

No_Final_Positions

# MAGNETIC FIELD OPTIONS

Magnetic_Field_Type Constant

Bx_By_Bz 0 0 0

# ELECTRIC FIELD OPTIONS

Electric_Field_Type PlaneAndLine_Charge

Electric_PlaneAndLine_Array 1.4e-06 30 30 35 0.0 0.0 1.0 0.0 0.0

0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0↪→

Electric_PlaneAndLine_Array 1.4e-06 30 30 -35 0.0 0.0 -1.0 0.0

0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0↪→

Electric_PlaneAndLine_Array 1.4e-06 30 30 35 7.5 0.0 0.9778

0.2095 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0↪→

Electric_PlaneAndLine_Array 1.4e-06 30 30 35 -7.5 0.0 0.9778

-0.2095 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0↪→

Electric_PlaneAndLine_Array 0.0 30 30 20 0.0 0.0 1.0 0.0 0.0 0.0

1.0 0.0 -2.3E-04 40 40 57 50 50 71↪→

Electric_PlaneAndLine_Array 0.0 30 30 20 0.0 0.0 1.0 0.0 0.0 0.0

1.0 0.0 -2.3E-04 40 -40 57 50 50 71↪→

# ADDITIONAL OPTIONS

Radial_Binning

Inner_Bin 1

Bin_Width 1

Number_Bins 100

Angular_Binning 1 100
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Appendix B

Integration with DAKOTA

ASPP is integrated with DAKOTA to quickly simulate the effects
of variable changes on shielding effectiveness by analyzing the exclusion
area. DAKOTA provides interfaces to simulations, using iterative algo-
rithms, quickly completing uncertainty quantification, sensitivity anal-
ysis, variance analysis, and parametric studies of design spaces. Figure
B1 shows a flow chart of the DAKOTA/ASPP interface, starting with
input parameters through ASPP and python analysis.

As shown in Figure B1, DAKOTA required four components in in-
put to run a simulation: variables, methods, interface, and a response
block. The variable block defined the simulation variables, which for
this study include continuous and discrete variables. The study used
one continuous design variable of the dipole-to-detector distance, two
discrete variables of ion species and ion energy, and three constant state
variables of sphere voltage, sphere diameter, and sphere surface to sur-
face diameter. The method block defined the method of analysis as a
vector parameter study to quickly examine the design space. The inter-
face block described the DAKOTA/ASPP interface driver, which used a
simulator script to control the execution of the simulations.

The script altered the ASPP input file with the simulation param-
eters, using DAKOTA’s DPREPRO utility that copied input variables
for the individual simulation into a sample input file. The script next
executed the ASPP simulation with ASPP outputting the detector hits
as a comma-separated value (CSV) file. After which the simulator script
ran a Python analysis script to create an image from the detector and
to find the exclusion area using a Distance Regularized Level Set Evolu-
tion (DRLSE) method, described in Section ??. The script then copied
the results from Python for the exclusion area back to DAKOTA, which
tabulated the results as the response function.

B.1 DAKOTA Input Script

# This input file performs a list parameter study of charges

with ASPP to find void region.↪→

environment

tabular_graphics_data

tabular_graphics_file 'magnification.dat'

method,

vector_parameter_study

step_vector = 1 0 0 0 0

num_steps = 400
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Discrete

Ion
Energy

Continuous Design
Dipole-to-Detector Distance
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Sphere Diameter
Distance Between Spheres

DAKOTA
Method - Vector Parameter Study
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Changes ASPP Input File with Parameters

ASPP
Randomly Creates Particles
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Python
Histograms Data
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Parameters

Executes Program

ASPP Input File

Output of Closest Approach

Figure B1. Flow chart of DAKOTA/ASPP interface with Python based
data analysis.
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variables,

continuous_design = 1

initial_point = 1

lower_bounds 1.0

descriptors 'distance'

continuous_state 4

initial_state 500 1000 0.2 0.1

descriptor 'energy' 'voltage'

'sphere_diameter' 'S_to_S'↪→

interface,

fork

analysis_driver = 'simulator_script_aspp'

parameters_file = 'params.in'

results_file = 'simulation_results.out'

work_directory directory_tag

# copy_files = 'aspp.in'

# uncomment to leave params.in and results.out files in work_dir

subdirectories↪→

named 'workdir' file_save directory_save

aprepro

deactivate active_set_vector

responses,

response_functions = 1 # Exclusion zone from python

script↪→

no_gradients

no_hessians

B.2 DAKOTA Simulator Script

#!/bin/sh

# Sample simulator to Dakota system call script

# See Advanced Simulation Code Interfaces chapter in Users Manual

# $1 is params.in FROM Dakota

# $2 is results.out returned to Dakota

# --------------

# PRE-PROCESSING

# --------------

# Incorporate the parameters from DAKOTA into the template,

writing ros.in↪→

# Use the following line if SNL's APREPRO utility is used instead

of DPrePro.↪→

# ../aprepro -c '*' -q --nowarning ros.template ros.in

dprepro $1 H_2MeV.template H_2MeV.in # COPIES THE TEMPLATE

FILE AND REPLACES VARIABLES WITH SPECIFIC VALUES, WRITES TO

test.txt

↪→

↪→

65



# --------

# ANALYSIS

# --------

../aspp -i H_2MeV.in # RUN ASPP WITH NORMAL COMMANDS

# ---------------

# POST-PROCESSING

# ---------------

# Extract

#awk -F "\"*,\"*" 'FNR == 1 {next}{print $1,$2}'

ASPPtest-closest.csv >> results.out↪→

python ../image_area.py -i dakota-closest.csv -o results.out

mv results.out $2
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Appendix C

Code Benchmarks

C.1 Comparison of Integration Methods

In order to assess how well each of the integrators performs one has to
pick a suitable problem. We have chose here two extremes in terms of
computational complexity. The simplest case is a constant homogenous
magnetic field confined to a circular region about the origin of a Cartesian
coordinate system. Here, assuming no radiation of the charge, a particle
undergoes constant uniform circular motion in a plane normal to the
magnetic field with constant cyclotron radius and frequency. Since the
field is uniform there is no need to ensure the step size is modified at
each time step in order to sufficiently resolve the motion.

The second field chosen is that of an ideal magnetic dipole. There
have been numerous published investigations regarding the trajectory
of charged particles in Earth’s magnetic field, particularly Earth-like
ideal dipole fields [21–23]. Because trajectory characteristics are rela-
tively well-understood this particular field configuration serves as a good
benchmark for the developed toolset presented here. This field is inher-
ently non-uniform and singular at the origin. Field strength increases
as the particle moves towards the dipole origin and thus the cyclotron
frequency and radius will change from one integration step to the next.
Moreover, it is infinite in extent.

For the case of an ideal dipole field, one expects kinetic energy, Ek
and hence γ to be a constant of the motion. Trajectories of a charged
particle in an ideal dipole field have been extensively studied since the
time of Störmer’s work. For a z-aligned dipole, x(t) should be periodic
with high frequency ’wiggles’ about each minimum and maximum. The
presence of the two characteristic frequencies translates to motion in the
(x, y) plane showing as a circular shell of criss-crossing trajectories.

Figures C1 and C2 show results for γ and x(t) as a function of time
using four different integration methods. Position units are in terms of
Earth radius, Re. For all methods except the Boris-Buneman integrator,
γ increases with time. Since ~E(~r, t) = 0, γ must be a constant of the
motion since energy is conserved according to Eq. 17. x(t) should show
global period time-dependence with no drift and higher-frequency micro-
motion around each maximum/minimum value as shown in Figure C2
(black line - Boris-Buneman integrator). Figure C3 shows the same data
as in Figure C2 except over a shorter time range to highlight the higher
frequency micro-motion. The AVV and RK4 integrator results show
substantial drift as indicated by the changing periodicity in x(t). The
reason for the effects seen in both γ and x(t) is due to the RK4 and
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AVV (as well as standard Velocity-Verlet) methods being derived from
a Taylor expansion of a strictly position-dependent conservative field.
The ideal dipole field is however explicitly dependent on velocity, not
position. The BB algorithm handles the velocity-dependent magnetic
force in a way that relieves this constraint with the Taylor expansion.

1.014
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1.010

1.008

1.006

1.004

1.002

1.000

γ(
t)

8006004002000
Time, t [s]

 Velocity-Verlet (VV)
 Adaptive Velocity-Verlet (AVV)
 RK4
 Boris-Buneman (BB)

Figure C1. Lorentz factor, γ as a function of time for the Velocity-Verlet
(red dash), Adaptive Velocity-Verlet (blue), Runge-Kutta (magenta) and
Boris-Buneman (black) integrators using the field of an ideal magnetic
dipole (Eq. 125). Only the Boris-Buneman integrator results in a γ value
that is constant in time, and thus conserves energy.

The envelope of trajectories in the (x, y) plane is shown in Figures C4-
C6 for the AVV, RK4 and BB integrators, respectively. The inset in each
figure is an exploded view of one segment of the larger plot. Note that
the envelope increases in sharpness from the AVV to BB methods. It
is clear here that only the BB algorithm can capture the details of the
planar trajectories as expected. The AVV integrator induces an addi-
tional precession of the trajectory over the standard drift which causes
the envelope to blur. The degree of blurring is less with the RK4 but
still present. The same time step ∆t was used in each run with different
integrators.

The canonical phase space (z, vz) was also investigated as it should
also show a confined region of points between minimum/maximum val-
ues of both z and vz. Again, we observe similar trends as the planar
trajectory envelope of Figure C4- C6. Starting with the AVV integra-
tion method (Figure C7), the phase space envelope is larger than for
the RK4 and BB integrators and relatively ’rough’ along the edges. The
envelope decreases in amplitude for the RK4 method yet is not nearly
as ’clean’ as for that produced using the BB method.
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Figure C2. Particle position along the x-axis as a function of time
for Adaptive Velocity-Verlet (magenta), Runge-Kutta (blue) and Boris-
Buneman (black) integrators. The field used was that of an ideal mag-
netic dipole, Eq. 125. Only the Boris-Buneman integrator results show
equal spacing between peaks. Both the Adaptive Velocity-Verlet and
Runge-Kutta show drift in position x.
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Figure C3. Particle position along the x-axis as a function of time
for Adaptive Velocity-Verlet (magenta), Runge-Kutta (blue) and Boris-
Buneman (black) integrators. The field used was that of an ideal mag-
netic dipole, Eq. 125. Data same as that in Figure 125 except shown on
a shorter time range to highlight higher frequency micro-motion.
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Figure C4. Particle trajectories in the (x,y) plane in the presence of an
ideal magnetic dipole field, Eq. 125 generated with the AVV algorithm.
The inset shows an enlarged sample of the envelope of trajectories. Note
the ’noisy’ appearance of the outer and inner trajectory envelope.
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Figure C5. Particle trajectories in the (x,y) plane in the presence of an
ideal magnetic dipole field, Eq. 125 generated with the RK4 algorithm.
The inset shows an enlarged sample of the envelope of trajectories. Note
that the envelope, while still somewhat rough, is cleaner than that pro-
duced by the AVV algorithm (see Figure C4).

71



Figure C6. Particle trajectories in the (x,y) plane in the presence of an
ideal magnetic dipole field, Eq. 125 generated with the BB algorithm.
The inset shows an enlarged sample of the envelope of trajectories. The
inner and outer envelope of trajectories is highly even as compared to
the other two algorithms (Figures C4 and C5).
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Figure C7. Single particle canonical phase space map in z for the
Adaptive Velocity Verlet algorithm. The field used was that of an ideal
magnetic dipole, Eq. 125.

Figure C8. Single particle canonical phase space map in z for the RK4
algorithm. The field used was that of an ideal magnetic dipole, Eq. 125.
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Figure C9. Single particle canonical phase space map in z for the BB
algorithm. The field used was that of an ideal magnetic dipole, Eq. 125.

C.2 Run-time Benchmarks and Memory Usage

In this section, a brief overview is presented for different simulations
performed in 3d using GPU compute architecture. The simulation run-
time for different input parameters is shown in Tables C1 and C2. Run-
time data for Table C1 corresponds to 200 MeV protons incident on a
collection of point charges. The number of charges used is represented
by column ’#Nodes’. Electric field values are calculated using Eq. 150.
Figure C10 represents the relationship between the simulation time per
GPU and the complexity of the simulation. Computational complexity
of the simulation is defined as the product of the number of particles,
Np, number of time steps, N∆t and the number of charged nodes present
in the configuration, Nnodes.

Table C2 run-time data corresponds to protons incident on a collec-
tion of charged rods and planes. The proton initial kinetic energy was
varied across the runs from 10 MeV to 500 MeV. The field of the charged
rods is calculated by assuming an array of linear charge densities accord-
ing to Section 5.9. The field of the array of planes is calculated according
to Section 5.9.1.

Memory usage on a node with 4 RTX-2080Ti GPUs as a function
of the number of particles simulated, Np, is shown in Figure C11 for
100 MeV protons in Earth’s magnetic field launched from a distance of
ten times Earth’s radius. Note the clear linear dependence on Np. We
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Table C1. Computation Time for 3d simulations of 200 MeV protons
incident on an array of point charges using GPU architecture. The in-
cident particle field directionality is generated isotropically. Np is the
number of particles(protons), N∆t the number of time steps, NGPU the
number of GPUs used and T the total simulation time (in h).

Np N∆t Nnodes NGPU T [h]
GPU-
Type

107 20000 9150 1 192.25
GTX-
1080Ti

107 20000 600 1 13.07
GTX-
1080Ti

2× 107 25000 800 4 10.35
GTX-
1080Ti

2× 107 25000 1000 4 13.12
GTX-
1080Ti

3.6× 106 5000 3402 4 1.65
GTX-
1080Ti

6.4× 106 8000 4374 4 5.9
GTX-
1080Ti

107 10000 3888 4 10.24
GTX-
1080Ti

2.5× 106 5000 1192 2 0.81
GTX-
1080Ti
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Table C2. Computation Time for 3d simulations of 10 MeV to 500 MeV
protons incident on an array of line and planar charges using GPU ar-
chitecture. The incident particle field directionality is generated isotrop-
ically. Np is the number of particles(protons), N∆t the number of time
steps, NGPU the number of GPUs used, T the total simulation time (in
h) and Ek the initial proton kinetic energy. The number of nodes for this
configuration is shown as the number of planes (rods). The total nodes
in a given run is the sum of the number of planes and number of rods.

Np N∆t Nnodes NGPU T [h]
GPU-
Type

Ek
[MeV]

1.6× 106 10000 24(8) 2 0.52
GTX-
1080Ti

30

1.6× 106 2400 24(8) 2 0.11
GTX-
2080Ti

500

3.6× 106 15000 24(8) 2 1.7
GTX-
1080Ti

10

1.6× 107 10000 18(8) 2 4.97
GTX-
1080Ti

30

1.6× 107 2400 18(8) 2 0.93
GTX-
2080Ti

500
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Figure C10. Simulation time as a function of simulation complexity. The
black dotted line is a linear regression fit to the data (red solid circles).

have found that memory usage is largely dependent on the number of
particles. In addition, large, complex field geometries also have an impact
on memory usage. Memory requirements are expected to increase once
the finite-element solver with unstructured grid for modeling user-defined
electric fields is implemented.
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Figure C11. Memory usage in GB as a function of the number of parti-
cles, Np. The black dotted line is a linear regression fit to the data (red
solid circles).

Appendix D

Power Irradiated and Radiation Reaction Force

Accelerating charges radiate. Deflecting charged particles inherently
involves a change in particle momentum as a function of time and thus
imparting an acceleration to the incoming ion. With respect to mag-
netic deflection the particle changes direction only. The magnitude of
momentum is constant in time and thus energy is conserved. For electric
deflection both direction and magnitude of the momentum will change.
Regardless of the method one expects that the deflected particle will
radiate some of its energy away thus lowering its kinetic energy. The
emission of photons imparts an impulse to the incoming ion. For in-
stance, electrons beams accelerated in a synchrotron can undergo quite
severe energy shift and broadening that must be corrected for [24]. The
question here however is does it matter for calculation of particle tra-
jectories in electromagnetic fields that may be used for active shielding
studies.

The classical expression for radiated power was first worked out by
Larmor [4]. For a particle of charge q, velocity ~v, mass m and kinetic
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energy Ek, the classical power P is given by

P =
q2

6πε0c3
|~̇v|2, (D1)

where ~̇v is the acceleration of the charged particle. Both electric and
magnetic fields will result in acceleration (or deceleration) of a charged
particle. To understand the relative contribution one can assess each
field separately. A commonly used field configuration in previous active
shielding studies is that of a constant magnetic field confined to a region
around a habitable volume on the orders of meters in depth. Thus,
one limiting case to consider is that where a charged particle of kinetic
energy Ek undergoes uniform circular motion in a plane perpendicular
to a uniform magnetic field of magnitude B0. For this case the classical
expression for the emitted power is

P =
q2

4πε0c3
|~̇v|2 =

q2

4πε0c3
a2 =

q4Ek
3πε0(mc)3

B2
0 . (D2)

Due to the fact that charge particles enter the field region uniformly
over 4π, depending on the field strength, some trajectories can actually
be bent into the direction fo the habitable volume. To overcome this
requires relatively high field strengths on the order of a few to 10 T such
that the cyclotron radius of the largest particle energy to shield against
is ≤ `t, the ’thickness’ of the field region. Whereas other configurations
with extended rather than confined magnetic fields, e.g. dipole and cur-
rent loop fields, have much weaker field strengths extended over large
distances, the constant, confined field case can be used to estimate a
worst-case scenario for irradiated power.

The relativistic form of the power irradiated can be arrived at by con-
sidering the relativistic momentum as a Lorentz invariant. In covariant
form the radiated power can be expressed as,

P = − q2

6πε0c3

[(
d~p

dτ

)2

− β2

(
dp

dτ

)2
]

(D3)

Assuming a constant magnetic field of magnitude ~B = B0ẑ, the power
irradiated assuming relativistic particle speeds is then expressed as

P =
q2Ek

6πε0c3
B2

0γ
4. (D4)

From a computational perspective this effect is somewhat challenging
to model. The direction of emission ranges from isotropic at low energy
to emission distributed in a narrow cone aligned with the particle velocity
vector at higher energy. This cone becomes increasingly narrow with
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increasing particle energy. In the relativistic limit (γ � 1) the angular
distribution is [1]

dP

dΩ
=

q2

6πε0

|~̇u|2

(1− βcosθ)3

[
1− sin2θcos2φ

γ2(1− βcosθ)2

]
, (D5)

where θ is the angle between ~β (aligned along the z axis) and the unit
vector n̂ where ~r = rn̂ and φ is the polar angle in spherical coordinates.
For γ � 1 the distribution is predominantly perpendicular to the direc-
tion of particle motion, so-called cyclotron emission. As γ increases the
maximum in power irradiated shifts increasingly to the forward direction
parallel to ~u (see Figure D1). At each step the magnetic field would need
to be evaluated for the given field configuration selected. From this and
the particle energy the cyclotron frequency ωc is calculated. This sets
the step size in time. The total energy loss due to radiation emitted by
the particle is then calculated as ∆Ek = P∆t. This total energy loss
must then be translated to a change in particle speed but must be done
by repartitioning each component of the velocity vector ~u according to
the angular distribution dP/dΩ, and, there is no a priori way to perform
the partitioning.

In order to implement radiative energy loss, at each integration step
the exact emission direction must be sampled from the angular distribu-
tion. This will give the power emitted per unit integration step. However,
how this is partitioned into a change in velocity across all three direc-
tions can only be treated stochastically. This will undoubtedly increase
computation time. Instead of tackling this problem directly, we look at
order-of-magnitude estimates of the rate of energy loss in a worst-case
scenario.

An estimate of the power radiated as well as the fractional energy
loss for both non-relativistic and relativistic forms is shown in Figures D2
and D3. The field configuration and sample trajectory is shown in the
inset of Figure D2. To estimate the fractional energy loss, it is assumed
that at each magnetic field value, the thickness of the shell is adjusted to
be `t = Rc, the cyclotron radius. The fractional energy loss is calculated
as

fE =
P∆t

Ek
, (D6)

where P is calculated from either Eq. D1 (non-relativistic) or Eq. D4
(relativistic). Note for the electron, γ ≈ 197 and for the 100 MeV pro-
ton γ ≈ 1.1. Thus a 100 MeV electron is considered highly-relativistic
whereas a proton at the same kinetic energy is at the lower end of where
relativistic effects are important. For the case of 1000 MeV proton
γ ≈ 2.1. The number of photons emitted per second is quite high for
electrons, and low for protons, as expected. However, the fractional en-
ergy loss over this confined field region is quite low for both electrons and
protons at Ek = 100 MeV. For 1000 MeV protons, using the relativis-
tic expression for irradiated power (Eq. D4), the fractional energy loss

80



0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

0

15

30

45

60

75
90

105

120

135

150

165

180

195

210

225

240

255
270

285

300

315

330

345

~�

 10 MeV Proton
 100 MeV Proton
 1000 MeV Proton
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MeV and 1000 MeV protons moving in a constant, azimuthally-oriented
static magnetic field.
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increases but is still much to low to be considered relevant for particle
trajectory simulations using intense confined magnetic fields. For these
reasons, radiative energy loss of charged particles has not been included
into ASPP.
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Figure D2. Theoretical power irradiated (Eqs. D2 and D4) from a sin-
gle 100 MeV electron and proton traversing a uniform azimuthal mag-
netic field as a function of field strength, B0. Estimates for both non-
relativistic and relativistic effects are shown. The black dotted line is
only to guide the eye on the difference between electrons and protons
at fixed field strength. The inset shows the field and planar trajectory
configuration.
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Appendix E

Review of Active Shielding Investigations

Radiation exposure represents a relatively large risk for long-duration
human spaceflight. On the ground, the radiation protection strategy typ-
ically employed is ‘time, distance and shielding’, i.e. limit the time of
exposure, increase the distance from the source and provide an accept-
able degree of shielding. For space exploration missions, shielding is the
only option.

There are two sources of radiation exposure for exploration, Solar
Energetic Particle (SEP) events and Galactic Cosmic Rays (GCR). SEP
events are relatively rare, random occurrences where the energetic proton
flux can rise up to 4 orders of magnitude in intensity over background
levels, extending out to energies on the order of 1 GeV/n. The GCR
environment represents a relatively constant background exposure. GCR
particle fluxes are relatively constant in time, fluctuating by roughly a
factor of 2 over a period of 11.5 years, i.e. the solar cycle. Composed
predominantly of protons, but including heavier ions up to iron, GCR
ions are fully stripped of electrons and have energies that can extend
to > 10 GeV/n. As a result they are highly penetrating through both
spacecraft and the human body.

Traditional shielding methodology is to use ‘passive’ materials such
as polyethylene and aluminum to block the incoming charged particles.
Fundamentally this happens through the interaction between the charged
particle and the material where the particle loses some or all of its energy
to the material, and is either slowed down or completely comes to rest.
For protons less than a few hundred MeV modest amounts of passive
material can be used and in general mass can be reconfigured to minimize
exposure without adding any substantial mass to the vehicle. Since the
majority of the GCR spectrum is for energies higher than a few hundred
MeV, requiring much greater material mass (meters of aluminum up at
energies > 5 GeV/n), passive techniques are not effective as a shielding
method.

All active methods shield regions in space by producing a force on
charge particles that cause the particle trajectory to change. The physics
of charged particle deflection by both electric and magnetic fields is well-
understood. The difficulty has remained in how to build a shielding
system that fits in the mass/power constraints of human space flight.
Active shielding itself predates any known studies as our own planet has
been providing an active shield for millennia. Earth’s geomagnetic field is
very effective in shielding both SEP and GCR particles resulting in lower
exposures for Low Earth Orbit (LEO) mission such as the International
Space Station (ISS).

An example of how the geomagnetic field provides shielding for the
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ISS is shown in Figure E1. The bottom plot shows the integral proton
flux as a function of time measured by the GOES satellite in geosyn-
chronous orbit for the January, 2005 SEP event. Note the quite abrupt
increase in flux of roughly 3 orders of magnitude above background over
all proton energy channels. The top plot is the vertical magnetic rigid-
ity as a function of time over the ISS trajectory covering the same time
frame as the event. For all times where the vertical rigidity is above the
horizontal black line ( 400 MV) ISS crews are effectively shielded from
the event. It is only in the regions where the rigidity cutoff falls below
400 MV that there is penetration of energetic protons to ISS altitudes
and increased exposure is expected. This translates to regions where ISS
is near the maximum upper/lower latitudes and spans roughly 10 to 20
minutes of each orbit. This enables flight operations to manage expo-
sure levels by directing crews on ISS to reside in better shielded locations
during high/low-latitude time periods when SEP events take place. For
flights beyond LEO, such as en route to Mars, crews and the vehicle
will see the full extent of such a solar storm. Figure E2 shows example
spectra for both SEP and GCR environments. SEP event data shown
here is taken from the National Geophysical Data Center (NGDC) [19]
and has been time integrated over the duration of the event. For direct
comparison over the same time period, GCR daily proton flux has been
integrated over the September 29th SEP duration.

Figure E2 shows the event-integrated differential proton flux for sev-
eral historically large SEP events in 1989 and 2000. Also shown is the
GCR proton flux time -integrated over the October 29, 1989 SEP. It is
clear at lower energies (≤ 200 MeV) that SEP flux dominates over GCR
proton flux. One might interpret this to mean that SEP exposure is the
dominant concern. However, there are several features here that must
be taken into account. First, SEP events this large are rare. The events
shown, known as the ’89’ Halloween storms, are some of the largest in
the historical record of the modern space age. The probability of having
a single storm this large on any long duration mission of several years’
duration is low. The probability of having more than one is essentially
zero over the same mission duration. Second, the event was roughly 30
days in duration. Although the GCR flux over this 30-day period is
substantially lower for energies < 400 MeV/n, integrating over a mis-
sion of several years in duration and including tissue weighting factors
shows that GCR exposure represents a substantial risk to blood forming
organs.

E.1 Summary of Key Publications in Active Shielding

Active spacecraft shielding has been a topic of study for approximately
55 years [25–52]. During this time, there has been over 80 publications
(including non-peer reviewed study reports) on the subject, with the
largest flurry of activity in the 1960’s and early 1970’s (see Figure E3).
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Figure E2. Differential SEP and GCR flux spectra. SEP spectra pulled
from the NGDC [19]. The GCR spectrum is generated with the DLR
model [20].

There was renewed interest in the early 1990’s but has since been rela-
tively stagnant apart from a handful of recent studies. Active shielding
is a hard problem to solve and it appears that all efforts to date have
come to the same conclusion – it’s just too heavy, requires too much
power and potentially dangerous for human exploration missions.

All of the work to date on the subject can be grouped into three
primary classes:

1. Electrostatic shielding - the use of time-independent electric fields
to deflect charged particles away from a spacecraft.

2. Magnetostatic shielding - the use of time-independent magnetic
fields to deflect charged particles away from a spacecraft.

3. Plasma shielding - the use of electrostatic and/or magnetostatic
fields to trap low-energy plasma at some distance from a spacecraft.
The plasma potential contributes to particle deflection.

Electrostatic and magnetostatic methods use relatively large-strength
electric or magnetic fields to deflect energetic charged particles away from
a space craft. The required degree of dose reduction sets constraints on
which part of the particle energy spectrum needs to be shielded against.
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Figure E3. Histogram of the number of active shielding studies per
year.

This, in turn, along with the isotropic nature of particle flux determines
the field strengths and spatial distribution needed.

The classes can be delineated further by considering the spatial extent
of the field itself and how particle trajectories are actually changed. The
majority of studies have focused on confined fields, magnetic and electric
fields that have a non-zero value within a relatively small region around
a spacecraft, and zero field outside of this region. There are only two
studies in the literature that look at using unconfined fields, or fields
that effectively terminate, in the ideal sense, at infinite distance from a
spacecraft.

The difficulty with confined fields is that it inherently drives up power
and in some cases mass of the shield support structure. The reason is
that the field acts on a charged particle over a short distance. In this case,
since the time in the field is short, the only way to effectively produce
large changes in a particle’s trajectory is by imparting a large impulse,
∆~p.

Studies have looked at using large electric fields [25–35], intense, con-
fined magnetic fields [36–44], unconfined magnetic fields generated with
a current loop [45–49], charged plasmas confined to the near-vicinity of
a spacecraft [26,27,50–52], finite solenoidal fields [53] and extended plas-
mas trapped over relatively large distances [54,55]. The problem has also
been looked at through the lens of mathematical physics by application
of Liouville’s Theorem to understand the limits of particle dynamics in
unconfined fields [56]. Several publications reviewing all past avenues
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have also been produced [57–60]. Lastly, shielding of the artificial elec-
tron radiation belt was proposed using a magnetic dipole [61] . All of
these approaches have one primary commonality: deflection and subse-
quent shielding is governed by the Lorentz force (see Eq. 30).

The environment to shield against defines the particle mass, m, veloc-
ity ~v (and γ) and charge state Ze. As a result, finding an effective shield
means finding the most effective forms for electric and magnetic field ~E
and ~B that have the largest impact on the change in particle (d~p/dt)
momentum to keep it from impacting a habitable volume. The solution
here is explicitly the integration of both sides of Eq. 30, and at closer
inspection two distinct cases can be uncovered. The degree of shielding
provided is directly related to how large the transfer of momentum given
to a charged particle can be. The momentum is transferred directly from
the field and thus the more time a particle is in the field the more time
the field can act on it to change its trajectory. In confined fields the
time spent is short since the field is confined to a relatively small volume
around a space craft. Thus, in order to provide the required momentum
transfer, the field has to be intense, requiring large power and likely large
support structures. However, with unconfined fields, the time spent in
the field is large and thus for an equivalent momentum transfer compared
to the confined field case, the field intensity can be lower, requiring less
power and less support structure.

E.1.1 Electrostatic Shielding

Early studies proposing electrostatic shielding considered charged con-
centric spheres. The difficulty with this approach is that the field vector
only points in the radial direction emanating from the sphere. There is
no tangential field component acting on any particle trajectory. In order
to produce deflection voltages have to be on the order of the incoming
particle energy (100’s of MV).

Another approach is to look at a collection of charged spheres with
the goal of having an extended electric field that more gently ‘deflects’
charged particles [9,10,12,13]. Tripathi looked at using a configuration
of non-concentric spheres to provide more of a gradual deflection of SEP
and GCR charged particles [9,10]. The arrangement is shown in Figure
E4. The outer spheres (solid red circles) are held at a negative poten-
tial to keep electrons from penetrating the inner regions close to the
habitable volume and neutralizing the positively charged inner spheres
(solid green circles). Later, the authors proposed replacing the outer
spheres by encasing the habitable volume with three toroidal rings (bot-
tom left of Figure E4) as this provided better shielding. The units of
distance on the (x,y,z) axes for this plot are meters. What was novel
about this approach was the move away from having strong confined
fields provide the shielding. Going to a long-distance field is what we
propose may yield a feasible solution. In addition, it was recognized that
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a spherical mesh may limit discharge due to ions hitting the conducting
spheres/toroids. However, the voltages required are 10’s to 100’s of MV
even with the spheres at 200 meters from the habitable volume. More-
over, the toroidal rings need 100’s of MV. It is not clear from the proposal
how such high voltages would be generated and there is no estimate of
mass or deployment scenarios.

Figure E4. Electrostatic shielding concept from Tripathi et al. [32]

The use of charged spheres has also been investigated for shielding
surface habitats. Results by Buhler [34] showed that using roughly 12
charged spheres arranged in a configuration resembling the branches of
a tree, and positioned 10’s of meters off of a surface one could shield
against energetic particles. However, the potentials required were again
more than 100 MV and only showed effective shielding up to 100 MeV
particle kinetic energy. Since 9 of the 12 spheres all had the same polar-
ity potential this systems functions as a monopole where the numerous
spheres simply increase the field coverage. It is thus not surprising that
100 MV was needed for 100 MeV particles.

Metzger et al. [35] investigated the use of an electrostatic quadrupole.
The authors point out that the problem of active shielding possesses
“several asymmetries which may be exploited in electrostatics to obtain
nearly isotropic protection without radial symmetry in the fields, a con-
cept that has been overlooked in previous studies”. This same concept
is to be leveraged in what we propose in the following sections. How-
ever, there is a key difference in what we propose that appears to be
a way forward to a drastic lowering of the voltages required. In the
work of Metzger, the arrangement of the spheres mimics an electrostatic
linear quadrupole. Although this system acts as a focusing/defocusing
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ion-optic element, the habitable volume is forced to be inside of the
quadrupole arrangement. Thus the cluster of spheres surrounding this
volume has to provide relatively strong deflection, which drives up the
voltages required. It’s not surprising then that similar to other electro-
static studies the authors find that they need 10’s of MV on the spheres.

E.1.2 Magnetostatic Shielding

Active confined magnetic systems have been looked at by numerous au-
thors. One study, funded by NASA through the Nasa Innovative Ad-
vanced Concepts (NIAC) program looked at 120 racetrack superconduct-
ing coils place around a cylindrical spacecraft [41]. A layout of the con-
cept is shown in Figure E5. In this scenario the magnetic field is toroidal,
i.e. wraps around the cylindrical vessel housing the crew. Outside of the
coils and inside of the cylinder the field is zero. At first glance this is a
relatively simple system. However, it is very heavy and potentially haz-
ardous. The estimated field needed to shield up to 2 GeV/n protons is 9
T. Such high fields can only be produced by employing superconducting
coils.

Figure E5. Concept of confined magnetic field proposed by Hoffman et
al. [41]. ]. Estimate needing 9T field strengths to shield up to 2 GeV/n
protons, totaling 400 to 1600 tons for a 3-year mission.

Although such fields can be generated, there are other difficulties
when working with such high fields. The mechanical stresses produced
within coils must be balanced and is proportional to the square of the
field intensity, B2. Support structures then tend to be large to counter
the field-induced stress. In addition, the stored magnetic energy is pro-
portional to B2. With fields as high as 9 T the stored energy is on the
order of GJ. Any shielding system of this sort must remain at cryogenic
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temperatures while activated if aimed at shielding against GCR since it
is the long-duration cumulative exposure of the crew that is of primary
concern. This levies strict constraints on thermal system management to
avoid a quench of the field. Since the probability of a quench will likely
always remain non-zero, the system must also carry with it enough mass
to absorb GJ of energy if a quench does occur. If not, the end result
could be catastrophic. As noted by Hoffman et al., for the system stud-
ied, 5000 tons of additional mass is needed above the 400 to 1600 tons
of mass just for the shield, not including the roughly 75 tons for a three-
year mission. Thus any vehicle on a long-duration mission would need
to carry along up to 6675 tons of additional mass just to shield the crew
from energetic particles. For comparison the space shuttle Endeavor
had an empty weight of 85.9 tons and a maximum payload weight of
27.6 tons. The entire orbiter, tank and boosters had a liftoff weight of
2204 tons (2000 metric tons).

Fast forward roughly 10 years. The NIAC Phase I and II of Westover
et al. [42] took a similar approach to the study by Hoffman in terms of
a toroidal magnetic field but looked at generating the field with a new
solenoidal coil technique that would minimize coil mass. A concept of
the configuration studied is shown in Figure E6. Each of the 6 coils is de-
signed using a proprietary ‘double helix’ technique that uses higher order
multipole terms from a skewed solenoidal field to produce field vectors
that are diamagnetically oriented [43]. The superposition amongst the
six coils produce a magnetic field vector that wraps azimuthally around
a cylindrical crew volume at the center. Because the windings of the
coil are able to be embedded in a soft fabric, these coils have the added
benefit of being able to be expanded as they are being energized with
current. The mass is also lower due to the low-weight fabric and mini-
mized internal support structure. The six coils have a diameter of 8 m,
a length of 20 m and a nominal field strength of 1 T. The total stored
magnetic energy is 400 MJ, lower than the Hoffman study but still large
enough to need a substantial amount of mass in the presence of a quench.
The magnetic pressure between the coils was calculated to be 4 atm but
could be as high as 25 atm with 2.5 T fields. The higher field would
increase the stored energy into the GJ range. Leakage of the magnetic
field into the crew volume required an additional coil to reduce the in-
ternal field from 0.25 T to < 0.02 T. The study looked at reducing the
risk of a magnet quench. One of the issues was the reliability of quench
detection which is still in question. No solution exists at this time.

The study also looked at the feasibility of using a solar shield to cool
down the coils. Results showed that temperatures required (40 – 60 K)
could not be reached with a solar shield alone. Cryogenic cooling will
still be needed at the current time and requires 24 kW of power. This is
however about a factor of 5 lower than the estimates of power for cooling
using racetrack coils [18]. That said, it is estimated to take roughly 75
days (neglecting radiative heating) to cool the coils to a point that they

92



Figure E6. Concept of a confined magnetic shield from Westover et
al., NIAC Phase I, 2012 [42]. Estimate needing 9 T field strengths,
totaling 25 tons and 26 kW. However, study noted that although some
GCR exposure reduction is obtained with this design “it is not significant
enough to provide significantly greater mission duration”.

will be superconducting.

The estimated mass of the 6 coils plus the compensator coil to re-
duce the field in the crew volume is about 48 tons (US). Cryocoolers
contribute another 1.3 tons (US). The reduction in mass is significant
over the Hoffmann study using racetrack coils (400 – 1600 tons). How-
ever, there is nothing in the estimates regarding mass needed to protect
against a quench. Moreover, the Hoffmann study shielded up to 2 GeV/n
protons and modest protection against heavier ions at the same energy
per nucleon. Since the energy stored is proportional to the square of the
field intensity a 9 T field (Hoffmann) requiring 5000 tons of mass for a
quench could be reduced for a 1 T field, to first order, by a factor of
81. Thus, for the six coil configuration an additional 62 tons of mass
would be needed, roughly the same mass as the entire six coil configu-
ration. Although improvements in reduced mass over past studies have
been found, the authors state that the reduction in GCR exposure “is
not significant enough to provide significantly greater mission duration”.
It appears that the greatest reduction in exposure is in the range of a
few hundred MeV/n ion energy with little shielding from 1 GeV/n ions.

The Space Radiation Superconducting Shield (SR2S) is a current
European Space Agency (ESA) project developing a similar concept as
studied by Hoffman [44]. The shield being investigated contains 120 10 m
by 12.8 m racetrack coils with an estimated stored magnetic energy of 953
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MJ at a maximum field strength of 4 T. The coil mass is roughly 36 tons,
comparable to the study by Westover. Most of the same outstanding
questions as past studies remain with the SR2S project. However, the
work is ongoing and it is difficult at this time to assess what the outcome
will ultimately be at project end.

Thermal shielding, operability, and quench protection still remain
open questions. All confined magnetic shielding studies within the last
decade arrive at similar conclusions: shield mass is ≥ 35 tons, field
strengths required are more than several Tesla over several meters, stored
magnetic energy is very large (≥ 400 MJ) requiring active quench protec-
tion that has yet to be developed and large mass to protect in presence
of a quench. Because the fields required for this field configuration are
dictated by the physics governing particle deflection, there is no way to
relax the high field/high current density issue and subsequent issues such
as power, mass and quench risk.

Relatively large unconfined magnetic fields, generated with circular
current loops, have been studied by several authors [45–49]. The ad-
vantage of using a loop of current is that far from the loop the field is
essentially dipole in nature. Because the dipole moment of any given
ideal loop can be readily calculated, trades can be done that can be
directly compared to shielding by the geomagnetic field of the Earth.
There is an additional attractiveness here in that studies of particle mo-
tion in a magnetic dipole field, investigated by Stormer to understand the
Earth’s aurora and now relatively well understood, show a well-defined
‘exclusion zone’, a region that energetic particles cannot access.

Cocks et al. [47–49], using Störmer theory and by assuming the
asymptotic form of the magnetic field far from a current loop (dipole-
like field) put forth an engineering analysis of what size coils and field
strengths would be needed to shield from GCR ions. For instance, for
an exclusion zone 5 m in size and a coil radius of 10 m the on-axis field
strength is 2.25 T. Increasing the coil radius to 1 km, the field extent
is quite large but its strength lowers by a factor of 1000 (0.02 T). Both
cases, according to the authors will shield up to 500 MeV protons but the
larger radius coils are at a much lower mass due to the reduced number
of turns of wire needed. The major problem with this assessment is that
the exclusion zone only shows up in a pure dipole field. The approxima-
tion of a dipole field for a current loop only holds for distances from the
loop that are large compared with the loop (coil) radius. Shepherd et
al. [45,46] have shown that when considering the exact field of a current
loop for large loops, on the order of km in radius, the exclusion zone at
the center of the coil disappears. They show that current loops must be
drastically smaller (10’s of m rather than km) in order to produce an ex-
clusion zone. At radii on the order of 50 m a region devoid of particles is
shown but centered about the coil itself. As the radius increases further
this region shrinks in size. Since the mass required to produce the same
dipole moment increases as the coil radius decreases, this method does
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not offer mass savings.

E.1.3 Plasma Shielding

This technique combines both electrostatic methods for generating large
electric field gradients from trapped electrons with relatively weak mag-
netic fields [27] to contain the electron cloud and maintain the electric
field. In this scenario, a toroidal shaped spacecraft (see Figure E7) is
charged to a large positive potential, attracting electrons in the local
environment around the spacecraft. A magnetic field, generated with
superconducting coils traps the electron cloud at a distance from the
spacecraft to avoid charge neutralization. The magnetic field is rela-
tively weak with the study authors estimating needing a value of about
0.3 T, a value far below what is estimated to be needed for shielding up
to several GeV/n protons with only a magnetic field ( 2-8 T).

Figure E7. Concept for using low-energy plasma for shielding along
with results of Levy [26,27].

Although a novel approach that clearly offers mass reduction over
pure magnetic shielding, there are inherent difficulties in the approach,
recognized by the study authors. For one, the shield functions primarily
through effective trapping of the electron cloud, which is dynamic and
not static. Electron loss rates are still somewhat poorly understood and
thus controlling the dynamic nature of the electron cloud is questionable.
Any power supply used to charge the space craft will need to sink this
current and will cause the cloud to fluctuate about an equilibrium value
on time scales that are still largely unknown. A recent study by Bamford
et al. has shown similar concerns.
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Another difficulty with this approach is the voltages needed. The
right plot in Figure 7 shows a comparison of the voltage required to
shield various proton energies and the representative passive (solid) ma-
terial needed to produce the same shielding. For comparison, the 50th
percentile shield thickness for a point at the center of the ISS US LAB
module is about 10 g cm-2. According to the study, a voltage of 80 MV
is needed to shield up to 175 MeV/n protons. We know that the proton
energies that need to be shielded against extend above 1 GeV/n, about
a factor of 10 higher than the maximum energy of the study. Since the
voltage needed for this method is roughly proportional to the particle
energy, 1 GeV/n would require nearly 800 MV. The problem is that there
is no currently available technology to generate 80 MV, let alone 800 MV
in space.

E.1.4 Difficulty in Implementation

One of the key difficulties that has hindered progress in active shielding is
that there is no way to actually ground test full scale spacecraft shields.
There is no accelerator facility in the world that can accommodate a test
article of that size, nor make ion beams wide enough to fully encompass
the entire vehicle.

The focus on magnetic systems is likewise limiting. Most studies
have focused on intense fields confined to a few meters and placed near
a spacecraft. One would expect then that the most effective way to
‘steer’ particles away from a particular region in space would be to en-
sure that the magnetic field vector is always perpendicular to the sur-
face normal of any surface bounding a habitable volume. Assuming a
cylindrically-shaped crewed space craft, the field would be directed az-
imuthally around this cylinder. There aren’t many ways to construct a
magnetic field with this configuration and one is thus limited to a pure
toroidal field or solenoids with diamagnetic oriented internal field vec-
tors. In both cases generation is done via current-carrying coils. The
problem however with all confined magnetic field configurations resides
in the very nature of the Lorentz force itself. The force vector will always
point in the same direction at each point in space about the azimuthal
direction. This means that unless the magnetic field is large enough to
make the cyclotron radius, Rc(Ek, B0) ≤ `t, where (Ek, B0), and `t are
the particle kinetic energy, magnetic field magnitude and field thickness,
respectively, half of the particles will be deflected away from the shielded
region but half that may have missed this region will be deflected into
it.

Many of the difficulties in implementation for magnetic systems re-
main today after 55 years of investigation. Although mass has been
reduced in some cases, the composite system, along with quench mass is
quite heavy. Numerous studies have made the case that active systems
can be constructed with less mass than that required using only passive
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shielding. This, however, is a faulty argument. The passive mass needed
is so exorbitantly high that one could just as well set the mass at infinity
and then state that any other system with lower mass is viable. The
only viable metric here should be based on capability to get the sys-
tem to Earth orbit within the launch and cost constraints that currently
exist.

Magnetic systems continue to be plagued by high risk both to oper-
ation of the system itself and the entire mission. Concepts continue to
be highly complex in terms of structural and thermal loading. It is still
not clear whether or not each of these can be minimized further within
the technology investment strategy that currently exists. Regardless,
the ultimate limitation will likely reside with the development timeline
of superconductor technology where there is no real driver related to use
in human spaceflight.

The key to future development with electrostatic systems is either
lowering the voltage required or developing the capability to generate
10’s to 100’s of MV. Work also needs to be done on understanding how
to overcome issues with discharging and neutralization of charge by the
background low-energy plasma.

97



Appendix F

References

1. J. D. Jackson, Classical Electrodynamics, Third Edition, John Wi-
ley & Sons, Inc. (1999).

2. H. A. Lorentz, La theorie elecromagnetique de Maxwell et son ap-
plication aux corps mouvemants, Arch. Neerl. Sci. Exactes Nat., 25
(1892).

3. H. A. Lorentz, Weiterbildung der Maxwellschen Theorie, Encykl.
Mathe. Wiss., 2 (1904).

4. J. Larmor, On the Theory of the Magnetic Influence on Spectra;
and On the Radiation from Moving Ions, Philos. Mag., 44 (1897).

5. M. Abraham, Prinzipien der Dynamik des Elektrons, Ann. Phys.,
10 (1903).

6. M. Abraham, Theorie der Elektrizitat, Vol. II, (1905).

7. P. A. M. Dirac, Classical Theory of Radiating Electrons, Proc. R.
Soc. London A, 167 (1938).

8. I. V. Sokolov, Renormalization of the Lorentz-Abraham-Dirac
Equation for Radiation Reaction Force in Classical Electrodynam-
ics, J. of Experimental and Theoretical Phys., 109 (2009).

9. R. F. O’Connell, The Equation of Motion of an Electron, Phys.
Lett. A, 313 (2008).

10. F. Rohrlich, The Dynamics of a Charged Sphere and the Electron,
Am. J. Phys., 65 (1997).

11. M. M. de Souza, The Lorentz-Dirac Equation and the Structures
of Spacetime, Brazilian Journal of Physics, 28 (1998).

12. Cheng, K. S. and Zhang, J. L., General Radiation Formulae for
a Relativistic Charged Particle Moving in Curved Magnetic Field
Lines: The Synchrocurvature Radiation Mechanism, Astro. Jour.,
463 (1996).

13. Verlet, L., Computer Experiments on Classical Fluids I: Thermody-
namical. Properties of Lennard-Jones Molecules, Phys. Rev., 159
(1967).

14. Rappaport, D. C., The Art of Molecular Dynamics Simulations,
Cambridge University Press, ISBN 978-0-521-82568-9 (2004).

98



15. Allen, M. D. and Tildesly, D. J., Computer Simulation of Liquids,
Oxford University Press, (2017)

16. Stormer, C. J., On the Trajectories of Electric Corpuscles in Space
Under the Influence of Terrestrial Magnetism Applied to the Aurora
Borealls and to Magnetic Disturbances, A. Cammermeyer (1906).

17. Boris, J. P., Relativistic Plasma Simulation - Optimization of a
Hybrid Code, Proceedings of the Fourth Conference on Numerical
Simulation of Plasmas, US Government Printing Office (1970).

18. Rajon, D. A. and Bolch, W. E., Computer Methods and Programs
in Biomedicine, 70, 167–177 (2003) .

19. GOES Data Archive, National Geophysical Data Center,
https://www.ngdc.noaa.gov/stp/satellite/goes/.
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23. Garćıa-Farieta, J. E. and Hurtado, A., Simulation of Charged Par-
ticles in Earth’s Magnetosphere: An Approach to the Van Allen
Belts, Revista Mexicana de F́ısica E, 65 (2019).

24. Synchrotron Radiation: Basics, Methods and Applications, Mo-
bilio, S., Boscherini, F. and Meneghini, C. (Eds.), ISBN 978-3-642-
55315-8, Springer-Verlag (2015).

25. Levy, R. H., Radiation Shielding of Space Vehicles by Means of
Superconducting Coils, American Rocket Society, 31, 1568-1570
(1961).

26. Levy, R. H. and French, F. W., Plasma Radiation Shield: Concept
and Applications to Space Vehicles, J. Spacecraft, 5 (1967).

27. Levy, R. H. and Janes, G. S., Plasma Radiation Shielding, AIAA
Journal, 2 (1964).

28. Tooper, R. F., Electrostatic Shielding Feasibility Study, ASD-TDR-
63-194, U. S. Air Force, (1963).

29. Vogler, F. H., Analysis of an Electrostatic Shield for Space Vehicles,
AIAA Journal, 2, 872-878, (1964).

99



30. Felten, J. E., Feasibility of Electrostatic Systems for Space Vehicle
Radiation Shielding, J. of the Astro. Sci., 11, 16-22, 1964.

31. Tripathi, R. K., Wilson, J. W., and Youngquist,R. C., Electrostatic
Active Radiation Shielding - Revisited, IEEEAC (2005).

32. Tripathi, R. K., Meeting the Grand Challenge of Protecting Astro-
naut’s Health: Electrostatic Active Space Radiation Shielding for
Deep Space Missions, NIAC Phase I Final Report (2011).

33. Kovalev, E. E., Molchanov, E. D., Pekhterev, Yu. G., Riabova, T.
Y., Tikhomirov, B. I., and Khovanskaya, A. I., An Investigation
of the Basic Characteristics of Electrostatic Shielding from Cosmic
Radiations on the Artificial Earth Satellite Kosmos 605. I. Mea-
surement Procedure and the Complex Scientific Aparatus, Cosmic
Research 13(5), 687-692, (1976) (translated into English from Kos-
micheskie Issledovaniya 13(5), 771-777).

34. C. R. Buhler, Analysis of a Lunar Base Electrostatic Radiation
Shield Concept, NASA NIAC CP 04-01 Phase I Final Report
(2005).

35. Metzger, P. T., Lane, J. E. and Youngquist, R. C., Asymmetric
Electrostatic Radiation Shielding for Spacecraft, IEEE Aerospace
Conference Proceedings (2004).

36. Bernert, R. E. and Stekly, Z. J. J., Magnetic Radiation Shielding
Systems Analysis, Rept. PAM134, Avco- Everett Research Lab.,
Everett, Mass (1964).

37. Levine, S. H., and Lepper, R., Analog Studies of Magnetic Shields,
AIAA Journal, 6 (1968).

38. Levine, S. H., and Lepper, R., An Active Radiation Shield for Cylin-
drically Shaped Vehicles, J. Spacecraft, 8 (1971).

39. L. W. Townsend, HZE Particle Shielding Using Confined Magnetic
Fields, J. Spacecraft, 20 (1983).

40. Spillantini, P., Active Shielding for Long Duration Interplanetary
Manned Missions, Adv. in Space Research, 45 (2010).

41. Hoffmann, J. A., Fisher, P. and Batishchev, O., Use of Supercon-
ducting Magnet Technology for Astronaut Radiation Protection,
NASA NIAC CP 04-01 Phase I Final Report (2005).

42. Westover, S. C., et al., Magnet Architectures and Active Radiation
Shielding Study (MAARSS), NIAC Phase I Final Report (2012).

100



43. Bruce, R. and Baudouy, B., Cryogenic Design of a Large Supercon-
ducting Magnet for Asto-Particle Shielding on Deep Space Travel
Missions, Physics Procedia, 67, 264-269 (2015).

44. Musenich, R., Superconducting Magnetic Conceptual Design, SR2S
Workshop, Turin, Italy (2014).

45. Shepherd, S. G. and Kress, B. T., Stormer Theory Applied to Mag-
netic Spacecraft Shielding, Space Weather (2007).

46. Shepherd, S. G. and Kress, B. T., Comment on ”Applications for
Deployed High Temperature Superconducting Coils in Spacecraft
Engineering: A Review and Analysis” by J. C. Cocks et al., J.
British Int. Soc..

47. Cocks, F. H., A Deployable High Temperature Superconducting
Coil (DHTSC): A Novel Concept for Producing Magnetic Shields
Against Both Solar Flare and Galactic Radiation During Manned
Interplanetary Missions, J. British Int. Soc., 44 (1991).

48. Hilinski, E. J. and Cocks, F. H., Deployed High-Temperature Su-
perconducting Coil Magnetic Shield, J. Spacecraft, 31 (1992).

49. Cocks, F. H. and Watkins, S., Magnetic Shielding of Interplanetary
Spacecraft Against Solar Flare Radiation, NASA/USRA Advanced
Design Program, Final Report (1993).

50. Bamford, R., et al., The Interaction of a Flowing Plasma with a
Dipole Magnetic Field: Measurements and Modeling of a Diamag-
netic Cavity Relevant to Spacecraft Protection, Plasma Phys. Con-
trol. Fusion, 50 (2008).

51. Gargate, L., et al., Hybrid Simulations of Mini-Magnetospheres in
the Laboratory, Plasma Phys. Control. Fusion, 50 (2008).

52. Bamford, R. A. et al., An Exploration of the Effectiveness of Artifi-
cial Mini-Magnetospheres as a Potential Solar Storm Shelter for
Long-Duration Human Space Missions, Acta Astronautica, 1-13
(2014).

53. Helgesen, J. Ol. and Spagnolo, F. A., The Motion of a Charged
Particle in a Magnetic Field Due to a Finite Solenoid with Appli-
cation to Solar Radiation Protection, AIAA 4th Aerospace Science
Meeting (1966).

54. Winglee, R. M., Slough, J., Ziemba, T. and Goodson, A., Mini-
Magnetospheric Plasma Propulsion: Tapping the Energy of the So-
lar Window for Spacecraft Propulsion, J. Geo. Res., 105 (2000).

101



55. Winglee, R. M., Advances in Magnetized Plasma Propulsion and
Radiation Shielding, Proceedings of the 2004 NASA/DoD Confer-
ence on Evolution Hardware (2004).

56. Prescott, A. D., Urban, E. W. and Shelton, R. D., The Application
of the Liouville Theorem to Magnetic Shielding Problems, Proceed-
ings of the Second Symposium on Protection Against Radiations in
Space, 189 (1964).

57. Sussingham, J. C., Watkins, S. A. and Cocks, F. H., Forty Years of
Development of Active Systems for Radiation Protection of Space-
craft, J. Astro. Sci., 47, 165-175 (1999).

58. Townsend, L. W., Overview of Active Methods for Shielding Space-
craft from Energetic Space Radiation, 1st International Workshop
on Space Radiation Research and 11th Annual NASA Space Radi-
ation Health Investigators’ Workshop (2000).

59. Adams, J. H., Jr., Hathaway, D. H., Grugel, R. N., Watts, J. W.,
Parnell, T. A., Gregory, J. C. and Winglee, R. M., Revolutionary
Concepts of Radiation Shielding for Human Exploration of Space,
NASA/TM-2005-213688 (2005).

60. Parker, E. N., Travelers, Scientific American, (2006).

61. A. Bhattacharjie and I. Michael, Mass and Magnetic Dipole Shield-
ing Against Electrons of the Artificial Radiation Belt, AIAA Jour-
nal, 2, 2198 (1964).

62. Advanced Magnet Lab, Melbourn, Fl.

63. Handbook of Mathematical Functions, edited by M. Abramowitz
and I. A. Stegun, Dover Publishing, 1972.

64. Shultis, J. K. and Faw, R. E., Radiation Shielding, 18, (2000).

102





REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection
of information, including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports
(0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be
subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

Standard Form 298 (Rev. 8/98)
Prescribed by ANSI Std. Z39.18

1. REPORT DATE (DD-MM-YYYY)
01-05-2020

2. REPORT TYPE

Technical Publication
3. DATES COVERED (From - To)

4. TITLE AND SUBTITLE

Active Shielding Particle Pusher (ASPP): Charged-Particle Tracking
Through Electromagnetic Fields

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

L. Stegeman

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

NASA Johnson Space Center
8. PERFORMING ORGANIZATION

REPORT NUMBER

L–

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration
Washington, DC 20546-0001

10. SPONSOR/MONITOR’S ACRONYM(S)
NASA

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

NASA/TP–2020–5002408

12. DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified-Unlimited
Subject Category
Availability: NASA STI Program (757) 864-9658

13. SUPPLEMENTARY NOTES

An electronic version can be found at http://ntrs.nasa.gov.

14. ABSTRACT

15. SUBJECT TERMS

radiation shielding, active shielding, modeling, particle tracking, relativistic dynamics, particle tracking simulation

16. SECURITY CLASSIFICATION OF:

a. REPORT

U

b. ABSTRACT

U

c. THIS PAGE

U

17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

STI Information Desk (email: help@sti.nasa.gov)

19b. TELEPHONE NUMBER (Include area code)

(757) 864-9658






	Introduction and Purpose
	Generalized Equations of Motion
	Covariant Form of the Lorentz Force Law
	Lorentz Force Law Via the Relativistic Lagrangian

	Code Development
	Integration Methods
	Euler Method
	Velocity-Verlet (VV)
	Adaptive Velocity-Verlet (AVV)
	Fourth-Order Runge-Kutta (RK4)
	Boris-Buneman

	Particle Initialization
	Directionally-Isotropic Field
	1d Beamline Initialization

	Angular Binning
	Sphere Shadowing
	User-Defined Charge States for Projectile Ions

	Platform Dependencies
	GPU Capability
	OpenMP
	Message Passing Interface (MPI)

	Field Configuration Toolset
	Constant z-aligned Magnetic Field
	Constant 3d Azimuthal Field
	Ideal Magnetic Dipole Field
	Ideal Current Loop
	3d Helmholtz Coil
	3d Maxwell Coil
	Ideal Electric Point Dipole
	Array of Point Charges
	Array of Line Charges
	Array of Rectangular Charges


	Conclusions and Future Work
	Installation and Code Execution
	Dependencies
	Installation Instructions
	Code Execution
	Sample Input Files
	Propagation Options
	Particle Properties
	Beam Simulation Options
	Output Options
	Magnetic Field Options
	Electric Field Options
	Additional Options
	1d Beam Simulation Input File Example

	3d Simulation Input File Example

	Integration with DAKOTA
	DAKOTA Input Script
	DAKOTA Simulator Script

	Code Benchmarks
	Comparison of Integration Methods
	Run-time Benchmarks and Memory Usage

	Power Irradiated and Radiation Reaction Force
	Review of Active Shielding Investigations
	Summary of Key Publications in Active Shielding
	Electrostatic Shielding
	Magnetostatic Shielding
	Plasma Shielding
	Difficulty in Implementation


	References

