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I. Introduction
The identification of aircraft flight dynamics is often performed using frequency responses, which are nonparametric

models that quantify the steady-state magnitude and phase of a dynamic system response to sinusoidal inputs, as a

function of frequency. Frequency responses are computed from measured input and output data, and then model

parameters, such as stability and control derivatives, are estimated to best fit a parametric model to the empirical

frequency response data. The utility of this approach is due to the familiarity of engineers with frequency responses, a

number of theoretical and practical advantages under specific conditions, the availability of software packages, and

many other reasons [1].

The standard procedure for identifying dynamic models of aircraft from frequency responses can be briefly

summarized as the following: (1) apply frequency sweeps to single inputs, (2) estimate frequency responses using

spectral techniques, and (3) identify model parameters by fitting a postulated model to Bode plots using a nonlinear

optimization. Details and enhancements of this procedure can be found in Refs. [1–5].

A different excitation input, called orthogonal phase-optimized multisines [4], has become prevalent in aircraft

flight testing because of the ability to excite multiple inputs simultaneously, which can reduce flight test time and

costs. Multisine inputs were investigated for aircraft system identification using spectral estimation procedures in

Refs. [6–9]. Rather than spectral estimation, Refs. [4, 10–12] proposed computing frequency responses using Fourier

analysis and demonstrated real-time frequency response computation, stability margin monitoring, and fault detection.

In Ref. [13], the Fourier analysis concept was extended for when aircraft are flown under closed-loop control or have

mixers, which can correlate the inputs. In Ref. [14], maximum likelihood estimation was applied to frequency response

data of open-loop aircraft to estimate coefficients in transfer functions and stability and control derivatives in state-space

models. In Refs. [4, 10–14], one portion of the identification analysis using multisine inputs and frequency responses

was extended.

In this work, the individual contributions in Refs. [4, 10–14] are unified as a different approach for aircraft system
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identification. The approach consists of (1) perturbing the inputs using multisines, (2) computing frequency responses

using Fourier analysis, and (3) identifying model parameters and uncertainties using a maximum likelihood estimator.

Advantages and drawbacks of the approach are discussed, as well as practical aspects learned during application to

flight, wind tunnel, and simulation data.

This paper is organized as follows. Section II defines the problem statement. Section III briefly summarizes aircraft

identification methods using frequency responses. Section IV presents details of the approach, which is demonstrated in

Section V using a simulation example with multiple inputs and a feedback control law. Section VI summarizes the

conclusions of the paper.

II. Problem Statement
Frequency responses are most commonly associated with linear time-invariant (LTI) systems. For aircraft flight

dynamics, these types of models are valid for small perturbations about a reference flight condition and can be represented

as the state-space model

Ûx(t) = A x(t) + B u(t − τu) (1a)

y(t − τy) = C x(t) + D u(t − τu) (1b)

where u(t) is a vector of nu inputs, x(t) is a vector of nx states, and y(t) is a vector of ny outputs. The matrices A, B, C,

and D have constant elements and include the model parameters to be estimated. The vectors τu and τy contain time

delays for the inputs and outputs, respectively.

The state-space model can alternatively be represented as a transfer function matrix by assuming zero initial

conditions, applying the Laplace transform to Eq. (1), eliminating the state variable, and rearranging as

H(s) =
y(s)
u(s)

=
[
C

(
sInx − A

)−1 B + D
]
◦ T(s) (2)

In Eq. (2), s = σ + jω is the Laplace variable, Inx is the (nx × nx) identity matrix, and ◦ denotes element-wise

multiplication. The matrix H(s) is an (ny × nu)matrix of transfer functions Hi j(s) = yi(s)/u j(s) and T(s) is an (ny × nu)

matrix of transfer functions Ti j(s) = e−τi j s where each time delay τi j is formed from the corresponding input and output

time delays. Equation (2) is equivalent to Eq. (1) and is a complete description of the model.

Letting σ = 0 so that s = jω simplifies the Laplace transform to the Fourier transform, which is a mapping of the

dynamics onto steady sinusoids. This simplification discards information about the transient response of the system but

2



retains the steady-state response. Applying the Fourier transform to Eq. (2) yields the frequency response

H( jω) =
y( jω)
u( jω)

=
[
C

(
jωInx − A

)−1 B + D
]
◦ T( jω) (3)

Although the frequency response only characterizes the steady-state response of the system, it nonetheless contains all

the information necessary to constitute the transfer function matrix in Eq. (2).

The complex-valued frequency response is often visualized as a Bode plot, where the magnitude and phase

components

‖Hi j( jω)‖ = 20 log10

√
<[Hi j( jω)]2 + =[Hi j( jω)]2 (4a)

∠Hi j( jω) =
180
π

arctan
(
=[Hi j( jω)]
<[Hi j( jω)]

)
(4b)

are shown as a function of frequency. In Eq. (4),< and = indicate real and imaginary parts of a complex number, and

the Bode magnitude and phase components have units dB and deg, respectively.

The problem considered in this paper is to determine a parametric model of the aircraft based on frequency responses

obtained from measurements, which involves computing H( jω) from u(t) and y(t), and then fitting a model to that data

to estimate unknown parameters in A, B, C, and D.

III. Historical Perspectives
An early approach to system identification from frequency responses, called the frequency approach, involved

dwell tests where a sinusoidal input was applied and steady-state responses developed after transients decayed [15].

The relative magnitude and phase at that frequency were computed by comparing input and output time histories.

The first reported application to aircraft was Ref. [16], where the elevator was mechanically oscillated. This process

was performed for several frequencies, inputs, and flight conditions to construct Bode plots in a simple and intuitive

but time-consuming manner. Due to its reliability, this approach is still used in determining frequency responses of

nonlinear simulation models.

Afterwards, Refs. [17–19] investigated the Fourier approach. Arbitrary inputs (e.g., pulses and doublets) were

applied by the pilot, and then frequency responses were calculated as the ratio of Fourier transform data, as in Eq. (3).

This approach was automated and used shorter durations of flight data than the frequency approach. However, several

shortcomings were identified including errors from transient responses in the data, low input power at some frequencies,

susceptibility to disturbances, and inaccuracies stemming from short time records [20, 21].

In the spectral estimation approach, spectral density functions are first estimated from input and output data, and then

frequency responses and coherence functions are computed [1–5, 15, 22]. This approach has become standard practice
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for identifying aircraft models from frequency responses and can be used with arbitrary inputs. Piloted frequency

sweeps can produce good modeling data if the frequency is increased slowly and the system is well damped [21]. The

analysis is typically formulated to produce unbiased estimates of the frequency response in the presence of uncorrelated

measurement noise on the outputs [1], and requires the selection of various parameters, such as bin size or window size,

shape, and overlap.

Once empirical frequency response data are obtained, a model structure can be postulated and unknown parameters

in that model determined. In early works, straight-line approximations were used to fit models to Bode plots [23]. An

iterative process using elementary transfer function factors was discussed in Ref. [24]. Reference [20] suggested using a

nonlinear optimizer to match frequency responses. A similar strategy was applied in Ref. [25] to estimate parameters

that fit data on a Bode plot, which was used for single-input single-output (SISO) systems and included tunable weights

for trading accuracy between the Bode magnitude and phase fits. An enhanced version of this process using many

transfer functions is detailed in Ref. [1]. The identification of model parameters by fitting complex-valued frequency

response data was formalized for the maximum likelihood estimator in the frequency domain in Refs. [4, 26].

IV. Method
This section summarizes the system identification approach, including the multisine input design, frequency

response calculations, and parameter estimation. The analysis used or was based on MATLAB software called System

IDentification Programs for AirCraft [4, 27].

A. Input Design

The first step in the approach is to obtain informative flight test data. For identifying bare-airframe dynamics (control

surface deflections to aircraft responses), excitation signals are applied to the command path at the actuators as shown

in Fig. 1. The excitations used here are the orthogonal phase-optimized multisines developed in Refs. [28, 29] and

discussed further in Refs. [4, 30].

Control
law Mixer Actuators Bare

airframe

SensorsFilters

Pilot inputs

Excitations

Fig. 1 Block diagram of the flight control architecture and excitation inputs.

Multisines are designed for a time duration T , which corresponds to a fundamental frequency 1/T and harmonic

4



frequencies k/T for integer values of k. A set K of n f harmonic frequencies is selected over the bandwidth of interest.

The frequency spacing is determined by T , where a longer record length increases the frequency resolution and decreases

the lowest attainable frequency. Good modeling results usually need at least two cycles of each frequency, making k = 2

a practical lower limit, although higher values are preferable for increased rejection of random errors in the modeling.

When there are multiple inputs to be excited simultaneously, K is divided into the subsets Kj with n fj frequencies.

Once the harmonics have been selected and assigned, each of the nu multisine inputs is constructed as the sum of

sinusoids

µj(t) =
∑
k∈K j

ak sin
(

2πk
T

t + φk

)
(5)

The amplitudes ak define the power spectra of the multisines, and can be scaled to adjust the signal-to-noise ratios

(SNRs) of the responses. The phase angles φk are individually optimized for minimum relative peak factor (RPF) to

keep the aircraft near the reference flight condition, and then collectively shifted to start and end each input at zero.

Multisines are well suited for frequency response calculation. First, all inputs are excited at the same time, but

in orthogonal ways, which can save time and cost relative to other inputs that are applied one at a time. Second, the

optimization used to determine phase angles creates relatively small responses (for a given power spectrum), which is

important for linear analysis. Third, multisines are similar to the classical dwell tests in that a steady-state response is

developed. However, instead of using a single frequency on a single input, many frequencies are used on multiple inputs.

Last, the input spectrum is concentrated at a set of discrete and known frequencies, which enables the relatively simple

procedure for computing the frequency responses discussed next.

B. Frequency Response Computation

The second step in the identification is to compute frequency responses from measured data. This process starts by

detrending measured time histories to reduce spectral leakage [2–4, 12]. Afterwards, the data are transformed into the

frequency domain using the finite Fourier transform

z( jω) =
∫ T

0
z(t) e−jωtdt (6)

for each measured signal z(t). In batch post-flight applications, Eq. (6) can be computed with high accuracy using a

chirp z-transform with cubic interpolation of the measured data [4]. If the sampling frequency is much higher than the

frequencies of interest, an Euler approximation of the integral

z( jω) ' ∆t
N∑
i=1

z(ti)e−jωti (7)
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can also be used, where ∆t is the sampling period and N is the number of samples. Fourier transforms are only evaluated

for the n f frequencies in K because only those frequencies have power in the steady-state response of an LTI system.

Rearranged, the first equality in Eq. (3) is

y( jω) = H( jω)u( jω) (8)

Evaluating Eq. (8) at the harmonic frequencies produces nynun f equations. When the aircraft is flown open loop and

without mixing, many terms and equations are zero, due to the orthogonality of the inputs, leaving nyn f non-zero

equations to solve for the frequency response evaluations

Hi j( jωk) =
yi( jωk)

u j( jωk)

����
K j

(9)

where |K j denotes evaluation at frequencies associated with Kj . Equation (9) is the same as Eq. (3), except that the

frequency response is only evaluated at the harmonic frequencies contained in the corresponding input. This formulation

was used in Refs. [4, 10–12, 14].

Reference [31] demonstrated that when the aircraft is flown closed loop or with mixing, using Eq. (9) to compute

the bare-airframe frequency responses produces inaccurate estimates. This is because the inputs for this case contain all

the harmonic frequencies and Eq. (9) is deficient. Furthermore, no evaluations of Eq. (8) are zero, in general, and more

information is needed to solve for the bare-airframe frequency responses.

This problem can be solved using the approach in Ref. [13], which was to assemble and append to Eq. (8) as



y( jω)|K1

y( jω)|K2

...

y( jω)|Knu

0



=



U1 0 . . . 0

0 U2 . . . 0
...

...
. . .

...

0 0 . . . Unu

I1 I2 . . . Inu





vec[H( jω)|K1 ]

vec[H( jω)|K2 ]

...

vec[H( jω)|Knu
]


(10)

where vec[.] indicates vectorization. In Eq. (10), each

Uj =

[
Inu ⊗ diag[u1( jω)|K j ] Inu ⊗ diag[u2( jω)|K j ] . . . Inu ⊗ diag[unu ( jω)|K j ]

]
(11)

where ⊗ is the Kronecker product operator and diag[.] constructs a diagonal matrix from a vector. The matrices Ij

interpolate the frequency responses to harmonic frequencies not contained in the corresponding multisine input. For
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appropriate multisine designs, linear interpolations are generally sufficient to achieve accurate frequency response

estimates. The frequency response evaluations are then computed from Eq. (10) using matrix inversion. Equation (9) is

recovered from Eq. (10) when the feedback gains are zero.

Computing frequency responses in this manner is related to the frequency approach and the Fourier approach, except

that many frequencies are applied on multiple outputs, and the transforms are performed at the harmonic frequencies.

This is a relatively simple analysis that can be performed in real time to produce the entire transfer function matrix from

one maneuver [10–13].

Results degrade when nonlinearities (e.g., airspeed variation), time-varying dynamics (e.g., fuel burn), unmodeled

inputs (e.g., atmospheric turbulence), measurement noise levels, or transient responses are present in the data at

significant levels. The multisines should be adjusted or redesigned if SNRs were too low or if the frequency resolution

was too coarse, respectively.

For the case without feedback, Eq. (9) is an unbiased estimate with variance inversely proportional to the SNR

squared when there is no input measurement noise and when the output is in steady state for an integer number of cycles

[32, 33]. The variance can be decreased further by running the input for additional cycles or increasing the multisine

amplitudes if the responses remain within the linear region.

For the case with feedback or when input noise is significant, small biases result based on the input and output

signal-to-noise ratios [33]. However, flight test results have shown good agreement between frequency responses and

other methods for appropriately designed multisine excitations that create high SNRs at the harmonic frequencies

[10, 13, 14].

Significant transient responses in the data can degrade frequency response results [10, 12]. Past experience flight

testing flexible aircraft indicated it was best to wait for the aircraft to achieve steady-state oscillation, repeating the

multisine excitation if necessary, and analyze integer numbers of cycles. Otherwise, the next best option was to ensure

the time histories analyzed contained transient responses at both the onset and termination of the multisine excitations,

which approximately canceled.

C. Maximum Likelihood Parameter Estimation

The third step is to estimate parameters in an LTI model that best fit the frequency response of the model to the

empirical frequency response data. The approach taken here is based on the maximum likelihood method developed in

Refs. [4, 26] and applied in Ref. [14] with multisine inputs.

The observation model is

vec [H( jωk)] = vec
[
Ĥ( jωk)

]
+ v( jωk) (12)

where H( jωk) are the empirical frequency responses and Ĥ( jωk) are the frequency responses of the model in Eq. (3)
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for a set of parameters arranged in the vector θ. The modeling residual v( jωk) are errors in the frequency responses and

are assumed to be spectrally white, normally distributed, and stationary with

E [v( jωk)] = 0 (13a)

E
[
v( jωk) v†( jωk)

]
=

1
n f

Svv (13b)

where † denotes the complex-conjugate transpose. The matrix Svv is the spectral density of v(t) and is fully populated

because measurement noise on any particular input or output affects several frequency responses. Equation (13) is

generally a good assumption if the flight test was conducted in low turbulence and the system remained within its linear

region [13, 14].

The maximum likelihood estimator for this problem minimizes the cost

J(θ, Svv) = n f

∑
k∈K

v†( jωk)S−1
vv v( jωk) + n f ln |Svv | + nynun f ln

(
π

n f

)
(14)

Equation (14) is the negative log-likelihood function and is solved for θ and Svv . Because the residuals minimized are

errors in the frequency responses, this approach can be called the frequency response error (FRE) method, in analogy to

other maximum likelihood estimators [4].

Optimization of Eq. (14) with respect to both θ and Svv at the same time typically exhibits convergence problems.

Rather, a relaxation technique is used where the cost function is alternately optimized with respect to Svv or θ, while

holding the other constant, until results converge. For a given θ̂, minimizing J(Svv) results in

Ŝvv =

(
π

ωn f − ω1

) ∑
k∈K

v( jωk) v†( jωk) (15)

Then for a given Ŝvv ,

J(θ) = n f

∑
k∈K

v†( jωk) Ŝ−1
vv v( jωk) (16)

is minimized, which requires iteration using a nonlinear optimizer. For the Gauss-Newton method, the parameter update

is

θ̂ = θ̂0 −

[
M−1 ∂J

∂θ

]
θ0

(17)

from the previous estimate θ̂0. Starting values for the model parameters may come from other analyses or prior

information. In Eq. (17),

M = 2n f <

[∑
k∈K

S†( jωk) Ŝ−1
vv S( jωk)

]
(18)

8



is the Fisher information matrix,
∂J
∂θ
= −2n f <

[∑
k∈K

S†( jωk) Ŝ−1
vv v( jωk)

]
(19)

is the local cost gradient, and

S( jωk) =
∂

∂θ
vec

[
Ĥ( jωk)

]
(20)

is the frequency response sensitivity matrix obtained from analytical derivatives or numerical finite differences. The

optimization is stopped when changes in the parameter estimates, cost function, cost gradient, and residual spectral

density between iterations are sufficiently small.

The uncertainties in the parameter estimates are the Cramér-Rao bounds

cov(θ̂) =M−1 (21)

where cov(.) is the covariance operator. The square-root of the diagonal terms are the parameter standard errors. Given

an adequate model structure and accurate frequency response data, Eq. (21) is a realistic estimate of the parameter

uncertainty levels and does not require corrections to match observed scatter in flight test data [14]. Furthermore,

maximum likelihood estimators are asymptotically unbiased, consistent, efficient, and normal estimators [4]. Accuracy

of the results can degrade if the errors do not have the characteristics assumed in Eq. (13), for example from significant

model structure error.

Including prior information in the optimization is sometimes useful for combining results from other analyses

or multiple maneuvers, or when there is not enough information present in the data to accurately estimate all of the

unknown parameters. In this case, Eqs. (16)–(18) are modified to account for the prior estimate and uncertainty, θp and

Σp , as [4, 26]

J(θ) = n f

∑
k∈K

v†( jωk) Ŝ−1
vv v( jωk) + n f

(
θ − θp

)T
Σ−1
p

(
θ − θp

)
(22a)

θ̂ = θ̂0 −
(
M + Σ−1

p

)−1
[
∂J
∂θ
+ Σ−1

p

(
θ − θp

) ]
(22b)

M = 2n f <

[∑
k∈K

S†( jωk) Ŝ−1
vv S( jωk)

]
+ Σ−1

p (22c)

Multiple maneuvers may also be processed simultaneously to estimate a single set of model parameters for the entire

data set. This is done by computing frequency response data for each maneuver, and then stacking them in Eq. (12) as

additional frequency responses to be matched. In this case, Svv has (nynu × nynu) block matrices along its diagonal and

is zero elsewhere. The multisine inputs do not need to contain the same harmonic frequencies for each maneuver. If the

model parameters are nondimensional stability and control derivatives, an accurate estimation can be performed for
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maneuvers conducted at different flight conditions.

D. Further Discussion

The approach described has advantages and drawbacks relative to other approaches for aircraft system identification.

Many of these aspects are discussed in Refs. [1, 4, 12, 26, 33].

An important advantage of computing frequency responses is insight into the model structure of the dynamics over

the bandwidth of interest. This can be helpful for determining the order of the model and rough estimates for starting

parameters. Other dynamics, disturbances, and noise outside the bandwidth of interest are automatically removed from

the modeling data during the frequency transformation.

Computing frequency responses and using the FRE estimator may be performed as a preliminary analysis, before

moving on to an output-error analysis. Only the harmonic frequencies are analyzed in FRE, leading to iterations that

run quickly. Furthermore, the equations of motion do not have to be solved, which can take long amounts of time for

systems with many frequencies to analyze and outputs to match, such as aeroelastic aircraft [34, 35].

The main disadvantage of this method is that it can only be applied using LTI models. Furthermore, a long periods

of flight test time could be required if there are many inputs and very lightly damped resonances in the bare-airframe

dynamics. The matching of frequency responses, rather than directly measured time series or their Fourier transforms,

requires additional processing that can introduce errors. Lastly, application of this approach requires computerized

multisines added at the actuators, a capability that is prevalent on modern research aircraft.

V. Numerical Example
The approach is demonstrated using a simulation example. The NASA T-2 airplane, shown in Fig. 2 and described in

Table 1, is a dynamically-scaled 5.5% version of a generic commercial transport aircraft that has been used extensively

for flight research [30].

Fig. 2 T-2 airplane (credit: NASA Langley Research Center).
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Table 1 T-2 geometry and nominal mass properties.

Symbol Value Unit
b 6.849 ft
c̄ 0.915 ft
S 5.902 ft2

m 1.585 slug
Ixx 1.179 slug-ft2

Iyy 4.520 slug-ft2

Izz 5.527 slug-ft2

Ixz 0.211 slug-ft2

An LTI state-space model of the bare-airframe short period dynamics is [4]


Ûα

Ûq

 =


q̄S
mV CZα 1 + q̄S

mV
c̄

2V CZq

q̄Sc̄
Iyy

Cmα

q̄Sc̄
Iyy

c̄
2V Cmq



∆α

q

 +


q̄S
mV CZδeo

q̄S
mV CZδei

q̄Sc̄
Iyy

Cmδeo

q̄Sc̄
Iyy

Cmδei



∆δeo

∆δei

 (23a)


q

∆az

 =


0 1

q̄S
mgCZα

q̄S
mg

c̄
2V CZq



∆α

q

 +


0 0

q̄S
mgCZδeo

q̄S
mgCZδei



∆δeo

∆δei

 (23b)

The states are angle of attack α and pitch rate q. The inputs δeo and δei are the outboard and inboard elevators,

respectively, which are formed by moving four left and right control surfaces on the trailing edge of the horizontal tail

as symmetric pairs. The outputs are q and vertical acceleration at the center of mass, az . Angle of attack and pitch

angle measurements were not included to keep this example problem smaller in size. Perturbations from the flight

condition are represented with ∆. The terms inside the matrices are constants for a given flight condition, where the

nondimensional stability and control derivatives were estimated from flight test data at 1270 ft altitude, 130 ft/s airspeed,

and 4.0 deg angle of attack.

Actuator models were included as first-order lags with poles at 5 Hz and time delays of 0.01 s. Measurement noise

with standard deviations listed in Table 2 were added to the measurements. The q measurement was fed back to δei with

a gain of −0.2 to change the short-period damping ratio and frequency from 0.43 and 5.9 rad/s (0.94 Hz) to 0.70 and

8.0 rad/s (1.3 Hz), respectively.

Table 3 lists parameters for outboard and inboard multisine inputs. The excitations were designed for about a 2

deg input amplitude and a 10 s duration, giving a 0.1 Hz frequency resolution. The excitation bandwidth was selected

as between 0.4 and 2.1 Hz, which encloses the short period natural frequency and provides adequate cycles for noise

rejection and decay of transient responses. This design had 9 excitation frequencies per input, resulting in 36 data points

for the FRE estimation.
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Table 2 Measurement noise levels.

Measurement Standard deviation Unit
δeo, δei 0.026 deg
α 0.051 deg
q 0.20 deg/s
θ 0.010 deg
az 0.0026 g

Table 3 Multisine design parameters (T = 10 s).

Outboard elevator Inboard elevator
RPF = 1.04 RPF = 1.11

ak , deg k φk , rad ak , deg k φk , rad

0.11 4 2.79 0.11 5 0.96
0.11 6 5.67 0.11 7 3.16
0.11 8 5.00 0.11 9 0.24
0.11 10 0.97 0.11 11 2.72
0.11 12 0.59 0.11 13 3.21
0.11 14 0.39 0.11 15 0.02
0.11 16 5.01 0.11 17 5.80
0.11 18 0.12 0.11 19 0.04
0.11 20 2.87 0.11 21 4.89

Simulated measurements, sampled at 50 Hz, are shown in Fig. 3. For reference, time histories of α and the Euler

pitch angle θ are also shown. The excitation was started after 2 s. The control surface deflections and aircraft responses

were small perturbations from the steady values for this flight condition.

Figure 4 shows frequency responses between the measured inputs and outputs. The solid black lines are the true

frequency responses obtained from the bare-airframe model in Eq. (23) using the true values of the model parameters.

The open blue circles are the frequency response estimates obtained from the measurements using Eq. (9), which

does not account for the feedback, whereas the solid blue circles used Eq. (10), which does account for the feedback.

Estimates using Eq. (9) are incorrect for frequency responses from δeo due to input correlation from the feedback. The

estimates from δei and all the estimates computed using Eq. (10) were in close agreement with the true frequency

responses, with coefficients of determination above R2 = 0.99 and differences in Bode plot magnitudes and phase angles

less than 0.3 dB and 2.0 deg.

The FRE method was used to determine nondimensional stability and control derivatives in Eq. (23) that best

matched the model frequency response to the data obtained using Eq. (10). The estimator was initialized using parameter

estimates obtained from an equation-error analysis. Results converged in 19 iterations, which used about 0.8 s on a
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Fig. 3 Simulated measurement time histories.

standard laptop. The fitted model is shown in Fig. 4 as red dashed lines. These fits had greater than R2 = 0.99 and

differences in Bode plot magnitudes and phase angles less than 0.1 dB and 0.7 deg. Due to the additional information

inherent in the parametric model structure, the identified model matched the true frequency responses more accurately

than the non-parametric frequency response data used in the modeling.

A comparison of parameter estimates is given in Table 4. The first two columns list the nondimensional stability

derivatives and their true values used in the simulation. The third column shows the estimates obtained using FRE,

which were all within two standard errors of the true values. The standard errors were under 1% except for CZq (42%),

CZδeo
(12%), and CZδei

(6.4%), which are typically difficult to accurately estimate and are often removed from the

model structure.

For further comparison, four additional sets of estimates are also given in Table 4 using these data. The first set used

output error in the time domain (TOE) to match 1502 samples of output data and converged in 14 iterations and 0.5 s.

The second set used output error in the frequency domain (FOE) to match 170 samples of output Fourier transform data

between 0.2 to 2.3 Hz, in 0.025 Hz increments, and converged in 14 iterations and 0.2 s. The third set also applied FOE,

but only used the same 36 frequencies used by FRE and converged in 12 iterations and 0.1 s. The fourth set, BPE,

matched Bode magnitude and phase plots at the harmonic frequencies, where the phase angles were weighted by 0.02

relative to the magnitudes [36], and converged in 5 iterations and 0.2 s.
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Fig. 4 Frequency response estimates and fits using FRE.

Table 4 Parameter estimates and standard errors.

Parameter True value FRE TOE FOE∗ FOE† BPE†

CZα −3.89 −3.92 ± 0.039 −3.92 ± 0.039 −3.90 ± 0.060 −3.91 ± 0.054 −3.82 ± 0.048
CZq −5.17 −3.86 ± 1.6 −4.64 ± 0.46 −4.49 ± 2.2 −4.01 ± 1.9 −2.02 ± 1.1

CZδeo
−0.170 −0.173 ± 0.021 −0.168 ± 0.0040 −0.167 ± 0.018 −0.162 ± 0.014 −0.104 ± 0.027

CZδei
−0.170 −0.173 ± 0.012 −0.168 ± 0.0036 −0.165 ± 0.017 −0.167 ± 0.014 −0.111 ± 0.027

Cmα −1.30 −1.29 ± 0.0054 −1.29 ± 0.0027 −1.29 ± 0.0089 −1.29 ± 0.0079 −1.28 ± 0.0026
Cmq −37.1 −37.6 ± 0.39 −37.0 ± 0.21 −36.9 ± 0.74 −36.9 ± 0.63 −38.2 ± 0.34

Cmδeo
−0.806 −0.799 ± 0.0060 −0.800 ± 0.0027 −0.798 ± 0.0098 −0.798 ± 0.0088 −0.824 ± 0.025

Cmδei
−0.806 −0.801 ± 0.0064 −0.800 ± 0.0027 −0.798 ± 0.0097 −0.797 ± 0.0087 −0.828 ± 0.025

∗Using frequencies 0.2, 0.225, . . . , 2.3 Hz.
†Using only the harmonic frequencies.
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Except for the TOE estimate of Cmα and most of the BPE estimates, the estimates were within two standard errors of

the true values. The TOE estimates also had smaller uncertainty levels because significantly more data points were

available for analysis. In application to experimental data, additional processing is performed to account for colored

residuals in the uncertainty calculations in the time-domain output-error analysis [4].

Because output error methods can use transient response data, unlike methods based on frequency responses, FOE

benefits from additional samples of the Fourier transforms. Results were similar between the two sets of FOE estimates,

but using the higher-resolution frequency sampling improved the average parameter estimate by 1.4%. However, due

to using additional samples of the Fourier transform at lower signal-to-noise ratios, the average parameter standard

errors also increased by 0.89%. The FRE results were similar to both of the FOE results, and had 0.05% more average

parameter error and 0.78% less average parameter standard error than the low-resolution FOE estimates.

The frequency response methods used more time per iteration than the output error methods here because the

estimation problem was relatively small, and because FRE and BPE matched four outputs (frequency responses from

two inputs to two outputs), whereas TOE and FOE matched only two outputs (measured responses). This reduced

the number of sensitivity equations calculated from finite differences. Larger estimation problems with many inputs,

outputs, and harmonic frequencies have resulted in FRE converging in less time than FOE [34, 35].

Selecting the weights for the BPE estimates, rather than computing them from the model residuals, resulted in

faster convergence of the estimation results. However, these estimates had larger bias than the other methods and the

uncertainty bounds were not reliable because the cost function was not a maximum likelihood estimator. The nonlinear

transformations used in Eq. (4) to compute Bode plots from frequency responses introduced a nonlinear weighting

of the errors in the estimation, for which a coherence weighting could be applied when the frequency responses are

computed using spectral estimation [1].

VI. Conclusions
An approach for identifying dynamic models of aircraft from measured data was presented. The aircraft dynamics

are excited using orthogonal phase-optimized multisines, frequency responses are computed as ratios of output to input

Fourier transform data at the multisine harmonic frequencies, and a maximum likelihood estimator is used to determine

parameters and associated uncertainties that best match the frequency responses. The approach was demonstrated using

a simulation example, and applications to flight test data were referenced.

The approach is limited to the identification of linear time-invariant systems, flight in low levels of turbulence, and

aircraft with the capability to inject computerized inputs to the command path at the actuators.

The main benefit of the approach is that empirical frequency responses are simultaneously obtained from multiple

inputs during one maneuver, which can be conducted either in open loop or under closed-loop control. This capability

can shorten flight test durations and save time and costs. Furthermore, the frequency response data are relatively simple
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to compute and yield information on the model structure, which can be used in the frequency response-error estimator

described in this work or other parameter estimation analyses.
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