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Abstract

We analyze the gravitational binary-lensing event OGLE-2016-BLG-0156, for which the lensing light curve
displays pronounced deviations induced by microlens-parallax effects. The light curve exhibits three distinctive
widely separated peaks and we find that the multiple-peak feature provides a very tight constraint on the microlens-
parallax effect, enabling us to precisely measure the microlens parallax Ep . All the peaks are densely and
continuously covered from high-cadence survey observations using globally located telescopes and the analysis of
the peaks leads to the precise measurement of the angular Einstein radius Eq . From the combination of the
measured Ep and Eq , we determine the physical parameters of the lens. It is found that the lens is a binary composed
of two M dwarfs with masses M1=0.18±0.01Me and M2=0.16±0.01Me located at a distance
D 1.35 0.09 kpcL =  . According to the estimated lens mass and distance, the flux from the lens comprises an
important fraction, ∼25%, of the blended flux. The bright nature of the lens combined with the high relative
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lens-source motion, μ=6.94±0.50 mas yr−1, suggests that the lens can be directly observed from future high-
resolution follow-up observations.

Key words: binaries: general – gravitational lensing: micro

1. Introduction

The microlensing phenomenon occurs by the gravity of
lensing objects regardless of their luminosity. Due to this
property, microlensing provides an important tool to detect
very faint and even dark objects that cannot be observed by
other methods. However, it is difficult to conclude the faint/
dark nature of the lens just based on the event timescale tE,
which is the only observable related to the lens mass for
general lensing events, because the timescale is related to not
only the lens mass M but also the relative lens-source proper
motion μ and distance to the lens DL and source DS by
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where G c4 au2k = ( ) and Eq is the angular Einstein radius. In
order to reveal the nature of lenses, their masses should be
determined.

For the unique determination of the lens mass, it is required
to measure two additional observables. These observables are
the angular Einstein radius Eq and the microlens parallax Ep .
They are related to the lens mass by (Gould 2000)
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With Ep and Eq , the distance to the lens is also determined by
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where DauS Sp = .
The angular Einstein radius is determined by detecting

deviations in lensing light curves caused by finite-source effects.
Deviations induced by finite-source effects arise due to the
differential magnification in which different parts of the source
surface are magnified by different amounts. For events produced
by single mass objects, finite-source effects can be detected in
the special case in which the lens passes over the surface of the
source (Gould 1994a; Nemiroff & Wickramasinghe 1994; Witt
& Mao 1994). However, the ratio of the angular source radius θ*
to the angular Einstein radius Eq is very small, ρ∼1/1000 for
events associated with main-sequence source stars and ∼1/100
even for events involved with giant source stars, and thus the rate
of source-crossing events is accordingly very low. The chance to
detect finite-source effects is relatively much higher for events
produced by binary objects. This is because a binary lens forms
caustics that can extend over an important portion of the Einstein
ring, and the event with a source crossing the caustic exhibits a
light curve affected by the finite-source effect during the caustic
crossing.

In the early-generation lensing surveys that were conducted
with a >1 day cadence, measuring the angular Einstein radius by
detecting finite-source effects was observationally a challenging
task. This is because the duration of the deviation induced by
finite-source effects is, in most cases, <1 day and thus it was
difficult to detect the deviation. The unpredictable nature of
caustic crossings also made it difficult to cover crossings from

high-cadence follow-up observations (Jaroszyński & Mao 2001).
However, with the inauguration of lensing surveys using globally
distributed multiple telescopes equipped with wide-field cameras,
the observational cadence has been dramatically increased to
<1 hr, making it possible to measure Eq for a greatly increased
number of lensing events.
One channel to measure the microlens parallax is simulta-

neously observing lensing events from the ground and in space:
“space-based microlens parallax” (Refsdal 1966; Gould 1994b).
The physical size of the Einstein radius for a typical lensing event
is of the order of an astronomical unit. Then, if space observations
are conducted using a satellite in a heliocentric orbit, e.g., Deep
Impact (Muraki et al. 2011) spacecraft or Spitzer Space Telescope
(Dong et al. 2007; Calchi Novati et al. 2015; Udalski et al.
2015b), the lensing light curve obtained from the satellite
observation will be substantially different from that obtained
from the ground-based observation. For events with well-covered
light curves from both the ground and in space, then, the
microlens parallax can be precisely measured by comparing the
two light curves.
Another channel to measure Ep is analyzing deviations

induced by microlens-parallax effects in lensing light curves
obtained from ground-based observations: “annual microlens
parallax” (Gould 1992). In the single frame of Earth, such
deviations occur due to the positional change of an observer
caused by the orbital motion of Earth around the Sun. For
typical lensing events produced by low-mass stars, however,
the event timescale is several dozen days, which comprises a
small fraction of the orbital period of Earth, i.e., a year, and
thus deviations induced by the annual microlens-parallax
effects are usually very minor. As a result, it is difficult to
detect the parallax-induced deviations for general events, and
even for events with detected deviations, the uncertainties
of the measured Ep and the resulting lens mass can be
considerable.
In this work, we analyze the binary-lensing event OGLE-

2016-BLG-0156. The light curve of the event, which is
characterized by three distinctive widely separated peaks,
exhibits pronounced parallax-induced deviations, from which
we precisely measure the microlens parallax. All the peaks are
densely covered from continuous and high-cadence survey
observations and the analysis of the peaks leads to the precise
measurement of the angular Einstein radius. We characterize
the lens by measuring the masses of the lens components from

Ep and Eq .

2. Observation and Data

The source star of the lensing event OGLE-2016-BLG-0156
is located in the bulge field with equatorial coordinates
R.A ., decl. 17:56:36.63, 31:04:40.7J2000 = -( ) ( ). The corresp-
onding galactic coordinates are (l, b)=(359°.4, −3°.14). The
event was found in the very early part of the 2016 bulge season
by the Optical Gravitational Lensing Experiment (OGLE:
Udalski et al. 2015a) survey. The OGLE lensing survey was
conducted using the 1.3 m telescope of the Las Campanas
Observatory, Chile. The source brightness had remained
constant, with a baseline magnitude of Ibase∼18.74, until

2
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the end of the 2015 season since it was monitored by the survey
in 2009. When the event was found, the source brightness was
already ∼0.5 mag brighter than the baseline magnitude,
indicating that the event started during the ∼4 month time
gap between the 2015 and 2016 seasons when the bulge field
could not be observed during the passage of the field behind the
Sun. The OGLE observations were conducted at an ∼1–2 day
cadence and data were acquired mainly in the I band with some
V-band data obtained for the source color measurement.

Two other microlensing survey groups of the Microlensing
Observations in Astrophysics (MOA: Bond et al. 2001; Sumi
et al. 2003) and the Korea Microlensing Telescope Network
(KMTNet: Kim et al. 2016) independently detected the event.
The MOA survey observed the event with a ∼0.5 hr cadence in
a customized broad R band using the 1.8 m telescope of the
Mt.John University Observatory, New Zealand. The event was
entitled MOA-2016-BLG-069 in the list of MOA transient
events.29 The KMTNet observations were conducted using
three identical 1.6 m telescopes that are located at the Siding
Spring Observatory, Australia, Cerro Tololo Interamerican
Observatory, Chile, and the South African Astronomical
Observatory, South Africa. We refer to the individual KMTNet
telescopes as KMTA, KMTC, and KMTS, respectively. The
event, dubbed as KMT-2016-BLG-1709 in the 2016 KMTNet
event list,30 was located in the KMTNet BLG01 field toward
which observations were conducted with a ∼0.5 hr cadence.
The field almost overlaps the BLG41 field that was additionally
covered to fill the gaps between the CCD chips of the BLG01
field. The source happens to be located in the gap between the
chips of the BLG41 field and thus no data was obtained from
the field. KMTNet observations were conducted mainly in the I
band and occasional V-band observations were carried out to
measure the source color.

Photometry of the individual data sets are processed using
the codes of the individual survey groups. All the photometry
codes utilize the difference-imaging technique developed by
Alard & Lupton (1998). For the KMTC data set, we
additionally conduct pyDIA photometry31 for the source color
measurement. For the use of the multiple data sets reduced by
different codes, we normalize the error bars of the individual
data sets using the method described in Yee et al. (2012).

Figure 1 shows the light curve of OGLE-2016-BLG-0156.
The light curve is characterized by three distinct peaks centered
at HJD HJD 2,450,000 7462.4¢ = - ~ (t1), 7493.7 (t2), and
7512.1 (t3). The peaks are widely separated with time gaps

t 31.31 2D ~- days between the first and second peaks and
t 18.42 3D ~- days between the second and the third peaks.
In Figure 2, we present the enlarged views of the individual

peaks. It is found that the source became brighter by 3 mag
during very short periods of time, indicating that the peaks
were produced by the source crossings over the caustic.
Caustics produced by a binary lens form closed curves and thus
caustic crossings usually occur in multiples of two. The region
between the second and third peaks shows a U-shape pattern,
which is the characteristic pattern appearing when the source

passes inside a caustic, suggesting that the pair of peaks
centered at t2 and t3 were produced when the source star
entered and exited the caustic, respectively. On the other hand,
the first peak has no counterpart peak. Such a single-peak
feature can be produced when the source crosses a caustic tip in
which the gap between the caustic entrance and exit is smaller
than the source size.
We note that all the peaks were densely covered. The first

peak was covered by the combined data sets obtained using the
three KMTNet telescopes, the second peak was resolved by the
OGLE+KMTA data sets, and the last peak was covered by
the MOA+KMTS data sets. The dense and continuous
coverage of all the caustic crossings were possible thanks to
the coordination of the high-cadence survey experiments using
globally distributed telescopes.

3. Modeling Light Curve

3.1. Model under Rectilinear Relative Lens-source Motion

The caustic-crossing features in the observed light curve
indicate that the event is likely to be produced by a binary lens
and thus we conduct binary-lens modeling of the light curve.
We begin by searching for the sets of the lensing parameters
that best explain the observed light curve under the assumption
of the rectilinear lens-source motion, wherein the lensing light

Figure 1. Light curve of OGLE-2016-BLG-0156. The colors of data points
correspond to those of telescopes, marked in the legend, used for observations.
The times marked by arrows indicate the centers of the peaks at HJD¢ =
HJD 2,450,000 7462.4- ~ (t1), 7493.7 (t2), and 7512.1 (t3).

Figure 2. Enlarged view of the three peaks in the lensing light curve. The
locations of the individual peaks in the whole light curve are marked by t1, t2,
and t3 in Figure 1.

29 https://www.massey.ac.nz/∼iabond/moa/alert2016/alert.php
30 http://kmtnet.kasi.re.kr/ulens/event/2016/
31 The pyDIA code is a python package for performing difference imaging and
photometry developed by Albrow (2017). The difference-imaging part of this
software implements the algorithm of Bramich et al. (2013) with extended delta
basis functions, enabling independent control of the degrees of spatial variation
for the differential photometric scaling and differential PSF variations between
images.
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curve is described by seven principal parameters. The first three
parameters (t0, u0, tE) are identical to those of a single-lens
events, describing the time of the closest lens-source approach,
the separation at that time, and the event timescale,
respectively. Because a binary lens is composed of two
masses, one needs a reference position for the lens. We set the
barycenter of the binary lens as the reference position. Due to
the binary nature of the lens, one needs another three
parameters (s, q, α), indicating the projected binary separation
(normalized to Eq ), the mass ratio between the lens compo-
nents, and the angle between the binary axis and the source
trajectory, respectively. The last parameter ρ, which represents
the ratio of the angular source radius θ* to the angular Einstein
radius, i.e., E*r q q= (normalized source radius), is needed to
describe the deviation of lensing magnifications caused by
finite-source effects during caustic crossings.

Modeling the light curve is done through a multiple-step
process. In the first step, we conduct a grid search for the
parameters s and q and, for a given set of s and q, the other
parameters are searched for using a downhill approach based
on the Markov Chain Monte Carlo (MCMC) method. We
identify local solutions from the Δχ2 maps obtained from this
preliminary search. In the second step, we refine the individual
local solutions first by gradually narrowing down the parameter
space and then allowing all parameters (including the grid
parameters s and q) to vary. If a satisfactory solution is not
found from these searches, we repeat the process by changing
the initial values of the parameters. We refer to the model based
on these principal parameters as the “standard model.”

From these searches, we find that it is difficult to find a
lensing model that adequately describes the observed light
curve. In the bottom panel of Figure 3, labeled as “standard,”
we present the residual of the standard model. It shows that the
model fit to the first peak is very poor although the model
relatively well describes the second and third peaks.

3.2. Model with Higher-order Effects

The difficulty in finding a lensing model that fully explains
all the features in the observed light curve under the assumption
of the rectilinear lens-source motion suggests that the motion
may not be rectilinear. This possibility is further supported by
the long duration of the event.

Two major effects cause accelerations in the relative lens-
source motion. One is the microlens-parallax effect. The other
is the orbital motion of the lens: lens-orbital effect. We
therefore conduct additional modeling considering these
higher-order effects.

Incorporating the microlens-parallax effect into lensing
modeling requires two additional parameters of NE,p and EE,p .
They represent the two components of the microlens-parallax
vector Ep directed to the north and east, respectively. The
microlens-parallax vector is related to relp , Eq , and the relative
lens-source proper motion vector m by

. 4E
rel

E
p mp

q m
= ( )

Considering the lens-orbital effect also requires additional
parameters. Under the approximation that the positional changes
of the lens components induced by the lens-orbital effect during
the event is small, the effect is described by two parameters of
ds/dt and dα/dt. They represent the change rates of the binary
separation and the source trajectory angle, respectively.

We conduct a series of additional modeling runs considering
the higher-order effects. In the “parallax” and “orbit” modeling
runs, we separately consider the microlens-parallax and lens-
orbital effects, respectively. In the “orbit+parallax” modeling
run, we simultaneously consider both the higher-order effects.
For solutions considering microlens-parallax effects, it is
known that there may exist a pair of degenerate solutions with
u0>0 and u0<0 due to the mirror symmetry of the source
trajectory with respect to the binary axis (Smith et al. 2003;
Skowron et al. 2011). We inspect this “ecliptic degeneracy”
when microlens-parallax effects are considered in modeling.
In Table 1, we list the results of the individual modeling runs

in terms of χ2 values of the fits. In order to visualize the
goodness of the fits, we also present the residuals of the
individual models in the lower panels of Figure 3. For the pair
of solutions with u0>0 and u0<0 obtained considering
microlens-parallax effects, we present the residuals of the
solution yielding a better fit.
We compare the fits to judge the importance of the

individual higher-order effects. From this, it is found that the
major features of the light curve, i.e., the three peaks, still
cannot be adequately explained by the orbital effect alone,
although the effect improves fit by 14407.02cD ~ with
respect to the standard model. See the residual labeled as
“orbit” in Figure 3. For the parallax model, on the other hand,
the fit greatly improves, by 28677.02cD ~ , and all three-peak
features are approximately described. See the residual labeled
as “parallax” in Figure 3. We also find that the fit further
improves, by 534.02cD ~ with respect to the parallax model,
by additionally considering the lens-orbital effects. This
indicates that although the lens-orbital effect is not the prime
higher-order effect, it is important to precisely describe the
light curve. Due to the relatively minor improvement, it is not
easy to see the additional fit improvement by the lens-orbital
effect from the comparison of the residuals of the “parallax”
and “orbit+parallax” models. We, therefore, present the
cumulative distribution of Δχ2 between the two models as a
function of time in Figure 4. It is found that the fit improves
throughout the event and major improvement occurs at the first
and the second peaks and after the third peak. This indicates
that the widely separated multiple-peak features in the lensing
light curve help to constrain the subtle higher-order effects. To
check the consistency of the fit improvement, we also plot the
distributions for the individual data sets. From the distributions,
one finds that the χ2 improvement shows up in all data sets
(OGLE, MOA, KMTC, and KMTS) except for the KMTA data
set. We judge that the marginal orbital signal in the KMTA data
set is caused by the relatively lower photometry quality than the
other KMTNet data sets and the resulting smaller number of
data points (626 points compared to 975 and 1214 points of the
KMTS and KMTC data sets, respectively). We find that the

Table 1
Comparison of Models

Model 2c

Static 34436.4
Orbit 20019.4
Parallax u0>0 5749.4
L u0<0 6026.4
Orbit + parallax u0>0 5215.4
L u0<0 5221.2
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ecliptic degeneracy is quite severe although the model with
u0>0 is preferred over the model with u0<0 by 5.82cD ~ .

In Table 2, we present the lensing parameters of the best-fit
models. Because the ecliptic degeneracy is severe, we present
both the u0>0 and u0<0 solutions. Also presented are the
I-band magnitudes of the source, Is,OGLE, and the blend, Ib,OGLE,
estimated based on the OGLE data. We note that the lensing
parameters of the two solutions are roughly in the relation
u d dt u d dt, , , , , ,N N0 E, 0 E,a p a a p a« -( ) ( ) (Skowron et al.
2011). Several facts should be noted for the obtained lensing
parameters. First, the event timescale, tE∼68 days, is

substantially longer than typical lensing events with tE∼
20 days. Second, the binary parameters (s, q)∼(0.73, 0.87)
indicate that the lens is comprised of two similar masses with a
projected separation slightly smaller than Eq . Third, the normal-
ized source radius 0.62 10 3r ~ ´ - is smaller by about a factor
of ∼2.5 than the value of an event typically occurring on a star
with a similar stellar type to the source of OGLE-2016-BLG-
0156. Since E*r q q= , the small ρ value suggests that the
angular Einstein radius is likely to be big. Finally, the parameters
describing the higher-order effects, i.e., NE,p , EE,p , ds/dt, and
d dta , are precisely determined with fractional uncertainties

Figure 3. Top two panels show the best-fit model light curve, the curve superposed on the data points, obtained by considering both the microlens-parallax and lens-
orbital effects. The lower four panels compare the residuals of the four tested models. The “parallax” and “orbit” models are obtained by separately considering the
microlens-parallax and lens-orbital effects. The “standard” model considered neither of these higher-order effects.
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2.4%~ , 3.3%, 6.3%, and 4.1%, respectively. In Figure 5, we
present the Δχ2 distributions of MCMC points in the planes of
the pair of the higher-order lensing parameters.

In Figure 3, we present the model light curve, which is
plotted over the data points, of the best-fit solution, i.e., the
orbit+parallax model with u0>0. In Figure 6, we present the
corresponding lens-system configuration, showing the trajec-
tory of the source with respect to the caustic. When the binary
separation s is close to unity, caustics form a single closed
curve, “resonant caustic,” and as the separation becomes
smaller, the caustic becomes elongated along the direction
perpendicular to the binary axis and eventually splits into three
segments, in which one four-cusp central caustic is located
around the center of mass and the other two triangular caustics
are located away from the center of mass. (Erdl &
Schneider 1993; Dominik 1999). For OGLE-2016-BLG-
0156, the caustic topology corresponds to the boundary
between the single closed-curve (“resonant”) and triple
closed-curve (“close”) topologies. The source moved

approximately parallel to the elongated caustic, crossing the
caustic three times at the positions marked by t1, t2, and t3. The
first peak was produced by the source crossing over the slim
bridge part of the caustic connecting the four-cusp central
caustic and one of the triangular peripheral caustics. The peak
could in principle have been produced by the source star’s
approach to the the right cusp of the upper triangular caustic.
We check this possibility and find that it cannot explain the
light curve in the region around the first peak. The second and
third peaks were produced when the source passed the upper
and lower right parts of the central caustic, respectively.
We note that the well-covered three-peak feature in the

lensing light curve provides a very tight constraint on the
source trajectory, and thus on the higher-order effects. To
demonstrate the high sensitivity of the light curve to the slight
change of the source trajectory induced by the higher-order
effects, in Figure 7, we present the model fit of the standard
solution and the corresponding lens-system configuration. One
finds that the straight source trajectory without higher-order
effects can describe the second and third peaks by crossing
similar parts of the central caustic to those of the solution
obtained considering the higher-order effects. However, the
extension of the trajectory crosses the upper triangular caustic,
resulting in a light curve that differs greatly from the observed
one. The importance of well-covered multiple peaks in
determining Ep was first pointed out by An & Gould (2001)
and a good example was presented by Udalski et al. (2018) for
the quintuple-peak lensing event OGLE-2014-BLG-0289.

4. Physical Lens Parameters

4.1. Angular Einstein Radius

For the unique determinations of the mass and distance to the
lens, one needs to determine Eq as well as Ep . See Equations (2)
and (3). The angular Einstein radius is estimated from the
combination of the normalized source ρ and the angular source

Figure 4. Cumulative distribution of χ2 difference between the “parallax” and
“orbit+parallax” models. The light curve in the upper panel is presented to
show the region of the fit improvement.

Table 2
Best-fit Lensing Parameters

Parameter u0>0 u0<0

t0 (HJD′) 7504.730±0.012 7504.644±0.015
u0 0.083±0.001 −0.085±0.001
tE (days) 68.19±0.18 67.56±0.39
s 0.727±0.001 0.731±0.002
q 0.869±0.006 0.841±0.006
α (rad) 1.408±0.003 −1.408±0.002
ρ (10−3) 0.615±0.013 0.620±0.012
πE,N 0.334±0.008 −0.347±0.003
πE,E −0.335±0.011 −0.406±0.012
ds/dt (yr−1) 0.168±0.010 0.198±0.013
dα/dt (yr−1) −0.958±0.039 1.059±0.011
Is, OGLE 19.37±0.01 19.37±0.01
Ib, OGLE 19.77±0.01 19.77±0.01

Note.HJD HJD 2,450,000¢ = - .

Figure 5. Triangular diagram showing the Δχ2 distributions of MCMC points
in the planes of the pair of the higher-order lensing parameters NE,p , EE,p , ds/dt,
and d dta . Points marked in red, yellow, green, cyan, and blue represent those
with 1σ, 2σ, 3σ, 4σ, and 5σ, respectively.
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radius θ* by E *q q r= . The ρ value is determined from the
light-curve modeling. Then, one needs to estimate θ* for the
determination of Eq .
We estimate the angular source radius from the dereddened

color, (V−I)0, and brightness, I0. For this, we first measure the
instrumental (uncalibrated) source color and brightness from
the KMTC V- and I-band data sets processed using the pyDIA
photometry. We estimate the source color using the regression
of the V- and I-band data sets. The color can also be estimated
by using the model and we find that the source colors estimated
in both ways are consistent. Figure 8 shows the KMTC I- and
V-band data. In the second step, following the method of Yoo
et al. (2004), we calibrate the color and brightness of the source
using the centroid of the red giant clump (RGC) in the color–
magnitude diagram as a reference. In Figure 9, we mark the

Figure 6. Lens-system configuration. The curve with arrows represents the
source trajectory with respect to the caustic (closed curve composed of concave
segments). To show the variation of the caustic caused by the lens-orbital
motion, we present caustics at three moments corresponding to the times of the
three peaks in the lensing light curve. We mark the positions of source
crossings for the individual peaks occurring at t1, t2, and t3. The small dots
marked by M1 and M2 present the positions of the binary-lens components.
Lengths are scaled to the angular Einstein radius corresponding to the total
mass of the lens.

Figure 7. Model light curve (curve superposed on data points) obtained under
the assumption of the rectilinear relative lens-source motion. The lower panel
shows the residual from the model. The inset in the upper panel shows the lens-
system configuration corresponding to the model.

Figure 8. KMTC I- and V-band data sets processed using the pyDIA
photometry code. The data sets are used for the source color measurement.

Figure 9. Locations of the source and the centroid of red giant clump (RGC)
in the instrumental color–magnitude diagram of stars around the source.
The diagram is constructed using the pyDIA photometry of KMTC I- and
V-band data.
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positions of the source, with V I I, 1.99 0.01,- = ( ) (
19.31 0.01 ), and the RGC centroid, V I I, RGC- =( )
2.43, 15.98( ), in the instrumental color–magnitude diagram.
With the known dereddened color and brightness of the RGC
centroid, V I I, 1.06, 14.46RGC,0- =( ) ( ) (Bensby et al. 2011;
Nataf et al. 2013), combined with the measured offsets in color,

V I 0.44D - = -( ) , and brightness, ΔI=3.33, between the
source and the RGC centroid, we estimate that the dereddened
color and brightness of the source star are V I I, 0- =( )
V I I V I I, ,0,RGC- +D -( ) ( ) 0.62 0.01, 17.78 0.01=  ( ),
indicating that the source is a turn-off star. In the last step, we
convert the measured V−I into V−K using the color–color
relation of Bessell & Brett (1988) and then estimate the angular
source radius using the relation between the color and surface
brightness of Kervella et al. (2004). It is estimated that the
angular source radius is

0.79 0.06 as. 5*q m=  ( )

In addition to the measurement error, the source color
estimation is further affected by the uncertainty in determining
RGC centroid and the differential reddening of the field.
Bensby et al. (2013) showed that for lensing events in the fields
with well defined RGCs, the typical error in the source color
estimation is about 0.07 mag. We, therefore, estimate the error
bar of θ* by considering this additional error.

The estimated angular Einstein radius is

1.30 0.09 mas. 6Eq =  ( )

For a typical lensing event produced by a low-mass star
( M0.3~ ) located halfway between the source and observer
(D 4 kpcL ~ ), the angular Einstein radius is ME relq k p= ~

M M0.55 mas 0.3 1 2
( ) . Then the estimated angular Einstein

radius is 2 times bigger than the value of a typical lensing event.
This is expected from the small value of the normalized source
radius. Combined with the event timescale, the relative lens-
source proper motion in the geocentric frame is estimated by

t
6.94 0.69 mas yr . 7geo

E

E

1m
q

= =  - ( )

The corresponding proper motion in the heliocentric frame is
estimated by

v
au

5.94 0.43 mas yr .

8

helio geo
E

E
,

rel 1p
m m

p
p

= + = Å ^
-

( )

Here v v v, 3.1, 17.5 km sN E, , , , ,
1= =Å ^ Å ^ Å ^

-( ) ( ) denotes the
projected velocity of Earth at t0.

In Table 3, we summarize the estimated values of the angular
Einstein radius, relative lens-source proper motion (in both
geocentric and heliocentric frames), and the direction of the

relative motion, i.e., tan E N
1

helio, helio,f m m= - ( ). We also
present the quantities resulting from the u0<0 solution. The
obtained quantities are slightly different from those of the
u0>0 solution due to the slight differences in ρ, NE,p ,
and EE,p .

4.2. Mass and Distance

With the measured Ep and Eq , the masses of the individual
lens components are determined as

M M0.18 0.01 , 91 =   ( )

and

M qM M0.16 0.01 . 102 1= =   ( )

It is estimated that the lens is located at a distance

D 1.35 0.09 kpc. 11L =  ( )

The determined masses and distance indicates that the lens is a
binary composed of two M dwarfs located in the disk. The
projected separation between the lens components is

a s D 1.28 0.09 au. 12E Lq= = ^ ( )

We note that the u0<0 solution yields similar lens parameters.
In Table 4, we list the physical lens parameters for both the
u0>0 and u0<0 solutions.
We check the validity of the solution by estimating the

projected kinetic-to-potential energy ratio. We compute the
ratio from the physical lens parameters of M=M1+M2 and
â and the measured lensing parameters of s, α, ds/dt, and
dα/dt by

a

M M s

ds dt d dtKE

PE

au

8

1

yr yr
. 13

3

2 1

2

1

2

p
a

= +
^

^
- -


⎜ ⎟⎛
⎝

⎞
⎠

⎡
⎣
⎢⎢
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥

( )
( )

( )

In order for the lens system to be a gravitationally bound
system, the solution should satisfy the condition of
KE PE KE PE 1.0 ^( ) , where KE PE denotes the intrin-
sic energy ratio. The estimated ratio KE PE 0.08~^( ) satisfies
this condition. The low value of the ratio suggests that the
binary components are aligned along the line of sight.

4.3. Lens Brightness

Although the lens components are M dwarfs, they are
located at a close distance, and the flux from the lens can
comprise a significant portion of the blended flux, e.g., OGLE-
2017-BLG-0039 (Han et al. 2018). To check this possibility,
we estimate the expected brightness of the lens. The stellar
types of the lens components are about M4.5V and M5.0V with
absolute I-band magnitudes of M 10.5I,1 ~ and MI,2∼11.0
for the primary and companion, respectively, resulting in the

Table 3
Einstein Radius and Proper Motion

Quantity u0>0 u0<0

Eq 1.30±0.09 1.28±0.09
μgeo (mas yr−1) 6.94±0.50 6.91±0.50
μhelio (mas yr−1) 5.94±0.43 4.88±0.35
f 334° 215°

Table 4
Physical Lens Parameters

Parameter u0>0 u0<0

M1 (Me) 0.18±0.01 0.16±0.01
M2 (Me) 0.16±0.01 0.13±0.01
DL (kpc) 1.35±0.09 1.24±0.08
â (au) 1.28±0.09 1.16±0.08
KE PE ^( ) 0.08 0.08
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combined magnitude MI∼10.0. With the known distance to
the lens, the dereddened I-band magnitude is then
I M D5 log 5 20.6L I,0 L= + - ~ . From the OGLE extinction
map (Nataf et al. 2013), the total I-band extinction toward the
source is A 1.48I,tot ~ . Assuming that about half of the total
extinction is caused by the dust and gas located in front of the
lens, i.e., AI∼0.7, the expected brightness of the lens is

I I A 21.3. 14IL L,0= + ~ ( )

Compared to the brightness of the blend, I 19.8b,OGLE ~ , it is
found that the the flux from the lens comprises an important
fraction, ∼25%, of the blended light. We note that the color
constraint of the blended light cannot be used because the
uncertainty of the V-band blend flux measurement is bigger
than the flux itself.

The bright nature of the lens combined with the high relative
lens-source proper motion suggests that the lens can be directly
observed from high-resolution follow-up observations. For the
case of the lensing event OGLE-2005-BLG-169, the lens was
resolved from the source on the Keck AO images when they
were separated by ∼50 mas after ∼8 yr after the event (Batista
et al. 2015). By applying the same criterion, the lens and source
of OGLE-2016-BLG-0156 can be resolved if similar follow-up
observations are conducted ∼8.4 yr after the event, i.e., after
2024. For the case of another lensing event OGLE-2012-BLG-
0950, Bhattacharya et al. (2018) resolved the source and lens
using Keck and the Hubble Space Telescope when they were
separated by ∼34 mas. According to this criterion, then, the
source and lens of this event would be resolved in 2022.

Because follow-up observations are likely to be conducted in
near-infrared bands, we estimate the expected H-band bright-
ness of the lens. The absolute H-band magnitudes of the
individual lens components are M 8.2H ~ and 8.7 resulting
in the combined brightness of M 7.7H,0 ~ . With AI =
A 2 0.7I,tot ~ and E V I E V I 2 0.6tot- = - ~( ) ( ) from
Nataf et al. (2013) and adopting the relation AH ~

A0.108 0.14V ~ of Nishiyama et al. (2008), we estimate that
H-band brightness of the lens is

H M A D5 log 5 17.9. 15H HL ,0 L= + + - ~ ( )

The H-band brightness of the source is

H I E I H I H 17.5, 16S S 0= - - - - ~( ) ( ) ( )

which is similar to that of the the lens. When the lens brightness
is similar to the brightness of the source, the lens and source can
be better resolved as demonstrated for events OGLE-2005-BLG-
169 (Bennett et al. 2015), MOA-2008-BLG-310 (Bhattacharya
et al. 2017), and OGLE-2012-BLG-0950 (Bhattacharya et al.
2018).

5. Conclusion

We analyzed a binary microlensing event OGLE-2016-BLG-
0156. We found that the light curve of the event exhibited
pronounced deviations induced by higher-order effects,
especially the microlens effect. It is found that the multiple-
peak feature provided a very tight constraint on the microlens-
parallax measurement. In addition, the good coverage of all the
peaks from the combined survey observations allowed us to
precisely measure the angular Einstein radius. We uniquely
determined the physical lens parameters from the measured
values of Ep and Eq and found that the lens was a binary

composed of two M dwarfs located in the disk. We also found
that the flux from the lens comprises an important fraction of
the blended flux. The bright nature of the lens combined with
the high relative lens-source motion suggested that the lens
could be directly observed from high-resolution follow-up
observations.
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