21
22
23
24
25
26
27
28
29

39
40
41
42
43
44

46
47
48

49

Ontology-integrated Model-based Assurance Cases

Anonymous Author(s)

ABSTRACT

Assurance cases (ACs) are increasingly being championed in emerg-
ing autonomy safety standards as a preferred means of providing
confidence that an autonomous system is sufficiently safe. We have
substantially extended an open-source AC toolkit with a variety of
models to capture the diverse facets of assurance; namely models of:
system hazards and requirements recording an assurance basis, risk
scenarios and mitigations describing an assurance architecture, struc-
tured arguments capturing safety assurance rationale, and evidence.
This paper describes how we: 1) embed these core assurance models
in a user-extensible ontology to facilitate domain modeling, and
2) use an ontology-backed query language to analyze the resulting,
semantically enhanced assurance model. These extensions provide
system stakeholders with a capacity to specify queries that encode
domain- and role-specific assurance concerns, and will eventually
facilitate graphical views that communicate query results. So far as
we are aware, these innovations set our framework apart from the
state of the art and the prevailing practice in AC development. We
illustrate the utility of our framework by using examples from an
AC for an autonomous underwater vehicle system.

CCS CONCEPTS

« Software and its engineering — Domain specific languages;
Integration frameworks; « Computer systems organization
— Robotic autonomy.

KEYWORDS

Assurance cases, Autonomy, Model-based assurance, Ontologies,
Queries

ACM Reference Format:

Anonymous Author(s). 2020. Ontology-integrated Model-based Assurance
Cases. In MODELS °20: ACM/IEEE 23rd International Conference on Model
Driven Engineering Languages and Systems, October 18-23, 2020, Montreal,
Canada. ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/xxxyyyz.
XXXYYYZ

1 INTRODUCTION

An assurance case (AC) is a risk management artifact used to jus-
tify to stakeholders, e.g., regulators, that a system or service will
function as intended for a defined application and operating en-
vironment. ACs have been successfully used for dependability as-
surance of novel safety-critical applications where regulations and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

MODELS °20, October 18-23, 2020, Montreal, Canada

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-XXXX-X/XX/XX...$15.00
https://doi.org/10.1145/XXXyyyz.XXXyyyz

standards continue to be under development, e.g., unmanned air-
craft systems [5]. Increasingly, emerging autonomy safety stan-
dards [14, 21] are recommending the use of ACs to engender trust
in machine learning (ML) based autonomous systems.

A core component of an AC is a structured argument that captures
(often diagrammatically) the evidence and rationale for confidently
relying upon a system or service. Thus, the prevailing approaches
to AC development include either informal arguments whose con-
tent is largely given in descriptive natural language, fully formal
arguments, e.g., [13], or a combination of the two, e.g., [7].

Although readily comprehensible by human stakeholders, evalu-
ating informal arguments requires careful inspection by competent
domain experts. Conversely, formal arguments are amenable to
automated analysis but are limited in their scope: not all assur-
ance concerns of a system can be fully, or consistently formalized.
Additionally, experience reports of creating real-world ACs that
have successfully undergone regulatory scrutiny [3] suggest that
a richer, multi-faceted notion of assurance may be more appro-
priate. Practically, moreover, providing assurance entails allaying
stakeholder-specific concerns, and can involve mechanisms other
than assurance argumentation [11].

For this work, we have adopted AdvoCATE [9], an open-source,
model-based toolkit for structured arguments and their abstrac-
tions, i.e., patterns [8]. Over the past several years, we have extended
AdvoCATE with a number of supplementary models beyond those
that it provides for assurance rationale capture (arguments and
patterns), to construct, analyze, and maintain the following addi-
tional elements: an assurance basis, an assurance architecture, and
evidence (Section 2.2 elaborates these in more detail). In application
to real-world systems, we have found these to be practically useful
in the provision of assurance and, together with assurance rationale,
they constitute the core components of useful ACs.

This paper presents our vision for how ontologies can further en-
hance this model-based approach to assurance, and ongoing work
on its implementation in AdvoCATE, in particular: 1) formulating
domain-specific extensions to the underlying models, 2) query-
ing the resulting extended models', and 3) instantiating argument
patterns with artifacts from the extended models to automatically
generate instance arguments, with consistency between patterns
and their instances being maintained using bidirectional transfor-
mations (BX). We illustrate these enhancements using excerpts of
the components of an AC for an autonomous underwater vehicle,
showing how ontologies can enrich assurance modeling.

Our goal in integrating ontologies into model-based assurance is
to provide the benefits of formalism while retaining the key commu-
nicative purpose of ACs, without sacrificing their comprehensibility.
By mapping assurance case AC components to a domain-specific
ontology we facilitate AC validation, and by applying domain- and
stakeholder-specific queries to core AC components that have been

! This paper does not address views, although it is part of the broader scope of enhance-
ments planned as future work (see Section 4).

59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111

112

114
115

116

https://doi.org/10.1145/xxxyyyz.xxxyyyz
https://doi.org/10.1145/xxxyyyz.xxxyyyz
https://doi.org/10.1145/xxxyyyz.xxxyyyz

117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149

150

160
161
162
163
164
165
166
167
168
169
170
171
172
173

174

MODELS ’20, October 18-23, 2020, Montreal, Canada

semantically enriched using ontologies, we provide additional stake-
holder insights.

General purpose query languages for assurance arguments and
associated models have been investigated [18], as have languages
more targeted at assurance arguments [6], though neither has ex-
ploited integrations with ontologies. Ontologies have been widely
used in requirements development, e.g., [12], though less so for
ACs [16]. As such, so far as we are aware, ontology-integrated
model-based ACs represent a novel extension to the state of the art
and prevailing practice of AC development.

The rest of our paper is organized as follows: Section 2 presents
the core components of a model-based AC, while Section 3 presents
the ontology-based enhancements. Section 4 concludes, discussing
additional related work and future directions.

2 BACKGROUND

2.1 Preliminaries

As previously mentioned, we have extended AdvoCATE with addi-
tional components, towards an integrated assurance model. In this
section, we describe these concepts and exemplify (some of) them
with excerpts from an AC for a running example: an autonomous
underwater vehicle (AUV) tasked with performing a long duration
mission in which it is to provide surveillance of underwater relief
and other objects (e.g., mines).

The AUV payload is an imaging sonar that, together with a
forward scanning sonar, provides sensor information about the op-
erating environment to an onboard reinforcement learning-based
controller. This controller is itself embedded within an autonomous
planner component responsible for path planning. Two amongst
the main applicable assurance concerns are safety (avoiding colli-
sions, e.g., with static and dynamic obstacles) and mission continuity
(continuing to operate despite degradations).

2.2 Core Assurance Case Components

2.2.1 Assurance Basis. An assurance basis records the risks posed
by/to a system, and the corresponding risk management and miti-
gation objectives. We have extended AdvoCATE with tabular mod-
els to capture both these aspects, and Figure 1 shows an excerpt of
the assurance basis for the AUV AC.

The hazard log, which captures the risks posed (Figure 1, top),
comprises a collection of tabular hazard models that record hazard
conditions, precursors, effects, and associated level of risk posed,
together with high-level mitigation mechanisms. There exists a
hazard table for each operational context that is characterized by
the combination of AUV hazardous activities, system states, and
environmental conditions. A tabular requirements model (Figure 1,
bottom left) reflects the related assurance requirements associated
with the mitigations identified in the hazard log. The hazard log
also references these requirements (shown by the highlighted cells)
although the requirements model effectively captures different in-
formation relevant for the wider AC, e.g., requirement allocation
to system functions and components, verification methods, etc.

An example hazard, as shown, concerns a deviation from the
expected output (vehicle heading) of the autonomous planner AUV
component, and the resulting assurance requirements call for mon-
itoring and failover functionality.

Anon.

Also shown in Figure 1 (bottom right) is the AUV physical de-
composition used to allocate hazards and requirements.

2.2.2 Assurance Architecture. An assurance architecture details
(typically operational) risk scenarios showing the system capabili-
ties that participate in risk mitigation. Built compositionally, it is
an abstraction of how the system architecture contributes to risk
reduction and, in turn, to dependability assurance.

Barrier models represented using bow tie diagrams (BTDs) have
been shown to be useful for this purpose [10], and we have adopted,
added, and extended them in AdvoCATE. An example operational
scenario (not shown here due to space constraints) consistent with
the hazard identified in Figure 1 would contain, for instance, the
chain of events beginning from the deviation in the autonomous
planner output and terminating in a collision, also would also show
when the identified mitigation measures—such as runtime moni-
toring and failover mechanisms—are employed.

2.2.3 Assurance Rationale. Assurance rationale is the justification
for trusting that a system is fit for purpose. As indicated earlier,
AdvoCATE natively supports assurance rationale capture using
models of both structured arguments and their patterns.

An argument contains explicit assurance claims substantiated
by (typically diverse) evidence, where reasoning steps elaborate
why the evidence supplied entail the claims made. Arguments can
be specified graphically, in a textual form, or using a combination
of the two. AdvoCATE supports the graphical Goal Structuring
Notation (GSN) [20] for this purpose.

Figure 2 shows a GSN argument fragment substantiating a claim
of mitigating a lower-level hazard related to a deviation in the
heading output of the autonomous planner component (shown by
the rectangular goal node G550). This hazard is itself a cause of
a higher-level hazard (see Figure 1). The argument shows three
complimentary legs of reasoning; i.e., that: 1) the identified hazard
mitigation constraints and requirements have been met; 2) opera-
tional mitigations can effect recovery; and 3) the identified causal
factors of the hazard have been managed. These correspond, respec-
tively, to the strategy nodes (shown as parallelograms in Figure 2)
S13, S14, and S15, and their children nodes.

The diamond annotation on nodes indicates incompleteness.
The oval and racetrack shaped nodes are assumption and contextual
elements, respectively, that add clarifying detail to the argument
node to which they are attached. For instance, the claim in goal
node G552, rests on the assumption stated in the assumption node
A2. Other relevant argument nodes (not shown or discussed further
here, see [20] for details) provide justifications and solutions, the
latter of which refer to evidence items. Links between nodes with
solid arrowheads represent inferential relations, interpreted as “is
supported by”, while those with hollow arrowheads, interpreted as
“in context of”, are contextual relations.

Argument patterns are reusable abstractions of arguments, using
which the latter can be gradually developed through automated in-
stantiation and composition. AdvoCATE implements GSN patterns,
which include notational elements for abstraction via parameteriza-
tion, multiplicity, choice, and recursion. We defer further discussion
of patterns to Section 3.4, where we also present the ontology ex-
tensions to the same.

175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231

232

Ontology-integrated Model-based Assurance Cases MODELS 20, October 18-23, 2020, Montreal, Canada

[E] Hazard Log Editor 52

233 291
System State: | SS1: AUV Mode = Nominal EJ Environmental Condition: | EC1: Along track water currents, partially unknown underwater relief, stationary and moving objects B Hazard View: Default View B
234 Global Effects 4| 292
Hazardous Activity Hazard Allocation Condition Hazard Type Causes Mitigations New? Mitigation Type
235 Description Initial Risk Level 293
R6: The heading control output of the
236 B4: Runtime Autonomous planner shall be monitored for 294
E17: Autonomous planner monitoring N — el Sllar = epnmer £iae bn
lew esign Modification | of an object in the forward path and a -
237 EI1.51: AUV does not A‘(j;/“V"’es‘{im‘i‘v“:?"i"iﬁb he:;isgr;?:f:?emn;"fargdmzme of comm’[?;]m output alert shall be raised if the commanded BN AUV v\ol_alssf 295
; change heading from AUV: [P1] AUV 1 Aﬁ;’ﬁ:w Au\fje'a”d%;g N Safety collision course heading hea?;srlssen:etadd‘::\egr:r\;‘[f‘ltgrl;‘ ::;;:::;smn ':‘Q:;::,T:;Tﬁ'e ::o‘r:"r‘t;:: High
238 collision course heading AUV.collisionCourseHeading) JL',‘:QEZ?;?ZS?ET?J;Z forward path 296
path
239 - Di 297
85: E;;:Cgf[gg]a““ New Design Modification
240 298
H1: Long duration miss... | + | System States | Environmental Conditions
241 299
[E] *Requirements Table Editor 52 2] auv.physarch §%
242) Type Source Allocation Verification Method Verification Allocation physical decomposition 1.0 AUV 300
243 environment "[E] Environment" system{} 301
9 The head trol output of th NGE =AUV "[P1] AUV" system{ 20
244 s hemding cont ot of the P 1) A0 ste S 302
monitored for [TBD seconds] after a " " . . " 1S "[P1.1.1] Sids St b T
245 o | confirmed detection of an object inthe| ¢ o eloes ol cliangs VM2: Model-based formal | HeadingGhangeverification: Hybrid Flsonar "[P1.1.2] Forvard scan Sonar safety 303
AUV forward path and a alert shall be afety eading from:c verification System madal verffication.ofiheading ins "[P1.1.3] Inertial navigation system" syste
raised f the commanded heading is heading change upon obstacle detection o Eas e aneraal avig Y. y:
246 not different from the collision course y i sysies 304
heading by [TBD radians] envMonitoring: [F2] Environment - autonomousPlanner "[P1.2] Planner" system {
247 and situational awareness mlController "[P1.2.1.1] Reinforcement learning 305
monitoring imgSegNet "[P1.2.1.2] Image segmentation DCNN'
248 11Controller "[P1.2.2] Low level controller" sy 306
¥ ; } 2
S4: AUV does not change auvSimData-objRangeViolation: . " "
249 R7 Safety heading fmhr:ac;:isian course | hdCntrl: [F4.2] Heading control VM1: Simulation Wihole-systemsimilation- Betecting “tuiisxztu;gfl [ﬁffgf’ﬁ’ r?;-nsﬁiﬁﬁ';'tfw — 307
9 range to object propulsor "[P1.3.2] Propulsor" system
250 Reqirements Table | Formal Requirements Table | Sources [Verification Methods | 308
251 309
252 Figure 1: AdvoCATE screenshot showing an excerpt of the assurance basis component of an AUV assurance case. 310
253 311
254 G50 312
The hazard — the autonomous
255 planner does not command a C76 313
heading different from the collision Hazard EI7
256 course heading when there is a 314
detected object in the AUV forward
257 path — is acceptably mitigated 315
258 316
259 317
260 318
261 319
262 s13 S15 514 C78 320
263 Appeal to the Appeal to mitigation of Appeal to A MessUiance) 391
E satisfaction of hazard ; architecture, E
i £ the causal factors of operational autonomous
264 itioationicopstalnts the hazardous control mitigation 322
and requirements output planner hazard
analysis
265 o 323
266 324
267 v 325
G552 G560 G575
268 A2 The requirement — It is never All identified causal factors A disengage and failover function 326
i i the case that the autonomous leading to hazardous intervenes when the autonomous
There exists a feasible : A
269 non-collision course planner does not change the commanded heading output planner does not change heading 327
heading when there is a heading from the collision from the autonomous planner from collision course heading after
270 iecti course heading when there is are acceptably mitigated the detection of an object in the 328
detected object in the AUV
forward path a detected object in the AUV AUV forward path .
271 A forward path — is satisfied 329
272 ‘ 330
273 I S23 331
Decomposition:
274 Enumerate and 332
reason over each
275 identified causal 333
factor
276 acto 334
277 335
278 336
279 337
280 338
281 G563 G564 G565 G566 339
The causal factor — the RL The casual factor — the The causal factor — the The causal factor — the .
282 controller does not command RL controller does not reward function of the RL RL controller treats FLS 340
283 a heading change for certain receive FLS detection controller deprioritizes detections as non 34
> values of the range to inputs to command a FLS detections — is detections — is 341
284 obstacle input, when a heading change — is acceptably mitigated acceptably mitigated 342
heading change should be acceptably mitigated
285 commanded — is accepta... ‘ ‘ 343
286 ‘ ' 344
287 345
288 . . 346
Figure 2: Fragment of an assurance argument, in GSN, from the AUV assurance case.
289 347
290 3 348

362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406

MODELS 20, October 18-23, 2020, Montreal, Canada

2.2.4 Evidence. Evidence comprises, among other things, devel-
opment and operational data and artifacts that—together with the
above core components—concretely corroborate assurance claims,
thus underpinning an AC. The evidence model in our framework
captures the relationships not only between the various evidence
items (to be) used in an AC, but also to core AC components. Addi-
tionally, this model records evidence provenance, e.g., whether it is
(or will be) generated by a verification tool, and evidence assertions,
i.e., the concrete conclusions that can be drawn from a given item
of evidence.

3 APPROACH

3.1 Overview

Each of the components presented in the preceding section has
a model-based representation, which the tool user interface dis-
plays using a variety of formats—each component has a domain
specific language (DSL), and some also have tabular or graphical
representations. DSLs are built with Xtext?, tables with NatTable3,
and graphical diagrams using Sirius?. We refer to the collection
of inter-related models as the integrated assurance case model, or
simply AC model. We employ model transformations to generate
artifacts from the AC model, in particular, assurance arguments.

Though formal approaches have been taken to the construction
of ACs, either incorporating formal reasoning [7] or integrating
with external models with formal semantics [2, 13], this introduces
a tension with one of the fundamental purposes of ACs: to commu-
nicate and convince.’ We believe ontology-backed ACs can provide
the advantages of both informal and formal approaches.

Domain-
specific
Ontologies

Figure 3: Vision for ontology-backed assurance cases.

Figure 3 illustrates our vision, where the AC model is embedded
in a user-extensible ontology that contains information from the
assurance case, which can then be extended with domain-specific
concepts. The ontology can be validated by subject matter experts
(SMEs) and serves as a semi-formal specification of the domain that
can, optionally, be mapped to a formal semantics for verification.
Elements can, in turn, be used to construct parts of the assurance
case through the use of an ontology-backed structured language.

The ontology provides a vocabulary for, for example, claims of
the assurance arguments. Well-formedness of claims and soundness
of some forms of reasoning can be determined by the ontology. It
also provides a vocabulary for domain-specific queries that are

https://www.eclipse.org/Xtext/

3https://www.eclipse.org/nattable/

“https://www.eclipse.org/sirius/

5That the sources of risk have been identified, are well-understood, and that they have
been appropriately managed.

Anon.

also used in patterns to generate arguments. We will focus on the
queries and patterns here.

3.2 Ontology Extensions

We map elements of the AC model to concepts, relations, and their
instances in a derived ontology that is user-extensible. This ontology,
itself, then forms part of an extended model. Since the ontologies
are, in effect, also part of our model, we will sometimes use core
model to refer to the non-ontological part.

For example, one of the extensions we have made to the core
model in AdvoCATE includes a simple notion of physical architec-
ture consisting of a hierarchy of components (see Figure 1, bottom
right). In the ontology, we represent this by a concept Component,
whose instances are the actual components of a given system. A
relation subComponent represents the containment relation of the
architecture. The user can then define new concepts and relations
to enrich the model, such as concepts for component input and
output, and relations for connections.

Figure 4 illustrates some features of our ontology definition
language, which has an object-oriented flavor and is reasonably
verbose. We distinguish conceptual and instance ontologies, where
the former defines concepts and their relations, and the latter instan-
tiates them. Concept declarations optionally give super-concepts,
attributes, and relations to other concepts. Attributes have types
(primitive, enumerated, list, record, and any combination).

In the AUV conceptual ontology example (Figure 4, left) the con-
cept Actuator is a sub-concept of AUVComponent, with the boolean
attribute isActuated and the relations actuates and sending, to
the concepts PhysicalComponent and ActuationSignal, respec-
tively. We can also define concepts from other concepts using union,
intersection, negation, and quantification along relations. We can
lift attributes from the target concept of a relation to the relation,
itself. Here, a DetachedFin is defined to be a Fin such that every
DegradedFin it degradesTo has no (zero) liftDragEfficiency
despite being actuatedBy every FinActuator that isActuated.

We have defined our own languages rather than use existing lan-
guages such as the Web Ontology Language (OWL)® and SPARQL’
because it enables a tighter integration with our core model and a
similar style of DSL.

3.3 Queries

Figure 5 shows example queries over the integrated AC model.

Figure 5a shows a query for goal nodes of arguments in the
AC, that contain claims referring to the reinforcement learning
controller, and that are eventually supported (i.e., followed) by at
least one solution node that is related to verification evidence. Here,
eventually is used to form the reflexive transitive closure of a
relation.

The second query, in Figure 5b, looks for requirements allocated
to the autonomous planner (autonomousPlanner), and that repre-
sent the requirements to implement the mitigations of hazards that
are, in turn, allocated to the AUV fins (Fin) and whose hazard condi-
tion involves either a stuck open starboard fin (stuckOpenStbdFin)
or detached port fin (detachedPrtFin). These items correspond to

Chttps://www.w3.0org/OWL/
"https://www.w3.org/TR/sparql11-query/

407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448

449

https://www.eclipse.org/Xtext/
https://www.eclipse.org/nattable/
https://www.eclipse.org/sirius/
https://www.w3.org/OWL/
https://www.w3.org/TR/sparql11-query/

465
466
467
468
469
470
471
472
473
474

476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500

501

Ontology-integrated Model-based Assurance Cases

|£] auvConceptual.ontology 53

~define 1.0 auvConceptual
concept AUVDataVar
concept componentStateVar

// Declares conceptual AUV ontology

= concept AUVComponent is an Item { // AUV Component
hasInput an AUVDataVar
hasOutput an AUVDataVar
hasState a componentStatevar }

enum actuationSignalType{ finAngle, rpm }
enum locationType {top, bottom, starboard, port}
= enum finActuationType { fullActuation,
slightUnderActuation, largeUnderActuation}

= concept Actuator is an AUVComponent { // Actuator
isActuated bool
actuates a PhysicalComponent, sending an ActuationSignal }

concept ActuationSignal { actuationSignal actuationSignalType }

= concept FinActuator equals Actuator such that actuates all Fin
and actuationSignal = finAngle { actuationType finActuationType }

~ concept Fin is a PhysicalComponent {
finLocation locationType
trueFinAngle real
fin0ffset real
finEfficiency real
liftDragForce real
actuatedBy a FinActuator, receiving an ActuationSignal
degradesTo a DegradedFin }

// AW Fins

concept DegradedMode // Degraded modes
= concept DegradedFin is a DegradedMode { // Degraded fin
finEfficiency real
finAngle real
fin0ffset real
liftDragForce real }

concept StuckFin equals Fin such that all degradesTo.finEfficiency < 0.75
= concept DetachedFin equals Fin such that all degradesTo.liftDragForce = 0
and all actuatedBy.isActuated = true

MODELS 20, October 18-23, 2020, Montreal, Canada

|£] auv.ontology $%

= instantiate 1.0 auvConceptual as auv // Instantiate AUV conceptual ontology
import mlcontroller // Import ML controller instance ontology

= AUVDataVar
currentAUVHeading, collisionCourseHeading, // Current and Collision headings
currentAUVSpeed, currentAUVSpeedDVL
currentAUVDepth, currentRangeToInf,
currentInfBearing, timeInflLastSeen,
maxPredictedSASRange, closestPointOfApproach

= Controller autonomousPlanner {
// Vehicle State inputs to mlController
e hasInput (
currentAUVHeading, currentAUVSpeed,
currentAUVSpeedDVL, currentAUVDepth)

// Surveilled infrastructure information
© hasInput (
currentRangeToInf, currentInfBearing,
timeInfLastSeen, maxPredictedSASRange)
hasInput closestPointOfApproach // Obstacle Information
// Autonomous planner outputs are the outputs of mlController
© hasOutput (
mlcontroller.desiredAUVHeading, mlcontroller.desiredAUVDepth,
mlcontroller.desiredAUVSpeed)
}
Actuator finActuator, propulsor // Actuators
Fin TopFin { finLocation = top }
Fin BottomFin { finLocation = bottom }
Fin StbdFin { finLocation = starboard }
Fin PortFin { finLocation = port }

// AW fins

= StuckFin stuckOpenStbdFin {
finLocation = starboard
fin0ffset = 90

// Stuck open starboard fin

= DetachedFin detachedPrtFin {
finLocation = port
finEfficiency = @ }

Figure 4: Fragments of (left) AUV conceptual ontology describing fin degradation modes and (right) AUV instance ontology

instantiating the autonomous planner component and AUV fins.

ArgumentNode such that type = goal
and description = “xrlControllerx” and
eventually SupportedB{ some (ArgumentNode
such that type = solution and
some relatedEvidence.type = verification)

(a) Querying the structured argument component.

Requirement such that allocation contains autonomousPlanner
and isRequirement for some Mitigation for some
(Hazard such that allocation contains Fin and
(condition contains stuckOpenStbdFin or
condition contains detachedPrtFin))

(b) Querying the assurance basis component.

Figure 5: Examples of querying the AUV AC invoking terms declared in ontologies.

the concepts and instances defined in the corresponding ontologies
(Figure 4).

Note, here, that we use “allocation” in two distinct ways: in the
first part of the query it refers to a requirements allocation, which is
a responsibility assignment of the requirement to, say, a component
in the physical decomposition model, also reflected as an instance
in the instance ontology. In the second part of the query, it refers
to a hazard allocation, that is, the location of the hazard.

3.4 Pattern-based Argument Generation

As previously discussed (Section 2.2.3), argument patterns are an
abstraction that can be used to transform data into arguments. Fig-
ure 6 shows an argument pattern in GSN, abstracting the (reasoning
steps of the) argument structure of Figure 2. In this pattern, the ab-
stractions are parameters enclosed in braces “{ }” in the argument
nodes, multiplicity annotations on the links (shown as ‘+’), and the
loop link connecting children nodes to their ancestors. We do not
discuss the remaining pattern abstractions [20] here.

We can instantiate such patterns using source data to replace
the specified parameters. This data is either external to the AC
(e.g., extracted from a collection of test cases), or internal to the AC

and extracted from other components of the AC (such as hazard
tables; see Section 2.2). Argument patterns are, in effect, a concise
domain-specific notation for defining transformations of source
data into assurance arguments. To instantiate a pattern, we assign
the root parameter to some element of the model (such as a specific
hazard table), and queries then navigate from that point through
the model to instantiate the remaining parameters in the pattern.

For example, in the pattern root goal node G1 (Figure 6), we
query for those hazards allocated to the autonomousPlanner com-
ponent declared in the physical decomposition (Figure 1) and whose
hazard condition (that is, the desired heading does not change from
the current heading, which is also the collision course heading)
contains the statement shown. Here, allocated and condition
are elements of the core model reflecting, respectively, the hazard
allocation and the specific state that precipitates the hazard (hazard
condition). Also, desiredAUVHeading, currentAUVHeading, and
collisionCourseHeading are instances in the AUV instance on-
tology (Figure 4, right) of the AUVDataVar concept declared in the
AUV conceptual ontology (Figure 4, left).

We annotate links with constraints between parameters that
enable, for example, the requirement claim in goal node G4 to be

533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554

556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580

598

600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637

638

MODELS ’20, October 18-23, 2020, Montreal, Canada

G1
The hazard — {hazard.description such that
allocation contains autonomousPlanner and
condition contains ((auv.desiredAUVHeading
= auv.currentAUVHeading) and
(auv.currentAUVHeading =
auv.collisionCourseHeading))} — is
acceptably mitigated

C1
Hazard
{hazard.ID}

A

hazard = hazard.hazardCauses
y
I A 4

S3
Appeal to mitigation
of the causal factors
of the hazardous
control output

mitigation = ‘

hazard.mitigation G3
such that type =
Operational

S1
Appeal to
satisfaction of
hazard mitigation
constraints and
requirements

S2
Appeal to
operational
mitigation

reqClaim =
hazard.mitigation.
requirement

All identified causal
factors leading to
hazardous output from
{hazard.allocation} are
acceptably mitigated

A 4
G4
The requirement —
{reqClaim.description}
— is satisfied

G2

A {mitigation.description}
intervenes when
{hazard.description}

® ®

sS4
Decomposition:
Enumerate and
reason over each
identified causal
factor

Figure 6: GSN argument pattern abstracting the argument
structure of Figure 2, enriched with ontological data.

located in the model, given the hazard in goal node G1. We then
instantiate the text in G4 with the description of that requirement
in the model. The link from the strategy node S4 to the goal node
G1 is a loop, reflecting the recursive nature of this pattern: causes
of hazards are, themselves, hazards, and thus amenable to the same
reasoning.

The tool generates traceability links allowing navigation be-
tween the argument, pattern, and source data, and we use bidirec-
tional transformations to maintain consistency whilst supporting
round-trip persistence, that is, the ability to edit arguments gener-
ated from patterns and for those edits to persist when the argument
is re-generated. Users can optionally propagate selected edits to the
corresponding artifacts. For instance, we can add an assumption
node to the instance argument generated (such as the assumption
node A2, as shown in Figure 2), and optionally propagate that
change to the pattern of Figure 6, abstracting node content as a pa-
rameter whose value is resolved by a query locating the assumption
connected to reqClaim.

4 CONCLUDING REMARKS

We have described ongoing work on the integration of ontologies
into the AdvoCATE model-based AC toolset. Thus far we have
primarily used the ontologies for domain and system modeling,
and querying the extended model. By tightly coupling the DSLs for
ontology definition with the other AC languages in the tool, we
offer powerful new mechanisms for AC creation and analysis.

Related Work. The distinction between models and ontologies
has been discussed in the literature. Our view is close to that of [1]

Anon.

who consider models to be prescriptive (and representing specifica-
tions of a system) while ontologies are descriptive (and constituting
a description of the external world as it is). We think this is a use-
ful distinction, though we also allow ontologies to represent the
system under assurance. In practice, this is reflected in extensions
to AdvoCATE, where the built-in assurance model comprises those
well-defined domain-independent components that we consider
key parts of an AC, while the ontologies allow users to flexibly
model domain-specific extensions.

Previous work on integrating models and ontologies [1, 19, 22]
has discussed how to use ontologies to provide semantics to en-
rich relations between models, such as model transformations, but
has tended to present high-level abstract frameworks, rather than
concrete tools and languages.

There has been much work on mediating database access through
ontologies. Most relevant to our work is the notion of ontology-
based database access [4] where a database can be queried using an
extended vocabulary that enriches a database with domain-specific
semantics. This can use ontology-to-database mappings [15] where
declarative rules describe how elements of relational database
schemas correspond to the ontology.

Most of this work has been domain-independent and not directly
targeting assurance, although [16] explores the use of ontologies
for hazard analysis, while [17] explores using ontologies to elicit
safety requirements. However, they do not distinguish model and
ontology, using ontology to refer to a fixed prescribed structure for
representing hazards and their constituent elements (corresponding
to the assurance basis component of our model), as well as domain-
specific parts that for us would be captured by an ontology.

Future Directions. As mentioned, one of the main motivations
for this work is to support validation (and ultimately verification)
of the AC. We are doing this by embedding model elements in a
domain ontology. A second aspect of this, which is ongoing, is the
development of a structured language for expressing claims and
other statements in the structured argument component of an AC.
We aim to support a range of formality, from free-form natural
language to structured statements composed of elements from the
ontology, for which well-formedness and correctness of inference
rules (with respect to the ontology) would be automatically en-
forced. The ontology could also be used to automatically generate
sub-claims.

Although we have chosen to implement our own ontology defi-
nition languages, we do not discount the merits of integrating with
other ontology tools, and plan to define import/export mechanisms
via the OWL standard. We are also working on a view language
that exploits queries to generate user-specified visualizations, both
graphical and tabular.

We have described how we use bidirectional transformations to
keep several artifacts in an AC consistent, in particular patterns and
arguments. We plan to develop similar transformations between the
ontology and the other assurance artifacts (e.g., adding a subgoal
to an argument could add an instance to an ontology concept).

REFERENCES

[1] Uwe ABmann, Steffen Zschaler, and Gerd Wagner. 2006. Ontologies, Meta-models,
and the Model-Driven Paradigm. Springer Berlin Heidelberg, Berlin, Heidelberg,
249-273. https://doi.org/10.1007/3-540-34518-3_9

639
640
641
642
643
644
645
646
647
648
649
650

652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695

696

https://doi.org/10.1007/3-540-34518-3_9

697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722

724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754

=

Ontology-integrated Model-based Assurance Cases

[2] Nurlida Basir, Ewen Denney, and Bernd Fischer. 2010. Deriving Safety Cases

for Hierarchical Structure in Model-Based Development. In Proceedings of the
29th International Conference on Computer Safety, Reliability, and Security (Vi-
enna, Austria) (SAFECOMP’ 10), Erwin Schoitsch (Ed.). Springer-Verlag, Berlin,
Heidelberg, 68-81.

Randall Berthold, Ewen Denney, Matthew Fladeland, Ganesh Pai, Bruce Storms,
and Mark Sumich. 2014. Assuring Ground-based Detect and Avoid for UAS Oper-
ations. In Proceedings of the 33rd IEEE/AIAA Digital Avionics Systems Conference
(DASC). 6A1-1-6A1-16.

Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenzerini,
Antonella Poggi, and Riccardo Rosati. 2007. Ontology-based Database Access. In
Proceedings of the 15th Italian Symposium on Advanced Database Systems (SEBD
2007), Michelangelo Ceci, Donato Malerba, and Letizia Tanca (Eds.). Torre Canne,
Fasano, BR, Italy, 324-331.

Reece Clothier, Ewen Denney, and Ganesh Pai. 2017. Making a Risk Informed
Safety Case for Small Unmanned Aircraft System Operations. In Proceedings of
the 17th AIAA Aviation Technology, Integration, and Operations Conference (ATIO
2017), AIAA Aviation Forum. https://doi.org/10.2514/6.2017-3275

Ewen Denney, Dwight Naylor, and Ganesh Pai. 2014. Querying Safety Cases. In
Computer Safety, Reliability and Security. SAFECOMP 2014., Andrea Bondavalli and
Felicita Di Giandomenico (Eds.). Lecture Notes in Computer Science, Vol. 8666.
Springer, 294-309. https://doi.org/10.1007/978-3-319-10506-2_20

Ewen Denney and Ganesh Pai. 2014. Automating the Assembly of Aviation Safety
Cases. IEEE Transactions on Reliability 63, 4 (2014), 830-849.

Ewen Denney and Ganesh Pai. 2015. Safety Case Patterns: Theory and Applications.
Technical Report NASA/TM-2015-218492. NASA Ames Research Center.

Ewen Denney and Ganesh Pai. 2018. Tool Support for Assurance Case Devel-
opment. Journal of Automated Software Engineering 25, 3 (Sep. 2018), 435-499.
https://doi.org/10.1007/s10515-017-0230-5

Ewen Denney, Ganesh Pai, and Jain Whiteside. 2017. Model-driven Development
of Safety Architectures. In 2017 ACM/IEEE 20th International Conference on Model
Driven Engineering Languages and Systems (MODELS). 156-166. https://doi.org/
10.1109/MODELS.2017.27

Ewen Denney, Ganesh Pai, and Iain Whiteside. 2019. The Role of Safety Archi-
tectures in Aviation Safety Cases. Reliability Engineering & System Safety 191
(2019). https://doi.org/10.1016/j.ress.2019.106502

Stefan Farfeleder, Thomas Moser, Andreas Krall, Tor Stalhane, Inah Omoronyia,
and Herbert Zojer. 2011. Ontology-Driven Guidance for Requirements Elicita-
tion. In The Semanic Web: Research and Applications, Grigoris Antoniou, Marko

MODELS 20, October 18-23, 2020, Montreal, Canada

Grobelnik, Elena Simperl, Bijan Parsia, Dimitris Plexousakis, Pieter De Leenheer,
and Jeff Pan (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 212-226.
Andrew Gacek, John Backes, Darren Cofer, Konrad Slind, and Mike Whalen. 2014.
Resolute: An Assurance Case Language for Architecture Models. In Proceedings of
the 2014 ACM SIGAda Annual Conference on High Integrity Language Technology
(HILT ’14). ACM, New York, NY, USA, 19-28.

International Organization for Standardization (ISO). 2019. Road vehicles —
Safety of the intended functionality. Standard ISO/PAS 21448:2019.

Kamran Munir and M. Sheraz Anjum. 2018. The use of ontologies for effec-
tive knowledge modelling and information retrieval. Applied Computing and
Informatics 14, 2 (2018), 116 — 126. https://doi.org/10.1016/j.aci.2017.07.003
Abigail Parisaca Vargas and Robin Bloomfield. 2015. Using Ontologies to Sup-
port Model-Based Exploration of the Dependencies between Causes and Con-
sequences of Hazards. In Proceedings of the International Joint Conference on
Knowledge Discovery, Knowledge Engineering and Knowledge Management (IC3K
2015). Lisbon, Portugal, 316-327. https://doi.org/10.5220/0005618003160327
Luciana Provenzano, Kaj Hanninen, Jiale Zhou, and Kristina Lundqvist. 2017. An
Ontological Approach to Elicit Safety Requirements. In 2017 24th Asia-Pacific
Software Engineering Conference (APSEC). Nanjing, China, 713-718.

Alessio Di Sandro, Sahar Kokaly, Rick Salay, and Marsha Chechik. 2019. Querying
Automotive System Models and Safety Artifacts with MMINT and Viatra. In 2019
ACM/IEEE 22nd International Conference on Model Driven Engineering Languages
and Systems Companion (MODELS-C). Munich, Germany, 2-11.

Steffen Staab, Tobias Walter, Gerd Groner, and Fernando Silva Parreiras. 2010.
Model Driven Engineering with Ontology Technologies. Springer Berlin Heidelberg,
Berlin, Heidelberg, 62-98. https://doi.org/10.1007/978-3-642-15543-7_3

The Assurance Case Working Group (ACWG). 2018. Goal Structuring Notation
Community Standard Version 2. https://scsc.uk/r141B:1

Underwriter Laboratories Inc. 2020. ANSI/UL 4600 Standard for Safety for the
Evaluation of Autonomous Products.

Srdjan Zivkovi¢, Marion Murzek, and Harald Kiihn. 2008. Bringing Ontology
Awareness into Model Driven Engineering Platforms. In Proceedings of the Ist
International Workshop on Transforming and Weaving Ontologies in Model Driven
Engineering TWOMDE 2008, Toulouse, France, September 28, 2008 (CEUR Workshop
Proceedings, Vol. 395), Fernando Silva Parreiras, Jeff Z. Pan, Uwe Afimann, and
Jakob Henriksson (Eds.). CEUR-WS.org, 47-54.

755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811

812

https://doi.org/10.2514/6.2017-3275
https://doi.org/10.1007/978-3-319-10506-2_20
https://doi.org/10.1007/s10515-017-0230-5
https://doi.org/10.1109/MODELS.2017.27
https://doi.org/10.1109/MODELS.2017.27
https://doi.org/10.1016/j.ress.2019.106502
https://doi.org/10.1016/j.aci.2017.07.003
https://doi.org/10.5220/0005618003160327
https://doi.org/10.1007/978-3-642-15543-7_3
https://scsc.uk/r141B:1

	Abstract
	1 Introduction
	2 Background
	2.1 Preliminaries
	2.2 Core Assurance Case Components

	3 Approach
	3.1 Overview
	3.2 Ontology Extensions
	3.3 Queries
	3.4 Pattern-based Argument Generation

	4 Concluding Remarks
	References

