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 Emerging Advanced Air Mobility (AAM) operations will be enabled by increasingly autonomous systems, 

requiring technologies to take on more responsibilities and fundamentally altering traditional human-

automation interaction paradigms. The growing reliance on higher levels of automation will necessitate 

research to identify capabilities and principles that facilitate humans and machines working and thinking 

better together, i.e., human-autonomy teaming (HAT). Trust is an inherent requirement in effective teams 

because when members work interdependently, those agents (human, automation) must be willing to accept a 

level of risk to rely upon each other to reach goals and contribute to team tasks. This work provides an initial 

approach to enabling AAM operations through appropriate trust within HAT. The main contributions of this 

approach resides in connecting the construct of trust to mental models. Using the outlined mental model 

approach, we propose novel HAT strategies, such as Adaptive Trust Calibration, and preview planned research 

activities derived from this approach. Additionally, we propose several practical applications that can currently 

be employed by AAM development communities.  

 

I. Introduction  

Advanced Air Mobility (AAM) represents an ecosystem of emerging aviation technologies and concepts that allow 

the transportation of people and goods to locations in both rural and urban environments, including those not 

traditionally served by current modes of air transportation [1]. Many of the proposed AAM concepts will be supported 

by increasingly autonomous systems, which will require technologies to take on more responsibilities and 

fundamentally alter traditional human-automation interaction paradigms. The growing reliance on higher levels of 

automation will necessitate research and development efforts that identify new and different ways in which humans 

and machines interact. Recognizing this need, NASA’s Transformative Tools and Technologies – Revolutionary 

Aviation Mobility (T3/RAM) Sub-project has identified Human-Autonomy Teaming (HAT) as a critical area of 

research required to enable safe and effective AAM operations. The notion of “teaming” between a human and 

machine should not focus on how machines can think or act like people, but instead on identifying capabilities and 

principles that facilitate humans and machines working and thinking better together [2]. Under T3’s Autonomous 

Systems (AS) Enduring Discipline Area of Research, the HAT Foundational Research Activity has been tasked with 

providing basic research that advances the field of HAT through theory-development and experimental validation in 

controlled laboratory studies. An initial focus of this research activity is investigating how humans calibrate their trust 

in increasingly autonomous systems, which was identified as a key HAT research challenge by the T3/AS HAT 

Planning Team (see [2]). The purpose of the current work is to introduce the theoretical perspectives of trust adopted 

by the HAT Foundational Research Activity and then provide an overview of future research and practical 

applications. Although this activity is focused on foundational, basic scientific HAT development efforts, this work is 

geared heavily toward the advancement of AAM applications. 

II. Advanced Air Mobility 

The emergence of AAM has been driven largely by advances in electric and hybrid propulsion, energy storage, 

and increasingly autonomous software systems. AAM broadly includes both manned and unmanned aircraft of any 
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size with any mission, provided that they leverage the transformative technologies of the AAM ecosystem [1]. Major 

applications within AAM will ultimately be determined by the technical, regulatory, and economic paths of least 

resistance, but the industry is moving forward with several key interests. These include, but are not limited to, the 

following AAM subsets: small Unmanned Aircraft Systems (sUAS), Urban Air Mobility (UAM), Thin-Haul 

Commuters, and Autonomous Cargo (i.e., large UAS). Currently, sUAS represent the most developed subset of AAM, 

but extensive resources are being invested to advance additional subsets to operational reality. 

As these AAM subsets continue to evolve, stakeholders will be driven by economic forces to increase the level of 

automation and, thus, reduce the role of the pilot. For manned vehicle operations, this also includes relocating the pilot 

from onboard the aircraft to a ground-based location. This transition of duties correlates to a spectrum of pilot roles 

(see [3] for discussion on levels of pilot-in-command distancing), which fit into two distinguishing categories that 

correspond to the concepts of Simplified Vehicle Operations (SVO) and Remote Vehicle Operations (RVO). Although 

there is limited research that addresses SVO (i.e., onboard pilots) as it applies to the AAM ecosystem (though see [4, 

5]), the primary focus of the HAT Foundational Research Activity is RVO (i.e., remote operators).  

Chancey and Politowicz [3] define RVO as a concept of operations where “aircraft are remotely controlled by some 

combination of one or more humans piloting a single aircraft or operating/managing many aircraft, with varying 

degrees of automation support.” This definition covers a range of remote roles that vary from a single pilot controlling 

one aircraft remotely with full responsibility (similar to a military UAS remote pilot) to a team of remote operators 

managing a large number of aircraft (with a shift of responsibility to the automated aircraft). This team of operators 

represents the end goal for AAM operations, with an emphasis on maximizing the ratio of aircraft to operators. One 

of the key goals of the HAT Foundational Research Activity will be to address HAT in the context of RVO by focusing 

initial research on the role of trust in human-machine teams.  

III. Human-Autonomy Teaming and Trust 

 Under RVO concepts, a significant increase in automation would be required to enable the range of proposed 

AAM operations. In many domains, automation is implemented extensively with the goals of reducing human 

workload, enhancing efficiency, and providing economic advantages [6, 7]. Increasingly autonomous systems promise 

to surpass current automation capabilities in furthering AAM goals, where the term “autonomous” represents a 

characteristic of automation to “independently assume functions typically assigned to human operators, with less 

human intervention overall and for longer periods of time” [8, p. 4]. Yet the emerging field of HAT suggests that 

many of the potential benefits of increasingly autonomous systems are more likely to materialize if human-technology 

pairings are structured as teams [2, 9]. Here, we adopt the definition of a team as “a distinguishable set of two or more 

agents who interact dynamically, interdependently, and adaptively toward a common and valued 

goal/objective/mission” [10, p. 7]. The progression from lower levels of automation to increasingly autonomous 

systems reveals an opportunity to expand human-automation interaction design strategies to also include more 

complex interpersonal teaming principles, such as trust. The field of HAT broadens the usefulness of trust as a 

theoretical construct to include human-technology collaboration approaches that were previously only applicable 

within interpersonal relationships. 

 Trust is “an attitude that an agent will help achieve an individual’s goals in a situation characterized by uncertainty 

and vulnerability” [11, p. 51]. Without trust, team members tend to expend excessive time and effort crosschecking 

and inspecting each other, as opposed to collaborating toward an overall goal [12]. In the context of RVO, an operator 

that does not have sufficient trust in (potentially many) highly automated sUAS may feel compelled to monitor the 

raw data to continuously verify nominal operations. This creates a situation in which the operator is forced to divide 

attention among tasks, leading to increased workload and deterioration in performance indices [13, 14]. Trust is an 

inherent requirement in effective teams because when members work interdependently, those agents (human, 

automation) must be willing to accept a level of risk to rely upon each other to reach goals, contribute to team tasks, 

and cooperate without subversive intentions [12, p. 569]. Ideally, trust should match the automation’s capabilities (i.e., 

trustworthiness) to avoid the deleterious effects of disuse and misuse, a concept referred to as trust calibration [11]. 

To understand the psychological mechanisms that contribute to trust calibration, and subsequent human behaviors, 

the underling belief structures that form the bases of trust need to be considered. Researchers often describe 

interpersonal trust in terms of the beliefs (i.e., goal-oriented information) that support it [15, 16]. For example, Lee 

and See [11] propose three informational bases for human-automation trust: Performance describes a user’s 

understanding of what the automation does, corresponding to current and historical operation of the automation; 

Process describes a user’s understanding of how the automation operates, corresponding to the appropriates of the 

automation’s algorithms in achieving operator goals; Purpose describes a user’s understanding of why the automation 

was developed, and corresponds to how well the designer’s intent has been communicated to the operator. The 
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robustness and stability of trust depend on how the human mentally represents these goal-oriented informational bases 

referencing the automation, and determines the appropriateness of intentions to use the automation and behavioral 

responses toward the automation (i.e., trust calibration; [11]).  

 One approach to describing the belief structures of Performance, Process, and Purpose, are to conceptualize these 

as the user’s mental models of the automation. Mental models are the mental representations of system processes 

humans use to reason, infer, and make predictions about the technologies they interact with [17, 18, 19, 20]. We 

propose that appropriate mental models for what the automation is doing (Performance), how it is doing it (Process), 

or why it was developed (Purpose) will lead to well-calibrated trust in the automation. One method to facilitate the 

development and maintenance of appropriate mental models is to design and train for automation transparency, which 

is “…the communication of system-centered factors and human-centered factors that promote shared awareness and 

shared intent within a human-machine team” [21, p. 41]. Lyons et al. propose several transparency design models that 

correspond well with the belief structures that support trust [21]. Specifically, the Task Model describes the 

information available to the human that can be used to analyze the actions of the automation (cf. Performance), the 

Analytical Model describes information available to the human that can be used to analyze how the automation is 

making decisions (cf. Process), and the Intentional Model describes the information available to the human that can 

be used to place the actions and decisions of the automation in the appropriate strategic context (cf. Purpose). Although 

researchers often focus on the user mental model (e.g., pilot, operator, passenger, customer), these transparency 

models are better conceptualized as a translation of the designer’s mental model of the technology in the form of the 

automation’s “system image” (i.e., the physical system, user interface, training, instructional material). From the 

perspective outlined in the current work, a transparent system image is a design and training method that translates 

the designer’s mental model of the automation into the operator’s mental model of the automation, with the specific 

purpose of calibrating trust to match technical capabilities (i.e., trustworthiness). Specifically, the closer the user’s 

mental model of the automation is aligned with the designer’s mental model, the more appropriate trust should be in 

that automation (i.e., well calibrated). To enable effective HAT in AAM operations, the HAT Foundational Research 

Activity has created a theoretical framework outlining this perspective. The novel contribution of this work resides in 

connecting the construct of trust to mental models and showing how this method could be used to enable emerging 

HAT concepts (e.g., see Adaptive Trust Calibration in Section IV). Yet to begin validating concepts within this 

framework, empirical evidence will be required in several key areas. Section IV provides a preview of the research 

envisioned under this activity and Section V reviews the practical applications that may be derived from the proposed 

research. 

IV. Future HAT Trust Research and Approaches 

 Many of the AAM concepts discussed in Section II are being geared toward the types of automation that will 

emerge in the coming years and decades. Fortunately, at the time of this writing, these approximate periods offer a 

buffer to allow the research and development community to test and evaluate System Image concepts that align the 

Design Model (i.e., designer’s mental model of the automation) with User Models (i.e., user mental models of the 

automation) to support appropriate trust in AAM operations. The Iterative Design model in Figure 1 illustrates a 

process that is similar to the concept of bridging the gulf of evaluation (i.e., the mismatch between a system’s 

representation and what an operator expects, which is joined by “moving” the system closer to the user) [22]. This 

approach lends itself to iterative experimentation that attempts to establish the effects of the match (or mismatch) 

between the Design Model and User Model on trust and behavioral responses toward the automation. Yet mental 

models are not directly observable, and instead are generally inferred from user performance metrics or verbal think 

aloud protocol (see [23] for comparisons of techniques). One option for operationalizing mental models is with 

Pathfinder Network Analysis. Based on graph theory, Pathfinder is a statistical technique that represents knowledge 

structures in graphical form [24], and has been used extensively in human-computer interaction studies to represent 

and quantify mental models (see [25]). Moreover, quantitative comparisons between individual networks can be made 

using the C statistic (ranging from 0 [not related] to 1 [strongly related]), which is a measure of shared links for 

matching nodes. Specifically, the Pathfinder method provides the ability to quantify the degree to which a 

representative Design Model matches a User Model. A parallel multiple-mediation analysis could be used to analyze 

specific pathways (see Figure 2). Chancey and Politowicz [3] used a similar statistical technique to establish the 

relationship between UAM concept of operation factors on public acceptance through individual factors of trust (i.e., 

Performance, Process, Purpose; see also [26]). This approach could be used as a framework to pursue iterative 

experimental studies that begin validating the concepts outlined in this document. 
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Figure 1. Model for Iterative Design in HAT paradigms.  

  

 

 

Figure 2. Parallel multiple mediation model for the effects of Design and User mental model match on 

dependence behaviors through factors of trust. Note: The example model indicates that the Performance basis 

of trust should provide the strongest mediating effect on dependence behaviors because it is based on the degree 

of similarity between the Task Model and Performance Model.  

 

 The concept of HAT implies that a human and automated system coordinate dynamically, interdependently, and 

adaptively toward a common goal (cf. [10, p. 7] ). Increasingly autonomous systems may be better “equipped” to enter 

into this type of collaboration with a human partner than systems at lower levels of automation. To this point, 

increasingly autonomous systems have been described as possessing the ability to be “generative and [to] learn, evolve 

and permanently change their functional capacities as a result of the input of operational and contextual information” 

[27, p. 284]. Trust will play an important role in mediating the relationship between the human and increasingly 

autonomous systems, and true teaming may be difficult to achieve if the system is unable to dynamically adapt to 

facilitate collaboration. To accomplish this, we introduce the concept of Adaptive Trust Calibration, and propose an 

initial descriptive model that may be used to operationalize this concept (Figure 3). 



   

 

5 

 

  

 

Figure 3. Model for Adaptive Trust Calibration in HAT Paradigm. Note: Added feedback loop through Human 

State Variables, Latent User Model, Adaptive Automation, and Learning Management System.  

 Although the model in Figure 3 possesses the same underlying theoretical principles outlined in Section III, and 

in Figure 1, there are important differences that allow for the “adaptive” aspect of the model to function as a closed-

loop process (i.e., closing the loop does not require iterative experiments to align the User Model and Design Model). 

Specifically, the Adaptive Trust Calibration model assumes that the increasingly autonomous system is consistently 

sampling, storing, and analyzing information about the human operator and the overall performance of the human-

automation team. Human State Variables provide a baseline to establish the current state of the human (e.g., fatigue, 

workload, attentional tunneling), given the cognitive and physiological metrics available to the system (see [28], for 

overview of biocybernetic adaptation strategies in a closed-loop system). Both the Human State Variables and overall 

HAT performance metrics inform the Latent User Model, which is formed by the system as a dynamic analog to the 

Design Model discussed in the previous section. Here, the system constructs a hypothesized User Model in an attempt 

to anticipate potential trust mis/discalibration between the System Image and the actual User Model. Lattice Theory 

may offer a method to formalize the Latent User Model. Moray [18, 19] proposed the use of lattice notation as a 

mathematical modeling technique to represent homomorphic models that share similar qualities to the theoretical 

descriptions of mental models. Graphically, lattices form interconnected nodes (e.g., knowledge about a system) that 

are partially ordered sets to show how elements relate to each other [19] (compare to Pathfinder method above). 

Moreover, adapting causal classifications originally introduced by Aristotle, Moray [19] proposes that the ordering of 

nodes can be considered as causal links. Those classifications align well with the informational bases of trust outlined 

in the current work: 

 

 Efficient Causes (related to Performance) refer to actions that bring about change. For example, clicking on 

a displayed drone causes the interface to give me additional control options for that drone. Selecting a 

destination causes that selected drone to go to that location.  

 Material Causes (related to Process) refer to the underlying processes. For example, if fog reduces 

visibility to less than 1 mile at the peninsula, then that will cause the vertiports (i.e., takeoff and landing 

areas for the UAM concept) to be out of service in that location.  

 Final Causes (related to Purpose) refer to the end purpose for which the event happens. For example, the 

package arrived at my doorstep by drone because I wanted it within the hour. 
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To construct the lattice, however, the system requires a method to sample pertinent information from the user and 

organize it into a coherent model. The Conant Method of Extended Dependency Analysis may provide a means to 

construct user mental models of increasingly autonomous systems via operator control strategies (see [19, 29, 30, 31] 

for descriptions of this method). Beyond interactions and control strategies, eye tracking techniques may offer 

additional information to create robust intentional strategy models to complement this method.  

 

 Once the autonomous system has created the Latent User Model, if the system hypothesizes a misaligned mental 

model that would lead to inappropriate (mis/discalibrated) trust, then it has two methods to alter the system image. 

First, adaptive automation strategies could be employed to dynamically reconfigure or add/remove informational 

elements in the displays (see [32, 33, 34] for reviews). Additionally, the system could also attempt to reorient or alert, 

using various modalities, the user to important environmental or display elements. This information, tailored via 

communication strategies, enables the user to have the most relevant information possible, thereby increasing the 

user’s understanding of the decisions and actions made by the automation. Second, a Learning Management System 

(LMS; e.g., Blackboard®1) could prepare and tailor training material that explicitly attempts to realign the User Model, 

or Artificial Intelligence scheduling algorithms that choose training courses and even schedule learning events for 

students, as used in the United States Air Force [35]. Both approaches could be used to update the System Image and 

support Adaptive Trust Calibration. 

V. Practical Applications 

The two proposed approaches (i.e., Iterative Design and Adaptive Trust Calibration) for calibrating user trust 

described in Section IV can be applied broadly within the AAM ecosystem. Although the primary focus of the HAT 

Foundational Research Activity is RVO (i.e., remote operators), in this section we address the practical applications 

of this research for potential users within AAM. To understand the specific application of these approaches, we first 

define the users and their corresponding interactions with AAM operations. Generally, users can be grouped as: 

onboard pilot, remote operator, passenger (onboard), and customer (remote). An onboard pilot in the context of AAM 

corresponds to the SVO concept, which implies that the user will primarily interact with simplified flight deck systems 

onboard the vehicle. A remote operator in the AAM ecosystem corresponds to the RVO concept, which implies that 

the user will primarily interact with a ground control station (GCS) to control the vehicle remotely. Passengers and 

customers will interact with various systems throughout the transit experience (e.g., personal travel, package delivery), 

including smartphone applications and informational displays onboard the vehicle. Additionally, these users will be 

subject to passive interactions with the AAM ecosystem as members of the general public. To discuss the practical 

applications associated with these users and interactions, we focus on the following categories of interfaces: 

 

 Flight deck systems for onboard pilots (SVO); 

 Ground control station (GCS) for remote operators (RVO); 

 Passenger/customer experience (in the context of AAM); and 

 Public acceptance (in the context of AAM). 

 

The Model for Iterative Design (Figure 1) can be an effective tool for developers and designers to evaluate users’ 

mental models based on the informational bases of human-automation trust. A simplified approach to applying this 

method during user testing (e.g., A/B testing) is to collect user feedback using a trust questionnaire that measures 

Performance, Process, and Purpose (see [26, 36] for examples), compare the results across users and designs (e.g., 

small n, quasi-experimental studies), and then use those results to inform modifications to the user interface (UI) or 

user experience (UX). Although this approach will not produce a definitive trust estimate across all potential users, it 

gives designers a cost effective method for identifying design issues that could lead to inappropriate trust in systems. 

Politowicz, Chancey, and Glaab [37] used this method to evaluate the design of a representative commercial-off-the-

shelf (COTS) GCS and several increasingly autonomous systems onboard remote sUAS vehicles. Alternatively, this 

method can be applied using more controlled experiments, providing a means to compare fundamental principles 

associated with trust in human-automation interaction paradigms (e.g., [26] ). Chancey and Politowicz [3] used this 

method to evaluate public acceptance for UAM operations, showing how this approach can be applied more broadly 
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than to just software systems. The HAT Foundational Research Activity has adopted a research model that intends to 

conduct studies that are both highly representative of AAM applications (yet experimentally uncontrolled) and studies 

using tasks that are abstract enough to derive general HAT principles (experimentally controlled, yet less 

representative of AAM operations; see [38] for description of this approach to human factors research). Because the 

Iterative Design method is intended for the design phase of development (i.e., prior to verification and validation of 

systems), it can generally be applied to all four interface categories listed above. 

The Model for Adaptive Trust Calibration (Figure 3) is intended to be used as a tool for real-time evaluation and 

calibration of user trust. This implies direct integration with software systems, so the model will require extensive 

development, testing, and operational validation prior to consideration for safety-critical systems in AAM operations 

(i.e., flight deck systems for onboard pilots, GCS for remote operators). This model, however, can be applied to 

passenger/customer interfaces without risk to safety. For example, the model could be deployed as a technology that 

integrates directly with passenger displays onboard a UAM vehicle (i.e., air-taxi) and evaluates passengers’ trust based 

on real-time eye tracking data. If the model determines that passenger trust is inappropriately calibrated, the system 

could respond by adjusting the UI and communicate intent, with the goal of increasing their understanding of the 

vehicle’s action. These timely interventions can be highly effective if the adaptive trust calibration technology is 

developed with empirical data and extensive testing. However, a deficient system could introduce additional problems, 

as misinterpretation of the user state has the potential to compound trust calibration issues. 

VI. Conclusions 

In this paper we have outlined an approach to enabling AAM operations through trust in HAT. The main 

contribution of this approach resides in connecting the construct of trust to mental models. Using the outlined mental 

model approach, novel HAT strategies such as Adaptive Trust Calibration could be researched for use in increasingly 

autonomous systems within AAM operations and beyond. Additionally, we have proposed several practical 

applications that can currently be employed by AAM development communities. This paper, however, represents only 

an initial proposal for future studies, and research will be required to validate the ideas presented in this paper. The 

HAT Foundational Research Activity intends to pursue these avenues under the AS Enduring Discipline Area of 

Research within NASA’s T3/RAM Sub-project.  
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