Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2020 ## Supplementary information Structural evolution, electrochemical kinetic properties, and stability of A-site doped perovskite $Sr_{1\text{-}x}Yb_xCoO_{3\text{-}\delta}$ Chunyang Yang^a, Yun Gan^a, Myongjin Lee^a, Chunlei Ren^a, Kyle S. Brinkman^b, Robert D. Green^c, and Xingjian Xue^{a,*} ^a Department of Mechanical Engineering, University of South Carolina, Columbia, SC 29208, USA. ^b Materials Science and Engineering, Clemson University, Clemson, SC 29634, USA. ^c NASA Glenn Research Center, Cleveland, OH 44135, USA *Corresponding Author. Tel:1-803-576-5598; Fax: 1-803-777-0106; Email: Xue@cec.sc.edu (X. Xue) Fig. S1 Schematic of crystal structures: (a) SYbC0 at room temperature (Sr₆Co₅O₁₅, space group *R32* ¹), (b) SYbC10 at room temperature (space group *I4/mmm* ²). The crystal structures are visualized with VESTA program.³ Fig. S2 TEM images of SYbC10 powder: (a) particles with different sizes are marked, (b) aggregation of small particles. Fig. S3 XRD patterns of SYbC5 and SYbC10 powders calcinated at 1000 °C in air for 6 h, indices of tetragonal symmetry. Fig. S4 Cross-sectional SEM micrographs of symmetrical cell with SYbC5 (a) and SYbC10 (b) electrode sintered at 1050 °C in air for 2 h. Fig. S5 Cross-sectional SEM micrographs of symmetrical cell with SYbC10 electrode after durability test (a) and locally enlarged SEM image (b), the area with surface exsolved nano-particles are marked. Fig. S6 XRD patterns of SYbC10 powders before and after treated at 700 and 650 °C respectively in 5% CO₂-air for 2 h followed by cooling down under the protection of nitrogen gas, and peak position of SrCO₃ (JCPDS 05-0418). Fig. S7 XRD patterns of SYbC10 powders after treated at 700 in 5% CO₂-air for 2 h followed by cooling down under the protection of nitrogen gas, and those after treated at 700 in 5% CO₂-air for 2 h followed by treatment in pure air for another 2 h at 700 °C. ## References - W. T. Harrison, S. L. Hegwood and A. J. Jacobson, *J. Chem. Soc., Chem. Commun.*, 1995, 1953-1954. - 2. C. Sarno, T. Yang, E. Di Bartolomeo, A. Huq, K. Huang and S. McIntosh, *Solid State Ionics*, 2018, **321**, 34-42. - 3. K. Momma and F. Izumi, *J. Appl. Crystallogr.*, 2011, 44, 1272-1276.