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ABSTRACT:
This paper demonstrates the use of two Bayesian statistical models to analyze single-event sonic boom exposure

and human annoyance data from community response surveys. Each model is fit to data from a NASA pilot study.

Unlike many community noise surveys, this study used a panel sample to collect multiple observations per partici-

pant instead of a single observation. Thus, a multilevel (also known as hierarchical or mixed-effects) model is used

to account for the within-subject correlation in the panel sample data. This paper describes a multilevel logistic

regression model and a multilevel ordinal regression model. The paper also proposes a method for calculating a sum-

mary dose-response curve from the multilevel models that represents the population. The two models’ summary

dose-response curves are visually similar. However, their estimates differ when calculating the noise dose at a fixed

percent highly annoyed. https://doi.org/10.1121/10.0001021

(Received 3 October 2019; revised 12 March 2020; accepted 16 March 2020; published online 13 April 2020)

[Editor: Sanford Fidell] Pages: 2222–2234

I. INTRODUCTION

Community annoyance due to loud and startling sonic

booms is the major contributing factor to the existing ban on

commercial supersonic flights over land. Since before the

ban, NASA and partners have researched how to make these

sonic booms quieter, specifically how to strategically design

the aircraft to achieve a shaped sonic boom (Maglieri et al.,
2014). Lockheed Martin, under contract with NASA, is

currently building an experimental aircraft designed to dem-

onstrate this quiet supersonic technology, the X-59 Quiet

SuperSonic Technology (QueSST). NASA will use this

aircraft to conduct social surveys in order to understand how

community members perceive the sounds of quiet super-

sonic flight. The resulting survey data will support efforts to

develop international standards for replacing the current ban

on commercial supersonic flight over land with a noise-

based limit. For example, a dose-response curve established

from the data can be used to predict the degree of annoyance

for a population at a particular noise level within the tested

noise dose range.

This paper describes how to calculate a summary dose-

response curve from two different Bayesian statistical mod-

els. Each summary dose-response curve characterizes the

population on average. Both models are fit to panel sample

data from NASA’s pilot community annoyance survey, the

Quiet Supersonic Flights 2018 (QSF18) test, where each

participant was asked to respond to an annoyance survey

multiple times. The two models are the multilevel logistic

regression model and the multilevel ordinal regression

model. The goal is to demonstrate fitting the two multilevel

models to the QSF18 data, and we do not attempt to down-

select to either model.

The analysis method is selected based on the potential

uses of the models. The primary goal is to estimate a popula-

tion representative summary dose-response curve. In addi-

tion, it is desired to use the models to inform experimental

design and planning of future surveys, such as estimating

the minimum number of participants required and investi-

gating a sufficient range of noise doses for the sonic boom

events.1 For these two reasons, we choose to use a statistical

model over a curve-fitting approach to analyze the data

because a statistical model considers the data-generating

process with randomness and can be used for statistical

inference and prediction.

Because each participant in the study can respond mul-

tiple times, a multilevel model is used to model the correla-

tion among the multiple responses from the same participant

via individual-level parameters (Fitzmaurice et al., 2012;

Hu et al., 1998). The X-59 community surveys will likely

also use panel samples because Fidell and Horonjeff (2019)

found that telephone surveys without callbacks after each

event resulted in a very low survey completion rate that made

a cross-sectional sampling approach impractical for sonic

boom community response surveys. By contrast, many com-

munity noise surveys collect cross-sectional data, which are

often assumed to be independent because each participant in

the study responds only once. These two types of data, single

and multiple responses from each participant, require different

statistical modeling techniques. A multilevel model is onea)Electronic mail: jonathan.rathsam@nasa.gov
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appropriate method for analyzing panel sample data,2 whereas

a non-multilevel model is appropriate for cross-sectional data.

Using maximum likelihood estimation to find parameter val-

ues can be a complicated optimization problem for a model

with many parameters, like those proposed in this paper. If the

analyst has an efficient multidimensional optimizer, it may

be possible to fit these models using maximum likelihood esti-

mation. We instead use a Bayesian inference framework.

Bayesian approaches supplement the likelihood with a proba-

bility distribution (called the prior distribution) that captures

knowledge about the unknown parameters in the model. Our

prior distributions will typically be noninformative, as dis-

cussed in Sec. II D. The Bayesian specification allows us to use

Markov chain Monte Carlo (MCMC) algorithms to perform

inference and quantify uncertainty about the model parameters.

MCMC frames the inference problem as a sampling problem

(how to draw a random sample from the posterior distribution

of the unknown parameters) instead of an optimization problem

(which values of the parameters maximize the likelihood), and

can simplify the computation of parameter estimates and uncer-

tainty intervals for high-dimensional models like those we

employ.

A. Literature review

The community noise literature consists of a mix of sta-

tistical models and curve-fitting methods for calculating a

dose-response curve. One of the first examples is by Schultz

(1978), which proposed a single dose-response curve

derived from a meta-analysis of multiple transportation

noise surveys to describe human annoyance. Schultz (1978)

also proposed to use percent highly annoyed to describe the

community response, which was later adopted by the United

States Environmental Protection Agency (EPA) (U.S.

Environmental Protection Agency, 1982) as the impact cri-

terion of noise on communities. The Schultz Curve is an

average of multiple third-degree polynomial curve fits, each

fit to data from an individual survey from a community

noise survey database. One major disadvantage is that the

Schultz Curve does not constrain the probability of high

annoyance between 0 to 1. The Federal Interagency

Committee on Noise (FICON) (Federal Interagency

Committee on Noise, 1992) recommends the logistic regres-

sion model instead because this statistical model fits simi-

larly to the Schultz Curve while bounding the probability.

Another curve-fitting method is proposed by Fidell et al.
(2011) and Fidell et al. (1988), with the specific function:

p ¼ exp ð�A=mÞ, where A is the parameter of interest, and

m is a transformation of the noise dose based on Stevens’

Power Law (Stevens, 1975). This curve bounds the probabil-

ity and is parsimonious because it only has one free parame-

ter. Instead of fitting to data from each survey separately,

Miedema and Vos (1998) proposed two methods to pool

together data from multiple surveys. The first is to pool

together data from surveys with the same type of transporta-

tion noise source (aircraft, railway, or road noise) and fit a

quadratic regression model to each of the three datasets. The

second is to use a multilevel model to partially pool together

all the survey data, and use the type of transportation noise

source as the grouping level. The quadratic regression

model, with or without the multilevel model structure, suf-

fers the same drawback as the Schultz curve of not bounding

the probability of high annoyance. Groothuis-Oudshoorn

and Miedema (2006) suggest a multilevel interval regression

model, which also models the transportation noise source as

the grouping level. It models ordinal responses, such as a

response from an ordered 1–5 response scale. Other exam-

ples of multilevel modeling of cross-sectional data, where

each participant in the study only responds once, are Wilson

et al. (2017) and Miller et al. (2014). While a multilevel

model can be used to pool together cross-sectional data

from different surveys or communities, it can also be used

to model panel sample data as demonstrated with sleep dis-

turbance data and laboratory noise annoyance data by

Sch€affer et al. (2017), Troll�e et al. (2014), and Gille et al.
(2016). This paper fits multilevel models to panel sample

data from a community annoyance survey, adding an addi-

tional application to those cited above, by refining the analy-

sis methods introduced in Rathsam et al. (2018a).

II. METHODS

The data necessary for this dose-response analysis are

the collected survey responses and the corresponding noise

doses. First, the data collection method is briefly described.

Then the two statistical models and a general outline for

assessing the model fits are described.

A. Field test overview

The Quiet Supersonic Flights 2018 test was conducted

in Galveston, Texas on November 5–15, 2018. The quiet

sonic booms were produced by an F-18 research aircraft per-

forming a supersonic dive maneuver (Haering et al., 2006)

over the Gulf of Mexico, 10 to 20 nautical miles off the

coast of Galveston. There were a total of 22 flights and 52

quiet sonic boom events distributed across 9 test days. The

data analyzed in this paper are responses from the single-

event survey that participants were asked to complete

promptly after every event in order to characterize their

perceptions of individual occurrences of the sonic booms.

B. Estimated noise dose

The dose-response analysis requires matching each

survey response with an estimated noise dose. Noise doses

are estimated via a combination of measurement and predic-

tion. Eleven noise monitors were set up across the commu-

nity survey area to measure the quiet sonic booms. Multiple

noise metrics were calculated from the pressure waveforms

measured at each monitor. In this paper, quiet sonic boom

exposure is quantified in terms of perceived level (PL)

(Shepherd and Sullivan, 1991; Stevens, 1972) because PL is

one of several noise metrics shown to correlate well with

human annoyance in the lab (Rathsam et al., 2018b), and

the acoustic requirements for X-59 were written in terms of
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PL. Due to the sometimes low signal to noise ratio between

the quiet sonic booms and the background noise, measure-

ments were only retained for analysis if the PL of the quiet

sonic boom was 5 dB or greater than the PL of the back-

ground noise measured immediately preceding the quiet

sonic boom. As described by Shepherd and Sullivan (1991),

a 650 ms analysis window was used. The acoustic levels cal-

culated from the noise monitor data were interpolated to the

participant locations with the aid of sonic boom exposure

predictions from PCBoom (Page et al., 2010) given the air-

craft trajectory and measured meteorological data. A similar

interpolation method can be found in the final report for a

previous pilot study (Page et al., 2014).

C. Survey data

This dose-response analysis focuses on the single-event

survey responses related to annoyance. About half of the

survey participants were randomly assigned to receive

reminders, either via text message or email, after the sonic

boom events and occasional false reminders. Note that the

data analyzed in this paper do not include the false

reminders.3 Each participant was first asked whether he/she

heard the event. If the participant reported hearing the event,

he/she was then asked to rate his/her annoyance level to the

sonic boom. If the participant reported not hearing the event,

the survey software skipped the annoyance rating question.

The annoyance survey question is phrased: “How much did

the sonic boom bother, disturb, or annoy you?” The

response scale is a five-point ordinal scale with 1 to 5 corre-

sponding to the following descriptions: not at all annoyed,
slightly annoyed, moderately annoyed, very annoyed, and

extremely annoyed. Recall that the convention is to use

“percent highly annoyed” as the community response. The

recommended cutoff for “high annoyance” on a five-point

scale is 4 or above (Fields et al., 2001). All responses for

which the participant reported “did not hear the event” are

grouped with the “not at all annoyed” responses.

D. Statistical models

Two Bayesian statistical models are fit to the data: the

multilevel logistic regression and the multilevel ordinal

regression models. These are the two best models from a

downselection on seven candidate models fit to a different

NASA pilot study dataset (Lee et al., 2019). For both mod-

els, the noise dose is assumed to be known precisely without

measurement error, and order effects or sequence of the

boom events are not considered. The model parameters are

estimated using Markov chain Monte Carlo (MCMC) sam-

pling with the software Just Another Gibbs Sampler (JAGS)

Version 4.3.0 (Plummer, 2003).

The Bayesian approach considers the observed data to

be fixed, and models the parameters to be random given the

data. A prior probability distribution is used to describe the

uncertainty about the model parameters before observing

the data. The prior probability distribution is then updated to

the posterior probability distribution using Bayes theorem

after observing the data, which are summarized using a like-

lihood function. The posterior distribution describes the

uncertainty about the model parameters after observing the

data and is used for statistical inference about the model

parameters. For example, the posterior distribution is used

to calculate a 95% credible interval,4 which gives a range of

values for which the probability that the unknown model

parameter falls in the range is 0.95 (Kruschke, 2014).

Bayesian modeling and inference have also found applica-

tions in other acoustics research areas (Xiang and Fackler,

2015).

In general, the prior distribution, the likelihood function

and the posterior distribution are all multidimensional.

Thus, calculation of the summary statistics of the posterior

distribution, such as the expected value, require high-

dimensional integration, which is often intractable. Markov

chain Monte Carlo is a class of algorithms for drawing a

random sample from the posterior distribution that can be

used to compute integrals of interest using Monte Carlo inte-

gration. A realization of a MCMC random sample is called

a posterior draw or sample.

1. Model 1: Multilevel logistic regression

The model structure for a multilevel model is hierarchi-

cal or nested: there are multiple responses from the same

participant, and the participants are all sampled from the

same community. Both multilevel models proposed in this

paper are random intercept models5,6: each individual is

modeled to have his/her own intercept b0i instead of the

same b0, while sharing the same slope, b1. The random inter-

cepts account for the baseline differences among the partici-

pants, whereas the shared slope indicates that the effect of

noise dose on annoyance is assumed to be equivalent for all

participants. The random intercepts model the correlation

among responses from the same participant, and are assumed

to come from a common distribution: b0i � Nðb0; r
2Þ.

The multilevel logistic regression model requires

dichotomizing the ordinal responses to binary responses: 0

for annoyance ratings of 1 to 3 or “not highly annoyed”

responses, and 1 for annoyance ratings of 4 to 5 or “highly

annoyed” responses. Let H be the binary response; p be the

probability of high annoyance; i 2 1;…; S be the set of par-

ticipant indices; j 2 1;…; ni be the set of observation indices

for participant i, where ni indicates the total number of

responses from subject i. Equation (1) is the multilevel

logistic regression model. The first three lines describe the

standard multilevel logistic regression model, and the last

three describe the noninformative prior distributions

assigned to the model parameters b0; b1; and r2.

Noninformative prior distributions are used because little is

known about the model parameters a priori, and so the prior

distributions should contribute little information compared

to the data. In other words, the prior distributions should be

flat relative to the likelihood. Without substantial engineer-

ing evidence, the prior distributions should not restrict the
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model parameter values, but instead allow for a large range

of possible values.

Hijjpij � BernoulliðpijÞ
pijjb0i; b1 ¼ logit�1ðb0i þ b1PLijÞ
b0ijb0; r

2 � Nðb0; r
2Þ

b0 � Nð0; 100Þ
b1 � Nð0; 100Þ
r2 � InverseGammað0:01; 0:01Þ: (1)

The notation Hjp denotes the binary response given the

probability of high annoyance, H � BernoulliðpÞ denotes H
is distributed as a Bernoulli random variable with parameter

p, and b � Nð0; 100Þ denotes b is distributed as a normal

random variable with mean of 0 and variance of 100.7 Note

that the second line of Eq. (1) can be rewritten as

log ½pij=ð1� pijÞ� ¼ b0i þ b1PLij, and log indicates natural

logarithm rather than logarithm of base 10.

An example of a Bernoulli (0/1) random variable is the out-

come of a random coin flip. These random coin flips are mod-

eled with the probability of landing heads dependent on the PL

and the participant via b0i. With the individual-level parameters,

each participant has his/her own dose-response curve.

2. Model 2: Multilevel ordinal regression

In contrast to the previous model, the response variable

for the ordinal regression model is the ordered five-point

annoyance rating. Suppose that the ordinal responses are

mapped to a continuous latent variable with range

ð�1;1Þ. Each ordinal level is mapped to an interval on

the latent variable scale, analogous to how a letter grade can

be mapped to a range of numerical scores. The interval

thresholds are unknown and estimated from the data as if a

grade curve was applied to the numerical scores (i.e., a

curved letter grade A corresponds to 85%–100%, B to

75%–84%, etc.). Let Y be the ordinal response, and Y� be

the latent variable. Mathematically, the relationship between

Y� and Y is

Yij ¼ k if ck�1 < Y�ij � ck for k ¼ 1;…; 5;

where k is the ordinal response, ck�1 corresponds to the

lower threshold, and ck corresponds to the upper threshold

on the latent variable scale.8 The first and last thresholds are

c0 ¼ �1 and c5 ¼ 1. Note that the thresholds or gamma

parameters are strictly increasing: c0 < c1 < � � � < c5.

The model specifies that the latent variable is linearly

related to the noise dose: Y�ij � Nðb0i þ b1PLij; 1Þ. The vari-

ance of Y� is fixed to 1, and c1 is fixed to 0 in order to make

the model identifiable (Long, 1997). Figure 1 shows the

relationship among the ordinal variable (Y), the latent vari-

able (Y�) and the covariate (PL). In this illustration, the line

on the right representing the expected value of Y�; EðY�Þ,
has a nonzero slope. Therefore, the expected value of Y�

changes as PL changes, causing the normal distribution on the

left to shift. The normal distribution is essential for deriving

the probabilities of each ordinal level, denoted by p in the

model given in Eq. (2). For example, a rating of 3 corresponds

to the latent variable, Y�, falling between c2 and c3, so

PðYij ¼ 3Þ ¼ Pðc2 < Y�ij � c3Þ
¼ Uðc3 � EðY�ijÞÞ � Uðc2 � EðY�ijÞÞ:

Note that EðY�ijÞ ¼ b0i þ b1PLij, and U is the standard nor-

mal cumulative distribution function.

The multilevel ordinal regression model is given in Eq.

(2). An example of a multinomial random variable is the out-

come of tossing a five-sided die. In this context, these ran-

dom tosses, where outcomes of 1 to 5 have a clear ordering,

are modeled and the probabilities of landing on each side

depend on PL and the individual. The probabilities of land-

ing on each of the five sides is given in p, so p has five ele-

ments that sum to 1. The parameters are again assigned

noninformative prior distributions [last four lines of Eq. (2)].

Yijjpij�Multinomialð1;pijÞ

pijjb0i;b1;c2;…;c4¼

Uð0�EðY�ijÞÞ
Uðc2�EðY�ijÞÞ�Uð0�EðY�ijÞÞ
Uðc3�EðY�ijÞÞ�Uðc2�EðY�ijÞÞ
Uðc4�EðY�ijÞÞ�Uðc3�EðY�ijÞÞ

1�Uðc4�EðY�ijÞÞ

2
666666664

3
777777775

b0ijb0;r
2
0�Nðb0;r

2
0Þ

b0�Nð0;100Þ
b1�Nð0;100Þ
ck�Nð0;10Þ for k¼2;3;4

r2
0� InverseGammað0:01;0:01Þ: (2)

FIG. 1. Relationship among the ordinal variable (Y), latent variable (Y�),
and covariate (PL). This is a modified version of FIG. 23.6 from Kruschke

(2014). Each ordinal value is mapped to an interval of Y� values. The latent

variable is modeled to have a linear relationship with PL. When the PL

changes, the expected value of Y� or the mean of the normal distribution on

the left also changes. The probabilities of each ordinal level are calculated

using the normal distribution on the left.
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3. Model assessment: Posterior predictive checking

After fitting each model, posterior predictive checking

is used to assess the fit of each by checking whether the data

replicated using each model are similar to the observed data.

Model checking is an important step in the model fitting

process because it helps determine whether the selected

model class is appropriate for the data. For example, a linear

regression model is not an appropriate model class if the

data exhibit a highly nonlinear pattern.

The types of posterior predictive checking introduced in

this paper are discrepancy statistics, which are one-number

summaries that capture or summarize key features of the

data. Gelman et al. (2000) emphasize that the choice of dis-

crepancy statistics depends on the problem.9 For example,

the total proportion of responses that are highly annoyed is a

suggested discrepancy statistic for this data.

The procedures for posterior predictive checking for

each model follow.

(1) Select a set of discrepancy statistics of interest. An

example is the total proportion of highly annoyed

responses in the data.

(2) Calculate the discrepancy statistics using the observed

data. For example, calculate the total proportion of

highly annoyed responses in the observed data.

(3) Generate responses using parameter values at each pos-

terior sample, while fixing the vector of noise doses. For

example, for the multilevel logistic regression model

given in Eq. (1), generate binary responses using the val-

ues of b0i and b1 at every posterior sample and the vector

of observed PL values.

(4) Calculate the discrepancy statistics using each set of

generated responses.

(5) Compare the discrepancy statistics from the observed

data to the histogram of discrepancy statistics from the

generated data.

If the observed discrepancy statistic falls outside the

middle 95% probability region of the histogram, this indi-

cates lack of fit for the particular data feature and that the

data replicated from the model do not match the observed

data.

III. RESULTS

A. Data summary

There are a total of 4998 single-event survey responses

from 371 participants. Of those, 2194 (43.9%) indicate the

event was heard. Figure 2 shows the distribution of the

collected ordinal responses, with “not heard” responses

grouped with the rating of 1 or “not at all annoyed.” About

1% of the observed data is categorized as a “highly annoy-

ed” response (either a 4 or a 5 rating). The data analyzed are

included as supplementary material.10

Figure 3 shows the distribution of estimated noise

doses assigned to each survey response, ranging from 56

to 90 dB PL. Most of the responses correspond to noise

doses of about 65 to 85 dB. Note that because not every

participant has the same estimated noise dose for the same

event, there is a different number of possible responses at

each dose.

Figure 4 shows the number of responses from each

participant in the data, split by the reminder groups that the

participants were assigned to. Recall that the participants

were randomly assigned to either receive reminders or no

reminders, and the maximum number of events was 52.

About half the participants contribute fewer than 10

responses. As expected, the participants who did not receive

reminders responded fewer times than the participants with

reminders. Note that some participants may have responded

more times, but the response(s) may have been discarded

due to either dose estimation problems or the data cleaning

process11 (e.g., failure to estimate a noise dose due to no

location available, or an incomplete survey response).

FIG. 2. Distribution of observed ordinal annoyance responses, with “not

heard” responses grouped with rating of 1.

FIG. 3. Distribution of observed noise doses in PL (dB).
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B. Parameter estimation

Both models are fit using MCMC sampling.

Convergence diagnostic plots, e.g., traceplots and Gelman-

Rubin plots (Gelman and Rubin, 1992), are used to check

that the chains of MCMC samples have converged to sam-

ples from the posterior distribution.12 For both models, the

noise dose is centered by subtracting the mean PL from

every PL value in order to improve the efficiency of the

MCMC sampling, and to reduce the autocorrelation of the

MCMC chains (Kruschke, 2014).

1. Model 1: Multilevel logistic regression

The multilevel logistic regression model parameters are

estimated using 400 000 posterior samples after discarding

4000 burn-in samples. The initial draws of an MCMC chain

are often discarded as burn-in samples when the chain is

moving from an initial value to a high-probability part of

the posterior distribution. For this model, we found that

400 000 posterior samples are sufficient to reach conver-

gence according to the traceplots and Gelman-Rubin statis-

tics. Table I shows the posterior summaries of the b0 and b1

parameters, which include the posterior mean and 95% cred-

ible interval constructed using the 0.025 and 0.975 quan-

tiles.13 The summary statistics for the 371 b0i parameters

are not shown.

Posterior predictive checking is used to assess the

model fit following the procedures outlined in Sec. II D 3.

Five discrepancy statistics are calculated: the deviance, the

proportion of highly annoyed responses, the 0.1 quantile of

the PL distribution where highly annoyed responses occur,

the mean number of highly annoyed responses per partici-

pant, and the number of participants who respond highly

annoyed at least once. Deviance is an overall goodness-of-

fit statistic; the 0.1 PL quantile is a one-number summary of

the PL distribution corresponding to highly annoyed

responses; and the last two discrepancy statistics are related

to annoyance at the individual level. None of these checks

indicate lack of fit.

For a multilevel model, there are two types of dose-

response curves: individual and summary. An individual

dose-response curve is representative of one participant, and

a summary dose-response curve is representative of the pop-

ulation. The summary dose-response curve proposed in this

paper is calculated by taking an average of the sampled

participants’ individual dose-response curves. Therefore, in

order to calculate the summary dose-response curve, first

the individual dose-response curves are calculated. An indi-

vidual dose-response curve is calculated at each posterior

sample, providing a distribution of individual dose-response

curves for each participant. In this case, there are 400 000

individual dose-response curves calculated for each of the

371 participants. To calculate one participant’s individual

dose-response curve at one posterior sample, first, the

observed PL range of 56 to 90 dB is evenly divided into

1000 values. Then, at each of the 1000 PL values, pij as

defined in Eq. (1) is calculated based on the individual’s b0i.

The curve connecting these 1000 points is the individual

dose-response curve for the particular posterior sample.

To calculate a population representative summary dose-

response curve, the individual dose-response curves are aver-

aged at each posterior sample, resulting in a distribution of

summary dose-response curves. The estimate of the summary

dose-response curve is then the curve connecting the point-

wise means of the 400 000 averaged curves. The 95% credible

intervals are the pointwise 0.025 and 0.975 quantiles.

2. Model 2: Multilevel ordinal regression

The multilevel ordinal regression model parameters are

estimated using 50 000 posterior samples after discarding

4000 burn-in samples. Table II shows the posterior summa-

ries of the b0, b1 and the three c parameters. Recall that c1 is

fixed to 0, so it is not listed.

The same five discrepancy statistics described in Sec.

III B 1 are used to assess the model fit of the multilevel ordi-

nal regression model. None of these checks indicate lack of

fit.

The first step in calculating the summary dose-response

curve for the multilevel ordinal regression model is also to

calculate the individual dose-response curves. For the multi-

level ordinal regression model, the probabilities for each

ordinal level are estimated. So, the probability of high

FIG. 4. Distribution of the number of responses from each participant split

by the participants’ reminder grouping.

TABLE I. Summary statistics of the multilevel logistic regression model

parameters b0 and b1.

Mean SD

0.025

quant.

0.25

quant. Median

0.75

quant.

0.975

quant.

b0 �19.0 2.4 �24.1 �20.6 �19.0 �17.3 �14.5

b1 0.153 0.029 0.098 0.133 0.152 0.172 0.211
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annoyance for individual i can be calculated by adding the

estimated probabilities of a 4 or a 5 rating,

PðYij � 4Þ ¼ PðYij ¼ 4Þ þ PðYij ¼ 5Þ
¼ Uðc4 � EðY�ijÞÞ � Uðc3 � EðY�ijÞÞ
� �

þ 1� Uðc4 � EðY�ijÞÞ
� �

;

pij ¼ 1� Uðc3 � EðY�ijÞÞ: (3)

Note that to estimate a different degree of annoyance, such

as percent moderately or more annoyed, only the corre-

sponding c parameter in the last line of Eq. (3) changes. For

example, for a dose-response curve estimating the probabil-

ity of moderate to high annoyance (a response of 3, 4, or 5),

pij ¼ 1� Uðc2 � EðY�ijÞÞ. The summary dose-response curve

is calculated using the method outlined in Sec. III B 1, with

pij as defined in Eq. (3). Figure 5 compares the three sum-

mary dose-response curves for three different degrees of

annoyance calculated from the multilevel ordinal regression

model. The annoyance degree “slightly or more annoyed”

corresponds to any rating greater than or equal to 2,

“moderately or more annoyed” corresponds to any rating

greater than or equal to 3, and “highly annoyed” corre-

sponds to any rating greater than or equal to 4. Note that the

sample size at each PL is not displayed.

IV. DISCUSSION

A. Comparison of the two models

The goal of this paper is not to downselect from the two

multilevel models, both of which are appropriate for this

type of panel sample survey data, but to demonstrate and to

compare them. Figure 6 compares the summary dose-

response curves calculated from the multilevel logistic

regression and the multilevel ordinal regression models. The

estimate calculated from the multilevel ordinal regression is

higher than that from the multilevel logistic regression

model. The 95% credible interval for each curve contains

the point estimate for the other.

We also examine the practical differences in the two

models’ estimates by calculating quantities that correspond

to two ways the statistical models could be used for regula-

tory purposes. The first method is to fix the PL value and

estimate the percent highly annoyed, and the second is to fix

the percent highly annoyed and estimate a corresponding PL

value. The following five quantities are calculated14:

(1) percent highly annoyed at 65 dB,

(2) percent highly annoyed at 75 dB,

(3) percent highly annoyed at 85 dB,

(4) PL at 1% highly annoyed, and

(5) PL at 2% highly annoyed.

Figure 7 compares the two models’ estimates when

calculating percent highly annoyed at 65, 75, and 85 dB PL

in (a), and PL at 1% and 2% highly annoyed in (b) using

violin plots. The violin plots compare the calculated poste-

rior distributions from the two models for each quantity,

with the mean marked by the point and 95% credible

intervals marked by the bars. Each “violin” consists of the

TABLE II. Summary statistics of the multilevel ordinal regression model

parameters b0, b1, and ck for k¼ 2, 3, 4.

Mean SD

0.025

quant.

0.25

quant. Median

0.75

quant.

0.975

quant.

b0 �6.80 0.40 �7.61 �7.07 �6.80 �6.53 �6.01

b1 0.0678 0.0051 0.0578 0.0644 0.0678 0.0712 0.0778

c2 0.973 0.045 0.886 0.942 0.972 1.003 1.065

c3 1.75 0.08 1.61 1.70 1.75 1.80 1.91

c4 2.36 0.12 2.14 2.28 2.36 2.44 2.61

FIG. 5. (Color online) Estimated summary dose-response curves (solid)

from the multilevel ordinal regression model compared to observed percen-

tages for three degrees of annoyance, with 95% credible intervals (dashed).

FIG. 6. (Color online) Estimated summary dose-response curves (solid)

from the multilevel logistic regression model (MLR) and the multilevel

ordinal regression model (MOR) compared to observed percent highly

annoyed data, with 95% credible intervals (dashed). Shading of points indi-

cates the sample size at each dose. Two points are not shown in this plot:

33% at 56 dB (1 of 3 observations is highly annoyed), and 16% at 90 dB (1

of 6 observations is highly annoyed).
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quantity calculated at each posterior sample for the particu-

lar model (i.e., for the multilevel logistic regression model,

the “violin” for the percent highly annoyed at 65 PL dB con-

sists of 400 000 data points). The two models’ estimates of

percent highly annoyed at fixed PL values are very similar

with no practical difference. The largest difference is about

0.7% in the estimates at 85 dB, with an estimate of 3%

highly annoyed from the multilevel logistic regression

model and 3.7% from the multilevel ordinal regression

model. The 95% credible intervals for the estimates of PL at

fixed percent highly annoyed from the two models overlap,

with each credible interval containing the mean from the

other model. The point estimates differ by about 2.5 dB PL,

which is a practical difference. A difference in residential

noise exposure of 2.5 dB PL may or may not be audible.

However, making an already quiet supersonic aircraft an

additional 2.5 dB quieter would require significant addi-

tional research and development for an aircraft designer.

Although we detect practical differences when estimat-

ing PL at fixed percent highly annoyed values, there is no

metric for directly comparing the goodness-of-fit of the two

models. A common model comparison metric, the deviance

information criterion (DIC), cannot be used to compare the

relative fits of these two multilevel models because they are

fit to different data: ordinal 1–5 ratings for the multilevel

ordinal regression model and binary 0/1 data for the multi-

level logistic regression model.

The multilevel logistic regression model is advanta-

geous in that it is easier to interpret and to understand. It

also requires fewer modeling assumptions than the multi-

level ordinal regression model. However, the multilevel

ordinal regression model makes use of the available data

more fully as it models the ordinal responses and does not

require dichotomizing the data, which leads to a loss of

information. The multilevel ordinal regression model can

also be used to easily calculate dose-response curves for dif-

ferent degrees of annoyance, which may be of interest if the

number of highly annoyed responses becomes too sparse or

rare. This is an advantage of the multilevel ordinal regres-

sion model compared to the logistic regression model

because the logistic regression model must be refit when the

dichotomization rule for annoyance changes. On the other

hand, the same ordinal regression model fit can be used to

estimate a dose-response curve for lower degree of annoy-

ance without refitting the model. For example, instead of

percent highly annoyed, the dose-response curve can be cal-

culated for percent moderately to highly annoyed using the

same statistical model fit. For the logistic regression model,

on the other hand, the binary data are different and so the

entire process from model fitting to dose-response calcula-

tions needs to be repeated for the new data. The goal of this

paper is to describe and fit the two multilevel models to the

QSF18 data rather than to downselect to either of the two

models. Further analysis is needed if downselection is of

interest. For example, a simulation study can be conducted

to explore the bias of each model and to check the coverage

of each model’s credible intervals.

B. Comparison to previous pilot study

Another pilot study similar to QSF18, known as

Waveforms and Sonic Boom Perception and Response

(WSPR2011) study, was conducted in 2011 at Edwards Air

Force Base (EAFB) (Page et al., 2014). The key differences

between WSPR2011 and QSF18 are: there were no reminder

messages sent in WSPR2011 so all survey responses are

assumed to be reported because the participant heard the

event, the ordinal response scale for the annoyance survey

question for WSPR2011 was from 0 to 10, and WSPR2011

had an order of magnitude fewer participants (49 versus

371). For the 11-point scale, a response of 8, 9, or 10 is con-

sidered as “highly annoyed” (Fields et al., 2001). Recall that

the ordinal responses scale for the annoyance survey ques-

tion for QSF18 was from 1 to 5, and a response of a 4 or 5 is

considered as “highly annoyed.” In addition, the observed

FIG. 7. Comparison of the posterior distributions for (a) percent highly annoyed fixing PL at 65, 75, and 85 dB, and (b) PL fixing percent highly annoyed at

1% and 2% calculated from the multilevel logistic regression (MLR) and the multilevel ordinal regression (MOR) models. The points indicate the point esti-

mates, which are the posterior means, and the bars indicate the 95% credible intervals.
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PL range is different: the PL range for WSPR2011 was 63

to 106 dB whereas the PL range for QSF18 was 56 to 90 dB.

The planned quiet sonic booms in WSPR2011 were also

simulated using the F-18, and there were additional

unplanned higher amplitude booms from the U.S. Air Force.

Lee et al. (2019) describes a similar analysis of the single-

event dose-response data from WSPR2011, and downselects

to two models from seven candidate models, which are the

multilevel logistic regression model and the multilevel ordi-

nal regression model.

The multilevel ordinal regression model is refit to a sub-

set of the “heard event” responses from QSF18 in order to

compare with the WSPR2011 data, where all responses are

assumed to be “heard.” Thus, the data analyzed in Secs.

III B 1 and III B 2 are different. Figure 8 compares the multi-

level ordinal regression summary dose-response curves for

the two studies. Note that they describe the percent highly

annoyed, and the sample size at each dB is not shown in this

plot. For the QSF18 data, the percent highly annoyed of

100% at 56 dB is not shown in order to focus on the majority

of the data, which fall below 45%. The 100% at 56 dB repre-

sents only one “heard” response. The two dose-response

curves are similar at the lower PL values. The difference in

the slope of the WSPR2011 curve at high PL is likely driven

by some of the “high annoyance” responses between 90 and

106 dB PL. Although the EAFB community members in the

WSPR2011 study were acclimated to hearing higher ampli-

tude sonic booms, they responded similarly to the Galveston

community members in the QSF18 study. In the future, we

would like to fit one model to the two datasets combined

instead of fitting a separate model for each study.

C. Limitations and Future Work

For the future X-59 community tests, it is expected that

panel sampling will be used again and testing will occur in

multiple communities. Methods for combining results from

multiple community studies to derive a single nationally

representative summary dose-response curve have not been

developed. The two multilevel models described could be

extended by adding an additional level for the community in

the model hierarchy similar to how Gille and Marquis-Favre

(2019) consider multiple responses from participants from

multiple studies. This approach would allow for a straight-

forward generalization to calculate one nationally represen-

tative summary dose-response curve. However, a variety of

modeling approaches should be considered based on the

specifics of the multiple community survey. The statistical

models may then be used to estimate the minimum sample

size requirements for the X-59 community surveys.

The current assumptions for the statistical models follow:

• no ordering effects based on boom sequence,
• no uncertainty in noise dose estimate,
• the effect of noise dose on annoyance is equivalent for all

participants,
• data are missing at random,15 and
• responses are not affected by the use of reminder

messages.

Future work would be required to assess the validity of

these assumptions.

V. CONCLUDING REMARKS

For the panel sample data collected in Quiet Supersonic

Flights 2018 (QSF18) test, both the multilevel logistic

regression and multilevel ordinal regression models are

appropriate statistical models for analyzing the data. A sum-

mary dose-response curve representative of the community

can be calculated by averaging the sampled individuals’

dose-response curves. The two models’ estimates are very

similar when estimating percent highly annoyed at fixed PL.

However, the two models’ estimates are practically different

when estimating the PL at fixed percent highly annoyed

because the point estimates differ by about 2.5 dB, which

would be a difficult reduction in PL to achieve for an

already quiet supersonic aircraft. Further research is needed

if downselection of models is of interest.
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APPENDIX A: JAGS MODEL SPECIFICATIONS

In order to fit each of the models, the user must supply

the JAGS model specification. Below is the JAGS model speci-

fication for the multilevel logistic regression model.

FIG. 8. (Color online) Estimated summary dose-response curves (solid) from

the multilevel ordinal regression model for QSF18 “heard event” only data

and WSPR2011 compared to observed percent highly annoyed data for each

study, with 95% credible intervals (dashed). One point from the QSF18 data is

not shown in this plot: 100% at 56 dB (calculated from 1 observation).
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modelf
# Model� multilevel logistic

# regression model

# likelihood

for j in 1:nð Þf
Y j½ � �dbern p j½ �ð Þ
logit p j½ �ð Þ ¼ beta�0i subj j½ �½ � þ beta�1 � X j½ �
g

# priors

for i in uniq subj idð Þf
beta 0i i½ � �dnorm beta 0;tauð Þ

g

beta 0 �dnorm 0;1=100ð Þ
beta 1 �dnorm 0;1=100ð Þ
tau �dgamma 0:01;0:01ð Þ
sigma2 ¼ 1=tau

g

The JAGS model specification for the multilevel ordinal

regression model is based on the examples from Chapter 23 of

Kruschke (2014). The model specification is shown below.

modelf
#Model� multilevel ordinal regression

#model

#likelihood

for j in 1:nð Þf
Y j½ � �dcat pi j;½ �ð Þ

# probabilities for pi

pi j;1½ �¼pnorm 0�z j½ �;0;1ð Þ
pi j;K½ �¼1�pnorm gamma K�1½ ��z j½ �;0;1

� �

for k in 2: K�1ð Þð Þf
pi j;k½ �¼max 0;pnorm gamma k½ ��z j½ �;0;1

� ��

�pnorm gamma k�1½ ��z j½ �;0;1
� ��

g

# z is standardized Y � in latentvar:model
# remember�sigma2� y�f g ¼ 1
� �

# used to find pnorm gamma� zð Þ
z j½ � ¼ beta�0i subj j½ �½ � þbeta�1 � X j½ �

g

#priors

for i in subj�idð Þf
beta�0i i½ � �dnorm beta�0;tauð Þ

g

for k in 2: K � 2ð Þð Þf
gamma k½ � �dnorm 0;0:1ð Þ

g
gamma 1½ � ¼ 0

gamma K � 1½ � �dnorm 0;0:1ð Þ
beta 0 �dnorm 0;0:01ð Þ
beta 1 �dnorm 0;0:01ð Þ
sigma2 ¼ 1=tau #sigma2 here is for distrib:

#of beta 0i0s

tau �dgamma 0:01;0:01ð Þ
g

APPENDIX B: COMPARISON OF NON-MULTILEVEL
AND MULTILEVEL LOGISTIC REGRESSION MODELS

The multilevel logistic regression model is compared to

a non-multilevel logistic regression model fit to the data

because the latter model was recommended by FICON

(Federal Interagency Committee on Noise, 1992) for previ-

ous cross-sectional studies. We were curious to what degree,

if any, estimates from the multilevel model would differ

from the estimates from the non-multilevel model, even

though the non-multilevel model is not statistically appro-

priate for the panel data from QSF18. For the QSF18 data,

the two models are neither statistically nor practically differ-

ent when estimating the PL fixing percent highly annoyed,

and estimating the percent highly annoyed fixing the PL.

Nevertheless, the multilevel logistic regression model is rec-

ommended for analyzing this data because it fits the data

better based on the goodness-of-fit metric, the deviance

information criterion (DIC).

First, the non-multilevel logistic regression model is

shown in Eq. (B1). Let H be the binary response, and p be

the probability of high annoyance. The non-multilevel logis-

tic regression model assumes these observations are inde-

pendent. This model is analogous to modeling independent

random coin flips with the probability of landing heads

dependent on PL. The first two lines describe the standard

logistic regression model, and the last two lines are the non-

informative prior distributions assigned to the model param-

eters b0 and b1.

Hijpi � BernoulliðpiÞ

pijb0;b1 ¼ logit�1ðb0þ b1PLiÞ ¼
exp ðb0þ b1PLiÞ

1þ exp ðb0þ b1PLiÞ
b0 � Nð0;100Þ
b1 � Nð0;100Þ: (B1)

The non-multilevel logistic regression model parame-

ters are estimated using 50 000 posterior samples after dis-

carding 4000 samples burn-in samples. Table III shows the

posterior summaries for the two model parameters. To

assess the model fit, three discrepancy statistics are calcu-

lated, none of which indicate lack of fit. The three statistics
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are: the deviance, the proportion of highly annoyed

responses, and the 0.1 quantile of the PL distribution where

highly annoyed responses occur.

The summary dose-response curve estimate for the non-

multilevel logistic regression consists of the pointwise pos-

terior means of pi calculated over the observed range of

noise doses. A summary dose-response curve is calculated

at each posterior sample to estimate a distribution of sum-

mary dose-response curves. To calculate each curve, the

observed range of 56 to 90 dB is evenly divided into 1000

values. At each of the 1000 PL values, pi is calculated as

defined in Eq. (B1) and a curve connects the 1000 pi values.

The mean estimate of the summary dose-response curve is

then the pointwise means of the 50 000 curves. The 95%

credible intervals are the pointwise 0.025 and 0.975 quan-

tiles of the 50 000 pi values. Figure 9 compares the summary

dose-response curves from the non-multilevel and multilevel

logistic regression models. Note that the summary dose-

response curve calculated from the non-multilevel logistic

regression model is a population representative curve

because the model parameters are estimated at a population

level. The estimated summary dose-response curve for the

non-multilevel logistic regression model is higher than that

for the multilevel model above 80 dB PL. The 95% credible

interval for each curve contains the point estimate for the

other.

In addition to the visual comparison, the model compari-

son metric deviance information criterion (DIC) (Spiegelhalter

et al., 2002) is used to compare the two models. DIC can be

broken down into two components: a goodness-of-fit measure

and a penalty for the model complexity. Note that DIC does

not have an absolute scale; rather, models are ranked relative

to one another with the lowest DIC value indicating the best

relative fit to the data. The DIC is 494.8 for the non-multilevel

logistic regression model, and 385.4 for the multilevel logistic

regression model. Thus, despite the model complexity, the

multilevel version of the logistic regression model fits the data

better.

The quantities described in Sec. III B 2 are calculated

for the non-multilevel logistic regression model as well to

compare the practical differences between the non-

multilevel and multilevel logistic regression models. Figure

10 compares the posterior distributions for the first three

FIG. 9. (Color online) Estimated summary dose-response curves (solid)

from the non-multilevel (LR) and multilevel (MLR) logistic regression

models compared to observed percent highly annoyed data, with 95% credi-

ble intervals (dashed). Shading of points indicates the sample size at each

dose. Two points are not shown in this plot: 33% at 56 dB (1 of 3 observa-

tions is highly annoyed), and 16% at 90 dB (1 of 6 observations is highly

annoyed).

TABLE III. Summary statistics of the non-multilevel logistic regression

model parameters.

Mean SD

0.025

quant.

0.25

quant. Median

0.75

quant.

0.975

quant.

b0 �16.24 1.95 �20.18 �17.52 �16.20 �14.92 �12.52

b1 0.153 0.025 0.105 0.136 0.152 0.169 0.202

FIG. 10. Comparison of the posterior distributions for (a) percent highly annoyed fixing PL at 65, 75, and 85 dB, and (b) PL fixing percent highly annoyed at

1% and 2% calculated from the logistic regression (LR) and the multilevel logistic regression (MLR) models. The points indicate the point estimates, which

are the posterior means, and the bars indicate the 95% credible intervals.
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quantities in (a) and for the last two quantities in (b). When

estimating the percent highly annoyed at the three fixed PL

values, the estimates from the two models are quite similar:

both model estimates are within the credible interval for the

other. Practically, 3.75% highly annoyed at 85 dB estimated

from the non-multilevel logistic regression model is not dif-

ferent from the 3% highly annoyed estimated from the mul-

tilevel logistic regression model. The PL estimates at fixed

percent highly annoyed from the two models are also not

practically different for this data: at 1% highly annoyed, the

estimates differ by less than 1 dB.

1See Lee et al. (2019) for examples of these applications using statistical

models fit to similar community response survey data.
2Another appropriate method commonly used to model panel sample data

is a marginal model, which models the population-level instead of

individual-level parameters. See Hu et al. (1998) and Fitzmaurice et al.
(2012) for details on marginal models.

3This paper focuses on demonstrating the methods and modeling

approaches. Analyzing the data to investigate whether the reminders

introduced response bias is of interest but beyond the scope of this paper.
4The equal-tailed method, which is used in this paper, calculates the 0.025

and 0.975 quantiles of the posterior distribution for the lower and upper

bounds of the 95% credible interval.
5See Gelman and Hill (2007) for details and examples about multilevel/

hierarchical models, and Kruschke (2014) or Gelman et al. (2013) for

details specific to using a Bayesian approach.
6We considered a random intercept and random slope model for a previous

pilot study dataset. Based on the DIC criterion (Spiegelhalter et al.,
2002), we selected the simpler model, and we used this to inform our

model for the QSF18 data. See Appendix B for a brief explanation on the

DIC criterion.
7The prior distributions for b0 and b1 are both N(0, 100). Relative to the

likelihood, this choice of prior distributions is noninformative and has

minimal impact on the model parameter estimation.
8The interval regression model proposed in Groothuis-Oudshoorn and

Miedema (2006) assumes that scaled annoyance categories are equally

spaced between 0 to 100. The ordinal regression model relaxes this

assumption because the thresholds of the annoyance categories, c, are esti-

mated from the data instead of fixed. The estimated thresholds provide an

opportunity to check the assumption of equally spaced annoyance catego-

ries. For the five-point annoyance scale in this dataset, the interval widths

calculated from the median c estimates in Table II tend to decrease with

interval (c2� c1 ¼ 0:97; c3� c2 ¼ 0:78; and c4� c3 ¼ 0:61). This find-

ing suggests that the annoyance categories may not be equally spaced on

the annoyance scale. The authors recommend estimating interval thresh-

olds from the data via the ordinal regression model in favor of assuming

they are equally spaced via the interval regression model.
9See Lee et al. (2019) for additional suggested posterior predictive checks.
10See supplementary material at https://doi.org/10.1121/10.0001021 for a

comma separated file of the data analyzed and the description of the

data.
11The data cleaning process eliminated survey responses based on the fol-

lowing criteria: (1) inability to estimate a noise dose because participant

location was not available, participant was outside the study area, or

insufficient signal to noise ratio, (2) incomplete demographic informa-

tion for the participant from the background survey, (3) the response ref-

erenced an event more than 15 min after the start time of the report

because the selections for reporting boom times were in 15 min incre-

ments, (4) responses in which the participant did not respond whether he

or she heard the event, and (5) responses in which the participant did not

provide an annoyance rating. There were instances where a participant

responded multiple times to the same boom event; for responses that

were the same (every field in the survey was the same), only one survey

response was retained. For responses that were different (not every field

in the survey was the same), only the survey response with the latest

completion time was kept. This follows the method documented in Page

et al. (2014). Since the purpose of this paper is to demonstrate the two

statistical models rather than substantive analysis, inclusion of these

responses does not affect the objective. Last, there are five responses

where the participant was given the opportunity to provide an annoyance

rating even though he/she reported not hearing the event due to an error

in the survey system. These responses are given a “not at all annoyed”

rating to be consistent with other “not heard” responses, which were also

assigned the “not at all annoyed” rating.
12See Kruschke (2014) for examples of traceplots and Gelman-Rubin

plots.
13The Monte Carlo standard error (MCSE) accounts for simulation accu-

racy and is used to determine the number of decimal places to report for

the posterior summaries by approximating a 95% interval around the

posterior mean using 6(2*MCSE). This interval is used to quantify the

sampling variability in the posterior summary estimates. Since the poste-

rior summaries are approximated using a random sample from the poste-

rior distribution, we expect slightly different values if we drew a

different random sample. The time-series standard error is one method

for estimating the MCSE for Markov chains (Kruschke, 2014), but

Flegal et al. (2008) describe other methods. The time-series SE is

s=
ffiffiffiffiffiffiffiffi
ESS
p

, where s is the sample standard deviation and ESS is the effec-

tive sample size, or the number of independent samples that the corre-

lated MCMC samples is equivalent to. It is calculated as

ESS ¼ L=½1þ 2+1h¼1
qðhÞ�, where L is the number of posterior samples

and qðhÞ is autocorrelation at lag h. For example, the posterior summa-

ries for b0 are reported to the second decimal place in Table III because

(2*time-series SE) is 0.004. Note that the MCSE is not equivalent to the

posterior standard deviation, which quantifies the spread of the posterior

distribution.
14Note that these PL and percent highly annoyed values are chosen because

they are all within the observed range. Lee et al. (2019) advise against

extrapolating beyond the observed ranges.
15One reason why the assumption of data missing at random may not hold

is that for the participants who did not receive reminders, we expect

fewer responses if the signal was not audible at lower noise exposure lev-

els. In addition, missingness may depend on ordering if, for example,

participants dropped out of the survey partway through.

Federal Interagency Committee on Noise (1992). “Federal agency review

of selected airport noise analysis issues,” technical report.

Fidell, S., and Horonjeff, R. D. (2019). “Field evaluations of sampling,

interview, and flight tracking of NASA’s Low Boom Flight Demonstrator

aircraft,” Technical Report No. NASA/CR-2019-22057, ntrs.nasa.gov/

archive/nasa/casi.ntrs.nasa.gov/20190001426.pdf (Last viewed 10/03/2019).

Fidell, S., Mestre, V., Schomer, P., Berry, B., Gjestland, T., Vallet, M., and

Reid, T. (2011). “A first-principles model for estimating the prevalence of

annoyance with aircraft noise exposure,” J. Acoust. Soc. Am. 130(2),

791–806.

Fidell, S., Schultz, T., and Green, D. M. (1988). “A theoretical interpreta-

tion of the prevalence rate of noise-induced annoyance in residential pop-

ulations,” J. Acoust. Soc. Am. 84(6), 2109–2113.

Fields, J., De Jong, R., Gjestland, T., Flindell, I., Job, R. S., Kurra, S.,

Lercher, P., Vallet, M., Yano, T., Guski, R., Felscher-Suhr, U., and

Schumer, R. (2001). “Standardized general-purpose noise reaction ques-

tions for community noise surveys: Research and a recommendation,”

J. Sound Vib. 242(4), 641–679.

Fitzmaurice, G., Laird, N., and Ware, J. (2012). Wiley Series in Probability
and Statistics, Applied Longitudinal Analysis, 2nd ed. (Wiley, Hoboken,

NJ), pp. 1–752.

Flegal, J. M., Haran, M., and Jones, G. L. (2008). “Markov chain Monte

Carlo: Can we trust the third significant figure?,” Stat. Sci. 23(2),

250–260.

Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., and

Rubin, D. B. (2013). Texts in Statistical Science, Bayesian Data Analysis,

3rd ed. (Chapman and Hall/CRC, Boca Raton, FL), pp. 1–639.

Gelman, A., Goegebeur, Y., Tuerlinckx, F., and Van Mechelen, I. (2000).

“Diagnostic checks for discrete data regression models using posterior

predictive simulations,” J. R. Stat. Soc.: Ser. C (Appl. Stat.) 49(2),

247–268.

Gelman, A., and Hill, J. (2007). Analytical Methods for Social Research,

Data Analysis Using Regression and Multilevel/Hierarchical Models
(Cambridge University Press, Cambridge), pp. 1–625.

Gelman, A., and Rubin, D. (1992). “Inference from iterative simulation

using multiple sequences,” Stat. Sci. 7(4), 457–511.

J. Acoust. Soc. Am. 147 (4), April 2020 Lee et al. 2233

https://doi.org/10.1121/10.0001021

https://doi.org/10.1121/10.0001021#suppl
http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20190001426.pdf
http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20190001426.pdf
https://doi.org/10.1121/1.3605673
https://doi.org/10.1121/1.397056
https://doi.org/10.1006/jsvi.2000.3384
https://doi.org/10.1214/08-STS257
https://doi.org/10.1111/1467-9876.00190
https://doi.org/10.1214/ss/1177011136
https://doi.org/10.1121/10.0001021


Gille, L.-A., and Marquis-Favre, C. (2019). “Estimation of field psycho-

acoustic indices and predictive annoyance models for road traffic noise

combined with aircraft noise,” J. Acoust. Soc. Am. 145(4), 2294–2304.

Gille, L.-A., Marquis-Favre, C., and Weber, R. (2016). “Noise sensitivity

and loudness derivative index for urban road traffic noise annoyance

computation,” J. Acoust. Soc. Am. 140(6), 4307–4317.

Groothuis-Oudshoorn, C. G. M., and Miedema, H. M. E. (2006).

“Multilevel grouped regression for analyzing self-reported health in rela-

tion to environmental factors: The model and its application,” Biometr. J.

48(1), 67–82.

Haering, E. A., Jr., Smolka, J. W., Murray, J. E., and Plotkin, K. J. (2006).

“Flight demonstration of low overpressure n-wave sonic booms and eva-

nescent waves,” AIP Conf. Proc. 838, 647–650.

Hu, F. B., Goldberg, J., Hedeker, D., Flay, B. R., and Pentz, M. A. (1998).

“Comparison of population-averaged and subject-specific approaches for

analyzing repeated binary outcomes,” Am. J. Epidemiol. 147(7),

694–703.

Kruschke, J. K. (2014). Doing Bayesian Data Analysis: A Tutorial with R,
JAGS, and Stan, 2nd ed. (Elsevier Science, London), pp. 1–759.

Lee, J., Rathsam, J., and Wilson, A. (2019). “Statistical modeling of quiet

sonic boom community response survey data,” Technical Report No.

NASA/TM-2019-220427, ntrs.nasa.gov/search.jsp?R¼20190033466

(Last viewed 10/03/2019).

Long, J. (1997). Advanced Quantitative Techniques in the Social Sciences
Series, Regression Models for Categorical and Limited Dependent
Variables (SAGE Publications, Thousand Oaks, CA), pp. 114–147.

Maglieri, D. J., Bobbitt, P. J., Plotkin, K. J., Shepherd, K. P., Coen, P. G.,

and Richwine, D. M. (2014). “Sonic boom: Six decades of research,”

Technical Report No. NASA/SP-2014-622, ntrs.nasa.gov/archive/nasa/

casi.ntrs.nasa.gov/20150006843.pdf (Last viewed 10/03/2019).

Miedema, H. M. E., and Vos, H. (1998). “Exposure-response relationships

for transportation noise,” J. Acoust. Soc. Am. 104(6), 3432–3445.

Miller, N. P., Cantor, D., Lohr, S., Jodts, E., Boene, P., Williams, D.,

Fields, J., Gettys, M., Basner, M., and Hume, K. (2014). Research
Methods for Understanding Aircraft Noise Annoyances and Sleep
Disturbance (The National Academies Press, Washington, DC), pp.

1–172.

Page, J., Plotkin, K., and Wilmer, C. (2010). PCBoom Version 6.6
Technical Reference and User Manual, Wyle Laboratories, Arlington,

VA.

Page, J. A., Hodgdon, K. K., Krecker, P., Cowart, R., Hobbs, C., Wilmer,

C., Koening, C., Holmes, T., Gaugler, T., and Shumway, D. L. (2014).

“Waveforms and sonic boom perception and response (WSPR): Low-

boom community response program pilot test design, execution, and ana-

lysis,” Technical Report No. NASA/CR-2014-218180, ntrs.nasa.gov/

archive/nasa/casi.ntrs.nasa.gov/20140002785.pdf (Last viewed 10/03/2019).

Plummer, M. (2003). “JAGS: A program for analysis of Bayesian graphical

models using Gibbs sampling,” in Proceedings of the 3rd International
Workshop on Distributed Statistical Computing, Vienna, Austria, Vol.

124, pp. 1-10.

Rathsam, J., Hayward, M., Gille, L.-A., Nykaza, E., and Wayant, N.

(2018a). “Multilevel modeling of recent community noise annoyance

surveys,” Proc. Meet. Acoust. 33, 040002.

Rathsam, J., Klos, J., Loubeau, A., Carr, D. J., and Davies, P. (2018b).

“Effects of chair vibration on indoor annoyance ratings of sonic booms,”

J. Acoust. Soc. Am. 143(1), 489–499.

Sch€affer, B., Pieren, R., Mendolia, F., Basner, M., and Brink, M. (2017).

“Noise exposure-response relationships established from repeated binary

observations: Modeling approaches and applications,” J. Acoust. Soc.

Am. 141(5), 3175–3185.

Schultz, T. J. (1978). “Synthesis of social surveys on noise annoyance,”

J. Acoust. Soc. Am. 64(2), 377–405.

Shepherd, K. P., and Sullivan, B. M. (1991). “A loudness calculation proce-

dure applied to shaped sonic booms,” Technical Report No. NASA-TP-

3134, ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19920002547.pdf

(Last viewed 10/03/2019).

Spiegelhalter, D. J., Best, N. G., Carlin, B. P., and Van Der Linde, A.

(2002). “Bayesian measures of model complexity and fit,” J. R. Stat. Soc.:

Ser. B 64(4), 583–639.

Stevens, S. S. (1972). “Perceived level of noise by Mark VII and decibels

(E),” J. Acoust. Soc. Am. 51(2B), 575–601.

Stevens, S. S. (1975). Psychophysics: Introduction to its Perceptual,
Neural, and Social Prospects (Wiley, New York), pp. 1–329.

Troll�e, A., Marquis-Favre, C., and Klein, A. (2014). “Short-term annoyance

due to tramway noise: Determination of an acoustical indicator of annoy-

ance via multilevel regression analysis,” Acta Acust. Acust. 100(1),

34–45.

U.S. Environmental Protection Agency (1982). “Guidelines for noise

impact analysis,” Technical Report No. EPA-550/9-82-105.

Wilson, D. K., Wayant, N. M., Nykaza, E. T., Pettit, C. L., and Armstrong,

C. M. (2017). “Multilevel modeling and regression as applied to commu-

nity noise annoyance surveys,” J. Acoust. Soc. Am. 141(5), 3727–3728.

Xiang, N., and Fackler, C. (2015). “Objective Bayesian analysis in

acoustics,” Acoust. Today 11(2), 54–61.

2234 J. Acoust. Soc. Am. 147 (4), April 2020 Lee et al.

https://doi.org/10.1121/10.0001021

https://doi.org/10.1121/1.5097573
https://doi.org/10.1121/1.4971329
https://doi.org/10.1002/bimj.200410172
https://doi.org/10.1063/1.2210436
https://doi.org/10.1093/oxfordjournals.aje.a009511
http://ntrs.nasa.gov/search.jsp?R=20190033466
http://ntrs.nasa.gov/search.jsp?R=20190033466
http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20150006843.pdf
http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20150006843.pdf
https://doi.org/10.1121/1.423927
http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20140002785.pdf
http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20140002785.pdf
https://doi.org/10.1121/2.0000903
https://doi.org/10.1121/1.5019465
https://doi.org/10.1121/1.4982922
https://doi.org/10.1121/1.4982922
https://doi.org/10.1121/1.382013
http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19920002547.pdf
https://doi.org/10.1111/1467-9868.00353
https://doi.org/10.1111/1467-9868.00353
https://doi.org/10.1121/1.1912880
https://doi.org/10.3813/AAA.918684
https://doi.org/10.1121/1.4988178
https://doi.org/10.1121/10.0001021

	s1
	l
	n1
	s1A
	s2
	s2A
	s2B
	s2C
	s2D
	s2D1
	d1
	s2D2
	d2
	f1
	s2D3
	s3
	s3A
	f2
	f3
	s3B
	s3B1
	s3B2
	f4
	t1
	d3
	s4
	s4A
	t2
	f5
	f6
	s4B
	f7
	s4C
	s5
	app1
	f8
	app1
	app2
	dB1
	f9
	t3
	f10
	fn1
	fn2
	fn3
	fn4
	fn5
	fn6
	fn7
	fn8
	fn9
	fn10
	fn11
	fn12
	fn13
	fn14
	fn15
	c1
	c2
	c3
	c4
	c5
	c6
	c7
	c8
	c9
	c10
	c11
	c12
	c13
	c14
	c15
	c16
	c17
	c18
	c19
	c20
	c21
	c22
	c23
	c24
	c25
	c26
	c27
	c28
	c29
	c30
	c31
	c32
	c33
	c34
	c35
	c36
	c37

