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Abstract 

To enable effective human-autonomy teaming (HAT) in Advanced Air Mobility 

(AAM) operations, the current paper presents a theoretical framework to design 

and train for appropriate trust in automation. The novel contribution of this work 

resides in connecting the construct of trust to mental models and showing how this 

method could be used to enable emerging HAT concepts such as Adaptive Trust 

Calibration. To contextualize this framework, in section 2 we discuss simplified 

vehicle operations (SVO) and remote vehicle operations (RVO), which are leading 

operational concepts within AAM. In section 3 we describe our perspective on 

automation and increasingly autonomous systems and present a brief discussion on 

human-automation interaction and human-autonomy teaming. In section 4 we 

provide a detailed discussion on the construct of trust in automation. In section 5 

we present a framework that associates mental models with trust through principles 

of transparent design. Finally, in section 6 we present three descriptive models for 

designing and training for appropriate trust in increasingly autonomous systems.  

 

1. Background 

Advanced air mobility (AAM) represents an ecosystem of emerging aviation technologies and 

concepts that allows the transportation of people and goods to locations in both rural and urban 

environments, including those not traditionally served by current modes of air transportation 

(National Academies of Sciences, Engineering, and Medicine, 2020). Many of the proposed AAM 

concepts will be supported by increasingly autonomous systems, which will require technologies 

to take on more responsibilities and fundamentally alter traditional human-automation interaction 

paradigms. The growing reliance on higher levels of automation will necessitate research and 

development efforts that identify new and different ways in which humans and machines work 

together. Recognizing this need, NASA’s Transformative Tools and Technologies – Revolutionary 

Aviation Mobility (T3-RAM) Sub-project has identified Human-Autonomy Teaming (HAT) as a 

critical area of research required to enable safe and effective AAM operations. The notion of 

“teaming” between a human and machine should not focus on how machines can think or act like 

people, but instead on identifying capabilities and principles that facilitate humans and machines 

working and thinking better together (Holbrook et al., 2020). Under T3’s Autonomous Systems 

(AS) Enduring Discipline Area of Research, the HAT Foundational Research Activity has been 

tasked with providing basic research that advances the field of HAT through theory-development 

and experimental validation in controlled laboratory studies. An initial focus of this research 

activity is on trust calibration, which was identified as a key HAT research challenge by the T3-

AS HAT Planning Team (see Holbrook et al., 2020). The purpose of the current work is to 

introduce the theoretical perspectives of trust adopted by the HAT Foundational Research Activity 

and then provide an overview of future research. Although this activity is focused on foundational, 

basic scientific HAT development efforts, this work is geared heavily toward the advancement of 

AAM applications. 
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2. Advanced Air Mobility Concepts 

The emergence of AAM has been driven largely by advances in electric and hybrid propulsion, 

energy storage, and increasingly autonomous software systems (National Academies of Sciences, 

Engineering, and Medicine, 2020). AAM broadly includes both manned and unmanned aircraft of 

any size with any mission, provided that they leverage the transformative technologies of the AAM 

ecosystem. The technical, regulatory, and economic paths of least resistance will ultimately 

determine major applications within AAM, but the industry is moving forward with several key 

interests. These include, but are not limited to, the following AAM subsets: small Unmanned 

Aircraft Systems (sUAS), Urban Air Mobility (UAM), Thin-Haul Commuters, and Autonomous 

Cargo (i.e., large UAS). 

 

Currently, sUAS represent the most developed subset of AAM. sUAS (commonly referred to as 

drones) are typically associated with package delivery in the context of AAM, although the use 

cases are extensive (see Federal Aviation Administration, 2020, for overview). The concept of 

UAM represents an ambitious subset of AAM, which envisions high frequency, high density 

transportation of people and goods in an urban environment (Thipphavong et al., 2018). UAM is 

typically associated with urban passenger transport (i.e., air-taxis) in the context of AAM. Thin-

Haul Commuters represent an existing market of small, conventional aircraft (5-9 passengers) that 

will leverage advances in electric propulsion and autonomy to provide reduced cost transportation 

to and from small cities (Moore & Goodrich, 2015). Lastly, Autonomous Cargo (i.e., large UAS) 

represents an existing market of large, conventional aircraft that will leverage advances in 

autonomy to shift the pilot from onboard the aircraft to a ground-based location. 

 

Transitioning the pilot to a ground-based location will be challenging, yet all of these AAM subsets 

(and others that are not yet apparent) will be driven by economic forces to increase the level of 

automation and, thus, reduce the role of the pilot. This steady transition of duties and location (as 

applicable) correlates to a spectrum of pilot roles, which Chancey and Politowicz (2020) describe 

as Level of Pilot-in-Command (PIC) Distance (Table 1). This concept provides an accessible 

method to label the role of a human within remote operations that leverage different levels of 

automation across a diverse set of automated functions. Level 1 (Onboard Pilot) is the only level 

with the pilot onboard the aircraft. Levels 2-5 describe a remote operator with varying roles and 

responsibilities. These two distinguishing categories (onboard and remote) correspond to the 

concepts of Simplified Vehicle Operations (SVO) and Remote Vehicle Operations (RVO), 

respectively, which are explained in the following sections. 
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Table 1. Levels of PIC Distance. 
PIC Distance Level Description 

Level 1:  
Onboard Pilot 

A single onboard pilot will be entirely responsible for the operation of 
the aircraft. 

Level 2:  
Remote Control Pilot 

There will not be a human pilot onboard the aircraft. Instead, a single 
ground-based, remotely located pilot will be entirely responsible for 
the operation of the aircraft. 

Level 3:  
Dedicated Remote 
Operator 

There will not be a human pilot onboard the aircraft. Instead, a single 
ground-based, remotely located pilot will be mostly responsible for the 
operation of the aircraft, with support from onboard automation. 

Level 4:  
Remote Operator 

There will not be a human pilot onboard the aircraft. Instead, a single 
ground-based, remotely located operator will be responsible for 
monitoring many automated aircraft. During emergency or challenging 
situations, however, that operator will have the ability to take control 
of that aircraft. 

Level 5:  
System Manager 

There will not be a human pilot onboard the aircraft. Instead, 
automation will be entirely responsible for the operation of the aircraft. 
However, a ground-based, remotely located operator will monitor 
many automated aircraft and provide situation updates (e.g., weather, 
traffic, winds) to the automation as needed. 

Note. Adapted from “Public Trust and Acceptance for Concepts of Remotely Operated Urban Air Mobility 
Transportation” by E. T. Chancey and M. S. Politowicz, Proceedings of the Human Factors and Ergonomics 
Society Annual Meeting. (p. 1). Copyright 2020 by NASA.  

2.1. Remote Vehicle Operations 

Chancey and Politowicz (2020) define RVO as a concept of operations where “aircraft are 

remotely controlled by some combination of one or more humans piloting a single aircraft or 

operating/monitoring many aircraft, with varying degrees of automation support” (p. 1). This 

definition covers a range of remote roles (Levels 2-5) in the Level of PIC Distance concept. 

Remote Control Pilot (Level 2) is a single pilot controlling one aircraft remotely with full 

responsibility for the operation of the aircraft, which is most closely related to a military UAS 

remote pilot. Dedicated Remote Operator (Level 3) indicates a single human is responsible for 

controlling (or directing) one aircraft remotely and is similar to a current sUAS Ground Station 

Operator (GSO). The Dedicated Remote Operator, however, differs from the remote-control pilot 

in that direct control of the aircraft is significantly augmented by automation. Remote Operator 

(Level 4) specifies that the human operator is responsible for controlling or coordinating more than 

one highly automated aircraft. System Manager (Level 5) represents a shift of responsibility to the 

automated aircraft, which opens up the potential for a team of remote operators to manage a large 

number of aircraft. This role represents the end goal for AAM operations. It will be important to 

understand the roles, responsibilities, and technologies necessary for maximizing the ratio of 

aircraft to operators (see Holbrook et al., 2020). 

2.2. Simplified Vehicle Operations 

The General Aviation Manufacturers Association (GAMA) defines Simplified Vehicle Operations 

(SVO) as “the use of automation coupled with human factors best practices to reduce the quantity 
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of trained skills and knowledge that the pilot or operator of an aircraft must acquire to operate the 

system at the required level of operational safety” (GAMA, 2019, p. 2). The goal is to facilitate 

increased access to pilot certification while simultaneously maintaining safety, particularly as the 

demand for highly skilled pilots is expected to surpass availability within the scope of the AAM 

vision. This concept only applies to onboard pilots and is considered to be the transition phase 

between current pilot roles and future RVO roles. A similar concept, the Naturalistic Flight Deck, 

was explored in the context of enabling single-pilot operations for very light jets (VLJs; Schutte 

et al., 2007) prior to the emergence of AAM, and many of the ideas are applicable to SVO. 

However, there is limited research that addresses this topic as it applies to the AAM ecosystem 

(cf. Feary, 2018; Wing, Chancey, Politowicz, & Ballin, 2020). 

3. Automation and Increasingly Autonomous Systems 

Under both RVO and SVO concepts, a significant increase in automation would be required to 

enable the range of proposed AAM operations. In many domains, automation is implemented 

extensively to reduce human errors and workload, enhance efficiency, and provide economic 

advantages (Nickerson, 1999; Wickens, 2018). Yet to some, increasingly autonomous systems 

promise to surpass current automation capabilities in furthering AAM goals. This section provides 

a discussion to clarify the terms automation and “autonomy,” and concludes with a brief discussion 

on human-automation interaction (HAI) and human-autonomy teaming (HAT).   

3.1. A Framework for Increasingly Autonomous Systems 

Hancock (2017) describes automation as a system designed to accomplish a set of largely 

deterministic steps to achieve a limited set of pre-defined outcomes. Alternatively, autonomy is a 

characteristic of system capabilities that “independently assume functions typically assigned to 

human operators, with less human intervention overall and for longer periods of time” (Pritchett, 

Portman, & Nolan, 2018, p. 4). Hancock (2017) also proposes that autonomous systems “are 

generative and learn, evolve and permanently change their functional capacities as a result of the 

input of operational and contextual information” (p. 284). From a technical perspective, the 

algorithms supporting autonomous system decisions and actions are (or would be) non-

deterministic in many cases. Yet, somewhat contrasting with the word “autonomy” itself, an 

autonomous system may still require human supervision, direction, and cooperation (cf. RVO and 

PIC Distance). Clearly, the idea of an aircraft, or network of aircrafts, acting independent of any 

human input is neither a desired outcome, nor technically feasible (cf. Pritchett et al., 2018; 

Endsley, 2017). In mature AAM operations both machine and human agents will be responsible 

for a range of functions that will require varying degrees of inter-dependency (e.g., HAT; Pritchett 

et al., 2018).  

 

Although we acknowledge fully autonomous systems represent a level of technological 

sophistication that surpasses many (currently all) forms of automation, we argue that it is simply 

a characteristic of technology and not in and of itself something wholly different from automation 

(see Wing et al., 2020). To this point, a “system” described as autonomous could be either a human 

or technology (cf. Hancock’s 2017 definition above). Clearly, many in the research and 

development community have begun to refer to “autonomy” as a technology or set of technologies, 

rather than a characteristic of the technology (e.g., the term “human-autonomy teaming”). To 

remedy this, we adopt Parasuraman, Sheridan, and Wickens’ (2000) widely accepted definition of 

automation, which is “a device or system that accomplishes (partially or fully) a function that was 
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previously, or conceivably could be, carried out (partially or fully) by a human operator” (p. 287; 

see also Wickens, 2018). The inclusion of “partially or fully” encompasses the notion of level of 

automation (LOA), which can range from fully manual (Level 1) to fully autonomous (Level 10) 

(Table 2). This is a more parsimonious strategy to frame conversations about “automation” versus 

“autonomy,” than traversing the vast philosophical perspectives available in the literature. We 

would also argue that what is often labeled as “autonomy” or an “autonomous system” may more 

accurately be labeled “increasingly autonomous” (Pritchett et al., 2018) or “semi-autonomous” 

(Endsley, 2017). Yet, for simplicity, we do use the term “human-autonomy teaming” and in some 

instances simply autonomy. 

 
Table 2. Levels of automation of decision and action selection. 

HIGH 10. The computer decides everything, acts autonomously, ignoring the human. 
 9. informs the human only if it, the computer, decides to 
 8. informs the human only if asked, or 
 7. executes automatically, then necessarily informs the human, and 
 6. allows the human a restricted time to veto before automatic execution, or 
 5. executes the suggestion if the human approves, or 
 4. suggests one alternative 
 3. narrows the selection down to a few, or 
 2. The computer offers a complete set of decision/action alternatives, or 
LOW 1. The computer offers no assistance: human must take all decisions and 

actions. 
Note. Adapted from “A Model for Types and Levels of Human Interaction with Automation” by R. 
Parasuraman, T. B. Sheridan, and C. D. Wickens, IEEE Transactions on Systems, Man, and Cybernetics 
- Part A: Systems and Humans, 30 (3), p. 287. Copyright 2000 by IEEE. 

 

In addition to the parsimonious quality and incorporation of LOA, Parasuraman et al.’s (2000) 

perspective emphasizes the human’s role in determining overall system performance. Specifically, 

the definition proposes that automation replaces, partially or fully, functions previously carried 

out by a human. On this point, Parasuraman et al.’s (2000) framework encompasses LOA’s 

underlying inputs (i.e., information-based automation) and outputs (i.e., decision selection and 

action implementation automation), which are mapped to a simplified version of human 

information processing stages (Figure 1; see also Onnasch, Wickens, Li, & Manzey, 2014). Stage 

1, sensory processing, corresponds to information acquisition automation, which augments or 

replaces aspects of human selective attention and sensors (e.g., eyes, ears, skin), by selecting, 

registering, and filtering input data. Stage 2, perception and working memory, corresponds to 

information analysis automation, which augments or replaces cognitive processes used to integrate 

information, assess situations, and provide diagnoses. Stage 3, decision making, corresponds to 

decision selection automation, which augments or replaces cognitive processes associated with 

deciding among alternatives and selecting appropriate actions. Stage 3 automation departs from 

information analysis by making assumptions about the costs and values of the decision impact, in 

a probabilistic and uncertain environment. Stage 4, response execution corresponds to control and 

action execution automation. Generally, Stage 4 automation replaces human actions and manual 

control (e.g., hand, foot, voice), to some degree. Although some forms of automation may 

represent a single stage, automated systems may incorporate more than one stage at various LOAs. 

 



 

6 

 

 

Figure 1. Simplified model of human information processing system mapped to stages of 
automation, based on Parasuraman et al. (2000). Note: System functions automated by 
processing stage are in parentheses.  
 

The purpose of adopting this framework is to provide a method to structure human-automation 

interaction and teaming discussions and is not intended to serve as a MABA-MABA list (Men-

Are-Better-At/Machines-Are-Better-At; e.g., Fitts, 19511). Indeed, MABA-MABA lists can give 

the impression that technology and humans have fixed strengths and weakness, which provides a 

plausibly oversimplified method to base function allocation decisions on (Dekker & Woods, 2002; 

though see de Winter & Dodou, 2014, for alternative perspective). A lesson that is repeatedly 

reported (and often relearned) is that automation does not simply replace the human, it changes 

the human’s tasks in unexpected and often unintended ways (Parasuraman et al., 2000). No matter 

the function, even highly automated system performance cannot be well predicted by the 

functionality of the technology alone.  

3.2. Lessons from Human-Automation Interaction 

The HAI literature is replete with examples that illustrate the “pitfalls of automation” (see Lee & 

Seppelt, 2012, for review). One such pitfall is out-of-the-loop unfamiliarity, where, because the 

task is highly automated, a human operator has a diminished ability to detect automation failures 

and effectively intervene in a timely manner (Endsley & Kris, 1995). Failures to detect automation 

errors have been attributed to lack of feedback from passive monitoring (Lee & Seppelt, 2012), 

vigilance (Warm, Parasuraman, & Matthews, 2008), inadequate situation awareness (Endsley & 

Kris, 1995), and complacency (Parasuraman & Manzey, 2010). There is a clear desire in the AAM 

community to adopt increasingly autonomous systems (e.g., Holden & Goel, 2016), yet this 

strategy runs the risk of introducing out-of-the-loop unfamiliarity issues encountered in similarly 

highly automated domains. Indeed, although referring to highly automated ground vehicles, 

Hancock’s (2019) maxim holds in the context of SVO as well: “If you build vehicles where drivers 

are rarely required to respond, then they will rarely respond when required.” (p. 485). A related 

pitfall is clumsy automation, which refers to automation that tends to make easy tasks easier and 

hard tasks harder. For example, flight management systems (FMS) tend to make the low-workload 

phase of flight easier (straight/level flight, routine climb), whereas the high workload phases tend 

to be more difficult, such as preparation for landing, where pilots must share time among landing 

procedures, air traffic control (ATC) communications, and programing the FMS (Lee & Seppelt, 

2012). Because the easy task is highly automated, the operator has a diminished ability to respond 

effectively in off-nominal/difficult situations (i.e., out-of-the-loop unfamiliarity) and 

impoverished skills and lack of experience to respond appropriately. Often these pitfalls are the 

                                                 
1 Note: Fitts et al. presented this list as a general guideline, rather than the “gospel” of function allocation, for which 

it has been the target of various criticisms across the decades (see Sheridan, 2000, and de Winter & Dodou, 2014 for 

discussions).  
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result of having the ability to automate some functions, leaving the human with the “leftover” 

aspects of the tasks that were too difficult to automate or too challenging to certify. These issues 

are indicative of a “machine-centered” approach to system design that often neglects the human at 

the expense of safety, sometimes excising the capacity for resilient system performance (i.e., the 

human).   

3.3. Human-Automation Teaming and Resilient Performance 

The purpose of reviewing the lessons learned from HAI is not intended to cast blame on past design 

strategies. Noticeably, there is a tendency in the human factors and ergonomics community to 

sometimes exaggerate the pitfalls of automation narrative, without recognizing that increased 

automation, in many domains, has delivered on the promises of increased efficiency, safety, and 

economic advantages (de Winter, 2019). Similarly, however, the human’s capacity to significantly 

increase the likelihood of resilient performance should also be recognized. Resiliency is defined 

as follows: 

 

Resilience is the systematic capacity to change as a result of circumstances that push the 

system beyond the boundaries of its competence envelope. The system may have to amend 

some, or even all of its goals, procedures, resources, roles, or responsibilities. As a result 

of those changes, the work system then expresses a revised competence envelope. In effect, 

it becomes a different system (Hoffman & Hancock, 2017, pp. 565-566).  

 

Clearly, the ability to achieve resilient performance should be a goal in AAM operations. Holbrook 

et al. (2019) highlight the numerous ways that humans greatly increase the probability for resilient 

performance and provide a compelling analysis of what goes right in daily “nominal” civil aviation 

operations because of consistent human interventions in highly automated procedures. Proposed 

AAM design concepts should support the ability for a system (used broadly to include both 

technology and human components) to monitor, respond, learn, and anticipate (Hollnagel, 2015), 

and those abilities should manifest from a thoughtful analysis for how humans and technology can 

work and think better together (Holbrook et al., 2020). An emerging concept that embodies this 

perspective is HAT. 

 

The concept of HAT adopts the perspective that the benefits of increasingly autonomous 

technologies will more likely manifest when humans and technologies partner as a team. Here a 

team is defined as “a distinguishable set of two or more agents who interact, dynamically, 

interdependently, and adaptively toward a common and valued goal/objective/mission” (Salas, 

Dickinson, Converse, & Tannenbauem, 1992, p. 7; the term humans was changed to agents in this 

definition). The progression from lower levels of automation to increasingly autonomous systems 

illustrates the capability to fundamentally shift human-automation pairings from interactions to 

teaming (i.e., HAI to HAT). Whereas low-level automation is designed to accomplish pre-

specified steps to achieve a limited set of outcomes, increasingly autonomous systems are 

characterized by the ability to independently assume functions with less human intervention 

overall and for longer periods of time (Pritchett et al., 2018). It is these increasingly sophisticated 

characteristics that may allow more complex interpersonal teaming principles, particularly those 

related to trust, to become applicable to human-automation partnerships, which is often absent in 

simple interactions (e.g., it is difficult to imagine how a pilot is teaming with an FMS in any 

meaningful way). This is not to dismiss the calls for collaborative and complementary pairings 

between humans and automation that have been issued over the years (e.g., Jordan, 1963; Dekker 
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& Woods 2002). Instead, the HAT concept opens the human-automation trade-space to incorporate 

more sophisticated pairing strategies. One such concept that has received much attention in the 

HAI domain is human-automation trust. The concept of HAT, however, broadens the usefulness 

of the trust construct to novel and interesting teaming applications (particularly aspects of the 

construct that were previously only applicable to interpersonal relationships).  

4. Trust in Automation and Increasingly Autonomous Systems 

Over the past several decades, researchers have invoked the construct of trust to predict and 

describe human interactions, and more recently teaming, with various technologies (e.g., Sheridan 

& Verplank, 1978; Sheridan, Fischhoff, Posner, & Pew, 1983; Sheridan & Hennessy, 1984; Muir, 

1987; Sherridan, 1988; Lee & See, 2004; Hoff & Bashir, 2015; Sheridan, 2019ab; de Visser et al., 

2019). Muir (1987, 1994; Muir & Moray, 1996) provided one of the first formal attempts to model 

human-automation trust. She proposed a two-dimensional framework to study “human-machine” 

relationships based on taxonomies of interpersonal trust (i.e., Barber, 1983; Remple, Holmes, & 

Zanna, 1985), which led to a multitude of theoretical perspectives (Table 3; see Adams, Bruyn, 

Houde, & Angelopoulous, 2003, for extensive review of early human-automation trust research 

and Hoff & Bashir, 2015, for recent review). Among these perspectives, Lee and See’s (2004) 

human-automation trust model has emerged as the most influential and widely accepted. As of 

March 2020, a Google Scholar search shows the article has 2,359 citations. Because of the 

comprehensive and integrative merits of Lee and See’s (2004) model, it serves as the main 

organizing theoretical lens we use to describe the nature of trust in the current work. Moreover, 

recent theoretical developments have built off of this model to offer a greater understanding of 

factors that affect trust (i.e., Hoff & Bashir, 2015), the trust calibration process for interacting and 

teaming with increasingly autonomous systems (i.e., de Visser, et al., 2019), and theoretically-

grounded strategies for transparent design (i.e., Chen, Procci, Boyce, Wright, Garcia, & Barnse, 

2014; Lyons, 2013). This section outlines our conceptualization of trust by first providing a 

definition, a description of appropriate (calibrated) trust, and then describes the trust formation 

process.  
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Table 3. Selected Influential Human-Automation Trust Theories 
 

Trust Theory References 
 

Description 

Sheridan (1988, 2019a, 2019b) Proposed several quantitative human-automation trust models for supervisory controls (i.e., Signal 
detection, statistical parameter estimate, model-based control) and the notion of applying attributes of 
human morality to affective trust criteria for increasingly intelligent automation 

Muir (1987, 1994; Muir & 
Moray, 1996)  

Proposed a framework that integrated bases of trust (persistence, technical competence, and 
responsibility) and dynamics of trust (predictability, dependability, and faith).  

Lee and Moray (1992; 1994) Proposed modified version of Muir’s framework, which added leap of faith, understanding, and trial-and-
error experience (Zuboff, 1988). Related this updated framework to the concepts of purpose, process, 
and performance. 

Parasuraman and Riley (1997; 
Riley, 1996) 

Cited trust as one of the key components in determining automation use, along with other variables such 
as workload, perceived risk, and self-confidence. 

Cohen, Parasuraman, and 
Freeman (1998) 

Proposed the Argument-based Probabilistic Trust (APT) model, which introduced the use of event-trees 
that probabilistically model decisions to determine automation dependence. 

Seong and Bisantz (2000; 
Seong, Bisantz, & Gattie, 
2006) 

Proposed a trust model based on Brunswik’s (1952) Lens model, which accounts for trust calibration. 

Dzindolet, Pierce, Beck, Dawe, 
and Anderson (2001), 
Dzindolet, Pierce, Beck, and 
Dawe (2002) 

Proposed a conceptual model of automation use, which cited trust as a key component. Loosely based on 
concepts proposed by Parasuraman and Riley (1997). 

Lee and See (2004) Proposed a qualitative model that specified how to design trustable automation and presented a review of 
both interpersonal and human-automation trust theories. 

Madhavan and Wiegmann 
(2007) 

Proposed a model of sequential development of trust for automation and humans and, additionally, a 
framework of factors that affect the development of trust in automation. 

Hoff and Bashir (2015) Building off Lee and See (2004), proposed a three-layer trust model consisting of dispositional, 
situational, and learned trust. 

Hoffman (2017) Proposed a cognitive systems engineering taxonomy of emergent trust in human-machine relationships 

de Visser et al. (2019) Proposed an iterative human-agent trust model; introduced the concept of relationship equity to the 
human-technology paradigm  

Note: References ordered chronologically by first publication.   
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4.1. Defining Trust 

One of the ongoing struggles of trust research (interpersonal and human-automation) is 

establishing the appropriate characterization of the construct. Trust has been conceptualized as a 

belief (e.g., Kramer, 1999), an attitude (e.g., Barber, 1983), an intention (e.g., Mayer, Davis, & 

Schoorman, 1995; Schoorman, Mayer, & Davis, 2007), and as a behavior (e.g., Deutsch, 1960; 

Meyer, 2001). To resolve these conflicting perspectives, Ajzen and Fishbein (1977, 1980) propose 

a process where attitudes toward a target object are based upon beliefs about that target, which 

then leads to the adoption of an intention to act out a behavior toward that target. Specifically, a 

belief provides the basis for attitudes, which are formed by experiences, knowledge, and the 

availability of information. An attitude is “a learned predisposition to respond in a consistently 

favorable or unfavorable manner with respect to a given object” (Fishbein & Ajzen, 1975, p. 6). 

Lee and See (2004) describe attitudes as “affective evaluations of beliefs that guides people to 

adopt a particular intention” (p. 53). Regardless, attitudes develop from the beliefs about an object 

by associating it with particular attributes (Ajzen, 1991). Intentions, based on attitudes, lead to 

behaviors. Intentions are regulated by environmental and cognitive variables and capture the 

motivational factors that influence behavior. In other words, intentions indicate how much effort 

an individual is willing to exert to execute a behavior (i.e., the stronger the intention, the more 

likely the performance of that behavior is likely to occur; Ajzen, 1991). Studies have shown that 

intentions to perform an action, for example intention to use technology, are predictive of actual 

technology use (e.g., Davis, Bagozzi, & Warshaw, 1989; Venkatesh, Morris, Davis, & Davis, 

2003).  

 

Lee and See (2004) propose that trust is best conceptualized as an attitude, where beliefs about the 

characteristics of the automation help form the basis for adopting a particular level of trust (see 

Mental Model section). Depending on the level of trust, this leads a person to adopt an intention 

that leads to a behavior. Considering trust as a behavior or intention has the potential to confound 

its effects with other variables that likely affect behaviors (e.g., environmental and task constraints, 

workload, self-confidence). From this perspective, there is a clear distinction between trust as an 

attitude and behavioral responses.  

 

Lee and See (2004) also highlight two important components of trust. First, the trustee is 

responsible for advancing the goal(s) of the trustor. Although most perspectives of trust do not 

explicitly include this component, most highlight the importance of allowing the trustee to perform 

a particular action on behalf of the trustor (cf. Mayer et al., 1995). This is particularly important 

for human-automation trust, as the trustee is often created to achieve the goal(s) of the trustor. 

Second, a common theme among most conceptualizations of trust is the notion of vulnerability 

and perceived risk, where the trustor willingly assumes risk by delegating responsibility to the 

trustee (Lyons & Stokes, 2012; Mayer et al., 1995). If a trustor does not perceive the risk associated 

with placing a trustee (e.g., human, automation) in charge of achieving their goal(s), then trust will 

not greatly affect intentions (Chancey, 2020) or behaviors (Chancey, Bliss, Yamani, & Handley, 

2017). Risk is a characteristic of decisions and is defined as “the extent to which there is 

uncertainty about whether potentially significant and/or disappointing outcomes of decisions will 

be realized” (Sitkin & Pablo, 1992, p. 10). Reflecting these perspectives, trust is “an attitude that 

an agent will help achieve an individual’s goals in a situation characterized by uncertainty and 

vulnerability” (Lee & See, 2004, p. 51), where the perceived risk of being vulnerable to that agent 

determines if trust is translated into a behavior (Chancey et al., 2017; Mayer et al., 1995). 
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4.2. Trust Calibration 

Trust is often described in terms of calibration, or degree of appropriateness. Calibration describes 

the relationship between trust in the system and the actual trustworthiness (or capabilities) of the 

system (i.e., the diagonal line in Figure 2). From the interpersonal trust literature, Mayer et al. 

(1995) define trustworthiness as the extent to which a trustee has the ability (skills, competencies 

in a specific domain) to achieve the goals of the trustor, is benevolent (positively oriented toward 

the trustor), and has integrity (adheres to a set of principles acceptable to the trustee). Much work 

has been conducted in operationalizing and explaining trust calibration (e.g., de Visser et al., 2019; 

Lee & See, 2004; McBride & Morgan, 2010; Okamura & Yamada, 2020; Seong & Bisantz, 2000; 

Seong, Bisantz, & Gattie, 2006; Wang, Pynadath, & Hill, 2016). Operators demonstrate poor trust 

calibration by over trusting the system (i.e., trusting it above its capabilities, generating misuse), 

or under trusting the system (i.e., trusting the system below its capabilities, generating disuse) (cf. 

Parasuraman & Riley, 1997; Parasuraman, Sheridan, & Wickens, 2008). The importance of trust 

appropriateness cannot be overstated, as the design goals for automation should not necessarily be 

to instill excessive trust (regardless of the rigor undertaken in the verification and validation 

process).  

 

 

Figure 2. Model of trust calibration and resolution between trust and trustworthiness –
Adaptive from Lee and See (2004), de Visser et al. (2019), and Gempler (1999). 
 

Users often assume that “expert” automated systems will work properly and engage in other 

activities without worrying about the system making an error that will go undetected. Over-trust 

is frequently cited as one of the key contributing factors in misuse of automation (Lee & Seppelt, 

2012). Unfortunately, over-trust can lead to disastrous outcomes when rare automation failures 

leave the human out-of-the-loop and unprepared to intervene or takeover (Parasuraman & Manzey, 

2010). There are many examples within the aviation domain that point to over-trust in highly 

automated tasks that have led to near misses, incidents, and accidents (Bliss, 2003a). More 

recently, misuse of automation is increasingly appearing in the personal vehicle domain. As an 

example, several crashes have resulted from disengaged drivers not taking over for highly 
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automated vehicles failing to detect and avoid parked firetrucks (Stewart, 2018; Figure 3). Yet, 

similar to aviation examples, some drivers seemingly trust these technologies to the point of 

literally sleeping behind the wheel2,3,4,5. Here we remind the reader of the maxim introduced in the 

previous section: “If you build vehicles where drivers are rarely required to respond, then they 

will rarely respond when required” (Hancock, 2019; p. 485). 

 

 

Figure 3. Car on “Autopilot” collided with parked firetruck. Image from Culver City 
Firefighters [CC_Firefighters]. (2018, January 22). While working a freeway accident this 
morning, Engine 42 was struck by a #Tesla traveling at 65 mph.  The driver reports the 
vehicle was on autopilot.  Amazingly there were no injuries!  Please stay alert while driving! 
#abc7eyewitness #ktla #CulverCity #distracteddriving [Tweet]. Retrieved from 
https://twitter.com/CC_Firefighters/status/955529991319560192 
 

Alternatively, the full potential and benefits of automation will not be realized if the human does 

not trust the technology. Sorkin (1988) noted that pilots ignore or disable unreliable, yet critical, 

alarm systems (e.g., “Some military pilots I know admit to witnessing the removal of circuit 

breakers so as to disable flight warning systems” p. 1107). Research has shown that even the 

perception of automation performance also affects trust and responses, regardless of actual 

performance characteristics (Bliss, Dunn, & Fuller, 1995). In a recent study on trust in the 

Automatic Ground Collision Avoidance System (Auto-GCAS), pilots conveyed accounts from 

                                                 
2 ABC News (2019). Driver asleep at the wheel of his Tesla on busy freeway in Los Angeles. [YouTube]. 

Retrieved February 28, 2020, from https://www.youtube.com/watch?v=ZhObsMnipS8 
3 NBC News (2019). Tesla Driver Caught on Camera Apparently Asleep At The Wheel | NBC Nightly 

News. [YouTube]. Retrieved February 28, 2020, from 

https://www.youtube.com/watch?v=NHUZxeSUFUk 
4 CBS 17 (2019). Video appears Tesla driver asleep at the wheel of freeway. [YouTube]. Retrieved 

February 28, 2020, from https://www.youtube.com/watch?v=BjHpBFPz2xI 
5KPIX CBS SF Bay Area (2018). Police Say Tesla Driver Was Asleep at Wheel With Autopilot On. 

[YouTube]. Retrieved February 28, 2020, from https://www.youtube.com/watch?v=wpsPPbnZxq4  

https://twitter.com/CC_Firefighters/status/955529991319560192
https://www.youtube.com/watch?v=ZhObsMnipS8
https://www.youtube.com/watch?v=NHUZxeSUFUk
https://www.youtube.com/watch?v=BjHpBFPz2xI
https://www.youtube.com/watch?v=wpsPPbnZxq4
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other pilots of system failures resulting in crashes, even though Auto-GCAS had not been installed 

on the crashed aircrafts in question (Ho, Sadler, Hoffmann, Lyons, & Johnson, 2017).   

 

A system that is not trusted, and subsequently ignored or disabled, represents a waste of invested 

resources (time, money) and ultimately has minimal impact on solving the issue it was designed 

to address, regardless of actual capability. Alternatively, if a system is trusted beyond its 

capabilities, when automation fails or autonomy behaves unpredictably, the human will not likely 

be able to effectively takeover (i.e., out-of-the-loop unfamiliarity, skill decay, inadequate training 

or experience) or will simply not notice system problems. The goal of HAI and HAT efforts should 

be to establish design and training strategies for appropriately calibrated trust. The notion of 

operationalizing appropriate trust, however, deserves some consideration.  

4.2.1. Operationalizing Trust Calibration 

Although we have characterized trust as an attitude, trust calibration has often been used to explain 

automation response behaviors (e.g., compliance, reliance, agreement rate). Two common 

behaviors associated with trust calibration are probability matching (e.g., Bliss, Gilson, & Deaton, 

1995; Wiegmann, Rich, & Zhang, 2001) and system monitoring (e.g., Bailey & Scerbo, 2007). 

Although both of these response behaviors have been the focus of a considerable number of 

studies, neither method offers a perfect approximation of trust calibration. The emerging concept 

of Signal Detection Theory for Social Trust Calibration is a promising alternative to these methods 

(de Visser et al., 2019). 

 

Probability Matching. Probability Matching describes a behavioral response pattern in which 

humans tend to match their agreement rates with the expected reliability of automated decision 

aids and alarm systems (Bliss, Gilson, et al., 1995; Manzey, Gerard, & Wiczorek, 2014; Wiegmann 

et al., 2001). From a functional perspective, reliability is defined by the number of errors (false 

alarms and misses) that an automated aid produces during a given time period (e.g., an alarm 

system that produces 1 false alarm every 10 times the alarm sounds is 90% reliable; Sullivan, 

Tsimhoni, & Bogard, 2008). Theoretically, probability matching occurs as a result of the human 

calibrating their trust with the perceived reliability of the system (i.e., perceived trustworthiness). 

To illustrate, Bliss et al. (1995) reported that the number of agreements with the output of an alarm 

system tended to approximate its reliability (e.g., in the 75% reliability group, participants agreed 

with 75% of the alarms). In a literature review, Bliss (2003b) noted that participants tended to 

probability match when provided with information that could be used to crosscheck automation 

output (i.e., there is a degree of transparent design). Without the ability to crosscheck the 

automation, however, participants tend to maximize their agreements with the automation (see also 

Manzey et al., 2014 for review). Explicitly disclosing the reliability of the automation can also 

affect the calibration of agreement rates. Wang, Jamieson, and Hollands (2009) showed that when 

participants were explicitly informed of the reliability of an automated decision aid, they tended 

to vary their agreements more accurately than those not provided with reliability information. 

Regardless of actual system reliability, perceived reliability can also significantly affect response 

strategies. Bliss et al. (1995) reported a study in which participants interacted with a 50% reliable 

signaling system across two sessions. Before beginning the second session, an experimental 

confederate falsely informed participants that the signaling system was 75% reliable, which 

resulted in an increased number of agreements during the subsequent session (also see Chancey & 

Bliss, 2012). 
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Potential Issues. Although probability matching has been used as an approximation of trust 

calibration, it can result in poor performance (not the desired effect of well-calibrated trust). To 

illustrate, if a system is 80% reliable, then across 100 signals or decisions issued by the automation, 

the human will agree with the automation 80% of the time. This will result in approximately 64 

correct agreements (i.e., 0.8 × 80 = 64). For the remaining 20 responses, the number of correct 

disagreements would be approximately 4 (i.e., 0.2 × 20 = 4), resulting in a total of 68 correct 

responses. Instead, if the operator had agreed with the system every time, the human-automation 

pairing would have arrived at 80 correct responses (i.e., 0.8 × 100 = 80 correct; Wiegmann et al., 

2001). From this example, if depending entirely on operationalizing trust as a response behavior, 

it would appear that the design recommendation would be to encourage over trust in the 

automation.  

 

System Monitoring. Following the notion of crosschecking automation to evaluate its 

trustworthiness, monitoring strategies may also provide insight into operationalizing trust 

calibration (e.g., eye tracking). System monitors are described as complacent (i.e., monitoring the 

automation less than an “optimal observer”), skeptical (i.e., monitoring the automation more than 

an “optimal observer”), or eutactic (i.e., “well calibrated”/optimal)(Moray & Inagaki, 1999). 

Complacency due to over trust has received a great deal of attention in the research community 

(see Parasuraman & Manzey, 2010, for review). Research has shown that in system monitoring 

tasks, a “complacent” human monitor often fails to intervene or detect a rare failure by a highly 

automated system (e.g., Politowicz, Chancey, & Glaab, 2021; Prinzel, DeVries, Freeman, & 

Mikulka, 2001). It does make practical sense that if a human does not take the time to crosscheck 

the automation to ensure it is correct, then that may plausibly indicate a high level of trust.  

 

Potential Issues. To determine if a monitor is complacent, an “optimal” monitoring strategy needs 

to be operationally defined to contextually establish what is above and below eutactic/well 

calibrated monitoring (Parasuraman & Manzey, 2010). Bahner, Huper, and Manzey (2008) were 

able to establish an optimal sampling rate by cleverly incorporating a monitoring option into a 

micro-world experiment. Moray and Inagaki (2000) proposed using the Nyquist sampling theorem 

to mathematically establish an optimal sampling rule (i.e., “sample a variable whose bandwidth is 

WHz at 2WHz,” Moray, 2003, p. 176). Yet, both approaches may be difficult to test outside of 

tightly controlled laboratory studies (cf. Parasuraman & Manzey, 2010). Parasuraman and Manzey 

(2010) suggest that models of visual attention may be useful in explaining monitoring strategies 

(e.g., the Salience, Effort, Expectancy, Value [SEEV] Model, Wickens & McCarely, 2008, pp. 41-

61), and some researchers are beginning to use eye tracking as an indirect measure of trust (e.g., 

Hergeth, Lorenz, Vilimek, & Krems, 2016; Karpinsky, Chancey, Palmer, & Yamani, 2018; 

Karpinsky, Chancey, & Yamani, 2016a, 2016b;). 

 

Signal Detection Model for Social Trust Calibration. de Visser et al. (2019) recently proposed 

a signal detection model for social trust calibration, which is both novel and highly applicable to 

the HAT paradigm. de Visser et al.’s (2019) model focuses on maintaining relationship equity, an 

emotional resource that predicts the degree of goodwill between humans and automation. The 

authors introduce methods for trust repair and trust dampening, which serve to maintain calibrated 

trust between a human and an autonomous agent (see Figures 2 and 4). The autonomous agent 

maintains trust calibration through anticipated and unanticipated trust violations. Maintaining 

well-calibrated trust is both important, and potentially difficult to operationalize (see Probability 
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Matching and System Monitoring sections above). This method, however, provides a compelling 

mechanism to regulate trust calibration for HAT, which also reaches beyond somewhat contrived 

HAI research paradigms. Moreover, because this approach is grounded in signal detection theory, 

it is amenable to establishing the sensitivity (dʹ) and, importantly, the response bias (β, c) of the 

autonomous agent. Response bias determines whether a system is more likely to make a false alarm 

or miss. Recent research suggests that trust is more likely to affect behavioral responses of humans 

if a system is false alarm prone, rather than miss prone (Chancey et al., 2017; Chancey, Bliss, 

Liechty, & Proaps, 2015). 

 

 

Figure 4. Illustration of de Visser et al.’s (2019) signal detection model for social trust 
calibration. Note: examples from Figure 7 of de Visser et al., 2019.   

4.2.2. Trust Resolution and Specificity 

In addition to calibration, trust resolution and specificity are useful descriptors of trust 

appropriateness (Lee & See, 2004). Resolution indicates the sensitivity of trust to differentiate 

among a range of automation capability levels (Figure 2). To illustrate, an operator who trusts a 

60% reliable system the same as a 90% reliable system illustrates poor resolution. Presumably, if 

the operator trusts the 60% and 90% reliable system equally, trust should not cause the operator’s 

agreement rate to be markedly different between these two systems. An operator who trusts a 90% 

reliable system slightly more than an 89% reliable system, however, illustrates good resolution 

and should demonstrate behavior that approximates the reliability levels accordingly (i.e., 
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probability matching, though see Potential Issues section above). Specificity denotes the level of 

trust associated with a particular function (functional specificity) at a particular time and situation 

(temporal specificity). Functional specificity is similar to the concept of system-wide trust (Keller 

& Rice 2009; Rice & Geels, 2010). Keller and Rice (2009) showed that participants’ responses to 

an individual perfectly reliable aid depended upon the presence of unrelated unreliable aids. The 

authors concluded that participants based their responses on “system-wide trust” rather than trust 

in a specific component. 

4.3. The Developmental Process of Trust 

Lee and See (2004) described trust as an affective evaluation of the characteristics of the trustee. 

Moreover, that evaluation helps determine if the trustee can achieve the goals of the trustor. This 

premise implies two components that form the basis of trust: the focus (i.e., what is to be trusted) 

and the type of goal-oriented information supporting the trust. The focus of trust is described 

according to the degree of detail (e.g., trust in an organization versus an individual). This concept 

is often related to general versus specific trust, which corresponds to trust specificity outlined 

above. From this perspective, trust might correspond to an attitude toward beliefs about the overall 

system of automations or beliefs about a particular mode of an automated aid (Lee & See, 2004, 

p. 58).  

 

Researchers often describe goal-oriented information that supports trust in terms of attributional 

abstraction. From this perspective, trust is initially based on observable behaviors of the trustee 

and progresses to being based on more abstract concepts in reference to the trustee. Based on 

relationships among close partnerships (i.e., couples), Rempel et al. (1985) theorized that 

interpersonal trust is initially based on direct “coding” of partner behaviors and then, once trust 

becomes more established, trust is based more on the trustor’s belief about the trustee’s 

motivations (p. 98). Rempel et al. (1985) denote this evolution of trust as progressing from 

predictability, which is influenced by the predictability of a partner’s behaviors, to dependability, 

which is influenced by the perception of the characteristics of the trustee, to faith, which is not 

“securely rooted” in past behaviors, but is instead based on a belief that the trustee can be depended 

upon irrespective of the available evidence. Another well cited article among organizational 

psychology is that of Mayer et al. (1995), which proposed similar bases of trust, describing ability, 

integrity, and benevolence (each corresponding to predictability, dependability, and faith, 

respectively). Based on Rempel et al. (1985), and originally proposed by Lee and Moray (1992), 

Lee and See (2004) proposed similar bases for trust in automation: Performance, Process, and 

Purpose. 

 

Performance describes what the automation does and corresponds to the current and 

historical operation of the automation to include reliability, predictability, and ability. 

This closely resembles Rempel et al.’s (1985) concept of predictability, where trust is 

based on observable behavior or performance. For this component, automation that 

readily achieves the operator’s goals will lead to greater trust. To illustrate, a remote 

operator’s trust in highly automated autopilot systems will increase in proportion to the 

successful observed, experienced, and reported flights that are safely completed with 

little or no operator intervention.  

 

Process describes how the automation operates and corresponds to the appropriateness of 

the automation’s algorithms in achieving the operator’s goals. This closely resembles 
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Rempel et al.’s (1985) concept of dependability, where the focus shifts from observable 

behaviors of the automation to the characteristics attributed to the automation. For this 

component, automation that appears capable of achieving the operator’s goals and is 

understandable will lead to greater trust. To illustrate, a remote operator that has a 

conceptual understanding for how the autopilot systems work will be less likely to 

distrust it because of a rare mid-flight course correction that was executed to deconflict 

intersecting flight paths or re-route to an alternate landing site (i.e., the algorithm is not 

simply plotting a direct route between two points but considering other factors).  

  

Purpose describes why the automation was developed and corresponds to how well the 

designer’s intent has been communicated to the operator. This closely resembles Rempel 

et al.’s (1985) concept of faith, where trust is based on the belief that the automation can 

be depended upon in the absence of observing past behaviors. For this component, 

automation that achieves the goals it was designed to achieve (i.e., the operator’s goals) 

will lead to greater trust. To illustrate, a remote operator is more likely to trust alternative 

auto-generated route options if they understand the reason for each (e.g., when traveling 

from one landing site to another, each route may represent a tradeoff between the 

quickest, most energy efficient, or greatest opportunity to accomplish multiple mission 

objectives). 

 

In contrast to interpersonal theories (e.g., Mayer, et al., 1995; Rempel et al., 1985), where trust is 

hypothesized to evolve sequentially through stages of attributional abstraction (i.e., performance 

then process then purpose), Lee and See (2004) conceptualized trust as being based on different 

levels of attribution that do not necessarily follow a pre-defined sequence. Early in the human-

automation relationship the operator may not have had the opportunity to observe the automation’s 

behaviors (i.e., performance), yet may have a clear understanding of the purpose of the automation. 

Therefore, trust may initially be faith-based or based on purpose, rather than on the coding of 

observed behavioral performance.   

 

Lee and See (2004) proposed that although trust is largely influenced by affective processes, 

analytical and analogical processes also determine the assimilation of goal-oriented information. 

From an analytical perspective, trust reflects accumulated knowledge from previous interactions 

with the trustee. These interactions are used to rationally and probabilistically determine the 

behavior of the trustee (cf. APT model by Cohen et al., 1998). To illustrate, when given the 

opportunity to reroute a flightpath for optimization, a remote operator may create a rational 

argument to analyze the expected outcome or probability of reaching their destination quickly 

when using the route provided by a flight path optimization tool verses a route recommended by 

an affiliated remote operator (e.g., optimization tool improved arrival time 24/33 times during 

previous flights, weighted against the affiliated remote operator being correct 7/12 times during 

previous flights). Lee and See (2004) argued, however, that this perspective overemphasizes the 

cognitive capability of the human decision maker to effectively engage in conscious calculations 

or to make exhaustive comparisons among alternatives (p. 62). Analytical processes, therefore, are 

likely complemented by other processes such as analogical judgments that rely on category 

membership. From this perspective, trust develops through direct observations, intermediaries who 

convey their own observations, and assumptions based on existing standards, category 

memberships, and procedures (Lee & See, 2004, p. 62). For example, the remote operator may 
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have learned in training that the aircraft GPS position data is less reliable in one specific region, 

so he or she decides not to comply with the directive because the vehicle is currently operating in 

that location (cf. hearsay technique used by Bliss, Dunn, et al., 1995). This process is similar to 

the concept of rule-based behaviors (Rasmussen, 1983), where behavior is determined by 

condition-action pairings. Yet, Lee and See (2004) proposed that affective processes largely 

influence the effect of trust on behavior, because trust is not only thought about but also felt (Fine 

& Holyfield, 1996, p. 25). When expectations about the trustee’s performance do not conform to 

predictions, trust is betrayed, and emotions signal the need to change the behavior of the operator. 

With increasingly sophisticated automation, operators often lack the cognitive resources to 

rationally predict its behavior. Compounding this effect, the nondeterministic algorithms leveraged 

by increasingly autonomous systems may not even allow the designer insight into system 

behaviors, much less the human interacting or collaborating with the system. Lee and See (2004) 

suggest, therefore, that emotions guide behaviors when rules do not apply or when cognitive 

resources are not available to make a rational choice.  

 

Importantly, the robustness and stability of trust depends on how the human mentally represents 

the goal-oriented informational bases referencing the automation and determines the 

appropriateness of intentions to use the automation and behavioral interactions with the automation 

(Lee & See, 2004). One approach to conceptualizing the belief structures of Performance, Process, 

and Purpose, are to think of them as the user’s mental models of the automation. 

5. A Mental Model Approach to Support Appropriate Trust 

Researchers and practitioners interested in the ways in which humans interact with computers and 

complex systems (e.g., automation) have frequently used the term “mental model” to describe the 

mental representations of system processes humans use to reason, infer, and make predictions 

about the technologies they interact with (Allen, 1997; Moray, 1998, 1999; Norman, 1983). 

Although not directly observable, different categories of evidence have been used to infer 

characteristics of mental models: e.g., operators can predict system processes and how those 

processes may affect or interact with other subsystems; operators can explain the cause of system 

events or reasons for errors; operators that are trained with models perform better than those 

without training (Allen, 1997). These models are approximations of the target system, which 

maintain essential aspects of the original, but are neither entirely accurate or provide an exhaustive 

account of system processes (i.e., these models are not isomorphic representations of the real-

world system, but are instead homomorphic; Allen, 1997; Moray, 1999).  

 

Mental models dynamically evolve through interactions with a system and are affected by prior 

operator experience and knowledge about that system. Importantly, these models need not be 

technically accurate (and often are not), only functional, and are continuously modified as they 

relate to achieving the goals of the operator (Norman, 1983, p. 3; cf. dynamic nature of trust). If 

an operator possesses an inappropriate mental model for what the automation is doing 

(Performance), how it is doing it (Process), or why the automation was developed (Purpose), then 

these models will dictate to the operator that the system is unable to regularly achieve their goals. 

In this case, the goal-oriented informational bases that support trust are impoverished, and for the 

operator to obtain a “workable result” it makes sense to reject the automation. Supporting this 

point, Beggiato and Krems (2013) showed that participants with a more complete mental model 

of an adaptive cruise control system tended to show an increase in trust over time, compared to a 
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group with incomplete mental models where trust decreased (see also Beggiato, Pereira, Petzoldt, 

& Krems, 2015). Similarly, Fogg and Tseng (1999) proposed that an interface is less likely to be 

perceived as credible when it does not match the user’s mental model (a component of which is 

trustworthiness).  

 

Although researchers and practitioners tend to focus on the mental model of the system user, or 

User Model (e.g., pilot, passenger, remote operator), the mental model of the designer, or Design 

Model, needs to be considered as well (Norman, 1986). The Design Model allows the designer to 

conceptualize the automation and is based on the task and technical limitations and capabilities of 

the automation. Ideally, the Design Model should also be based on the capabilities, limitations, 

attitudes, intentions, and behaviors of the (active or passive) human involved in the completion of 

the (partially or fully) automated task. Importantly, the User Model is not formed directly from the 

Design Model, but is instead mediated by the System Image, or the physical system itself, which 

includes the training and instructional documentation (Norman, 1986). For trust to be appropriately 

calibrated to system capabilities, the Design Model and User Model should be aligned. To 

accomplish this alignment, the System Image needs to support the belief structures of trust (i.e., 

Performance, Process, and Purpose). One method to accomplish this is to design and train for 

automation transparency.  

5.1. The System Image and Transparency 

Automation transparency is “…the communication of system-centered factors and human-

centered factors that promote shared awareness and shared intent within a human-machine team” 

(Lyons, Clark, Wagner, & Schuelke, 2017, p. 41). Lyons (2013) outlines a design framework of 

transparency, which partially focuses on the information that the automation needs to share with 

the human about its own perspective on the task it is completing, how it is completing it, and 

awareness of its intentions and limitations given a particular environmental context (p. 51). This 

information is termed Automation-to-Human6 Transparency and is captured in three System Image 

models: Task Model, Analytical Model, and Intentional Model (Lyons, 2013). These models 

closely resemble the informational bases, or beliefs, that support trust (i.e., Performance, Process, 

and Purpose).  

 

The Task Model describes the information that allows the human to analyze the actions of the 

automation (Lyons, 2013). In the proposed framework, the closer the Task Model corresponds to 

the Performance-based User Model (i.e., mental model), the more likely trust will be calibrated to 

match system capabilities. As suggested by Lyons (2013), the automation should indicate an 

understanding of the task structure and its current goals in that task structure. For example, a highly 

automated UAM flight might be divided into separate phases: passenger loading, takeoff, 

cruise/navigation, landing, and passenger unloading. Phases need to be communicated to both the 

passenger and pilot to support a shared understanding (i.e., transparency) of what the automation 

is doing (e.g., display the current phase) and what it intends to do (e.g., estimated time until next 

phase; cf. Lyons, 2013, example of the Task Model). In this example, trust can be calibrated to 

how well the display matches the behaviors of the UAM aircraft: trust will increase or be 

maintained if the aircraft is descending while the display indicates it is in the landing phase, 

whereas trust will decrease if the aircraft is descending while the display indicates it is in the 

                                                 
6 Note: Lyons uses the term “robot-to-human,” yet automation was chosen for the purposes of this work and does not 

differ in meaning or intent 
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passenger-unloading phase. If no phase indication is provided (i.e., the system is opaque), then 

trust will fluctuate erratically as the passenger and/or pilot are unable to predict phase transitions. 

Moreover, Lyons (2013) specifies that there should be a shared awareness of the capabilities of 

the automation in specific contexts. For example, an auto-land feature may not be capable of safely 

executing landings on vertiports (i.e., elevated landing pads for UAM vehicles) of certain 

diameters and altitudes when crosswinds exceed a specified threshold. Here, there should be a 

design feature that removes these vertiports as destination options or indicates that a manual 

landing is required (if that is indeed a safer option). Training may be necessary to reinforce these 

design factors, otherwise pilots may think there is a system error when a desired vertiport is not 

available, or when the automation unexpectedly requests a handoff to manual control during the 

landing phase.   

 

The Analytical Model describes the information that allows the user to analyze how the automation 

is making decisions, such as the calculations and algorithms it is relying upon, and reasons for 

system errors (Lyons et al., 2017). In the proposed framework, the closer the Analytical Model 

corresponds with the Process-based User Model (i.e., mental model), the more likely trust will be 

calibrated to match system capabilities. Returning to the previous auto-land feature example, 

displaying wind speeds and indicating breaches in preset thresholds would help the pilot (or 

operator) calibrate their trust to match the capabilities of the automation in those environmental 

conditions. Indicating this information to passengers would also help calibrate their trust to match 

UAM transportation capabilities, to show that there are not system failures, but instead excessive 

winds are impacting operations (particularly if ground level winds experienced by a waiting 

passenger are drastically different than at a vertiport multiple stories high at the desired 

destination). Designers should be cautious, however, not to display too much analytical 

information to UAM pilots, who may have limited information processing resources to re-allocate 

during even highly automated flights (see Chancey, 2021, and Chancey & Politowicz, 2020, for 

discussions on minimally trained UAM pilots/operators). The minimal training that pilots do 

receive, should focus on providing a general understanding for how the automated tools they rely 

upon work, and how that relates to automation limitations in certain situations.  

 

Finally, the Intentional Model describes information that helps the user analyze why the 

automation was created and allows the user to place the actions (e.g., Task Model) of the 

automation in the appropriate strategic context (Lyons, 2013; Lyons et al., 2017). In the proposed 

framework, the closer the Intentional Model corresponds with the Purpose-based User Model (i.e., 

mental model), the more likely trust will be calibrated to match system capabilities. Design 

techniques that provide links between the physical appearance of the system or display features 

and the functional goal of the system should be used to communicate the automation’s purpose in 

a given context (e.g., metaphors that relate familiar functions to new ones). To illustrate, because 

the display and controls of UAM aircraft will need to be drastically simplified (i.e., SVO), 

designers could leverage the existing User Models for common ground-based GPS navigation aids 

(e.g., Google Maps, Apple Maps application). A modified UAM-version of these common GPS 

designs would likely communicate their purpose and functionality to most users (pilots/operators 

and passengers), given the ubiquity of these devices and the context of operations. Yet pilots or 

passengers that have not interacted with these aids, and therefore possess an incomplete mental 

model, may disuse this type of automation due to a lack of trust. Alternatively, users that have 

extensively developed mental models with specific ground-based GPS devices/applications may 
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apply inappropriate User Models to a UAM-GPS and fail to detect system malfunctions or 

inappropriately attribute system errors to normal functionality (e.g., ground-based GPS devices do 

not display altitude or relative positions of other vehicles). Communicating the Intentional Model 

of automated functions should be an important System Image consideration to establish 

appropriately calibrated trust from the outset, to ensure existing User Models are not interacting 

with the Design Model to produce unintended effects.  

6. Facilitating Appropriate Trust in HAI and HAT 

From the perspective outlined in the current work, a transparent System Image is a design and 

training technique that translates the Design Model into the User’s Model, with the particular 

purpose of calibrating human-automation trust to match automation capabilities (i.e., 

trustworthiness). This section outlines initial concepts for achieving calibrated trust through 

various “design paths.” The intention here is to provide only an introduction to these concepts and 

is not intended to be a final test-plan. The following sub-sections provide a framework to begin 

operationalizing key aspects of the proposed framework, and to outline a path for future research 

and development efforts to facilitate HAI and HAT in AAM operations. 

6.1. Fixed Design 

Although we do not expect the AAM community to pursue this path (nor do we offer a specific 

validation plan), the Fixed Design model is intended to serve as a caution against pursuing 

technologically difficult operations too aggressively at early stages in development (e.g., 

proceeding directly to highly automated operations). This path offers little, if any, opportunity to 

actively realign the Design Model with the User Model via the System Image (Figure 5). Ideally, 

this path should be the culmination of a methodically well thought out and researched System 

Image that has undergone numerous re-designs, as the human-automation interaction feedback 

loop will increasingly engrain and fortify the belief structures with each encounter between the 

human and the target automation. If the System Image effectively aligns the Design and User 

models, then trust will be both robust and match the capabilities of the automation (i.e., well 

calibrated). If the Design and User Models are misaligned, however, then a re-design is warranted 

(see next section). Unfortunately, from a user perspective, many AAM concepts will not initially 

be robust to even mild misalignments. 
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Figure 5. Model for Fixed Design in HAI and HAT paradigms. 
 

To illustrate, trust tends to be quite stable or robust when based on several belief structures (i.e., 

Performance, Process, Purpose; Lee & See, 2004). Yet during early UAM operations, for example, 

many potential passengers will not have had the opportunity to personally experience UAM 

transportation or witness many UAM flights above their community. These types of interactions 

are critical for developing the Performance aspect of trust. Moreover, even current commercial 

airline passengers prefer human-piloted aircraft to highly automated aircraft, indicating a lack of 

understanding for how these operations are actually executed (Rice et al., 2014). With emerging 

UAM operations, it is difficult to envision passengers having a basic understanding for how these 

operations are executed either (i.e., a lack of the Process basis of trust). Instead, passenger trust 

will likely be rooted in the Purpose base of trust, as marketing and news coverage will provide a 

basis to understand the reason for UAM. Compounding this issue, interpersonal trust research also 

shows that high perceived risk is a significant predictor of fragile trust in new relationships (i.e., 

trust level is likely to undergo large changes in a short timeframe; McKnight, Cummings, & 

Chervany, 1998). Clearly, the perceived risk of UAM transportation accidents will likely be an 

early concern for most passengers.  

 

Given these conditions, a real or perceived incident could lead to an abrupt and drastic drop in 

public trust (and subsequent demand). To mitigate the effects of initially fragile trust, the Task and 

Analytical Models should be given particular attention to ensure the System Image supports the 

Performance and Process bases of trust early on. Clearly, the Fixed Design Path (Figure 5) presents 

a potentially fraught strategy if it is the only available option. If pursued early, this path places a 

great deal of the burden on the designer to “get it right” the first time.  

6.2. Iterative Design and Experimentation 

Many of the AAM concepts discussed in this work have been geared toward the types of 

automation that will emerge in the coming years and decades. Fortunately, at the time of this 

writing, these approximate periods offer a buffer to allow the research and development 

community to test and evaluate System Image concepts that align the Design and User Models to 
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support appropriate trust in AAM operations. The Iterative Design Path is similar to the concept 

of bridging the gulf of evaluation (i.e., the mismatch between a system’s representation and what 

an operator expects, which is joined by “moving” the system closer to the user; Norman, 1986).  

The model in Figure 6 lends itself to iterative experimentation that attempts to establish the effects 

of the match (or mismatch) between the Design Model and User Model on trust and behavioral 

responses toward the automation, which would begin to validate the theoretical framework 

proposed in the current work. Yet, as stated earlier, mental models are not directly observable, and 

instead are generally inferred from user performance metrics or verbal think aloud protocol (see 

Rowe & Cook, 1995, for comparisons of techniques).  

 

 

Figure 6. Model for Iterative Design in HAI and HAT paradigms. Note: Added feedback 
loop through Design Model.  

 

One option for operationalizing mental models is with Pathfinder Network Analysis. Based on 

graph theory, Pathfinder is a statistical technique that represents knowledge structures in graphical 

form (Schvaneveldt, Durso, & Dearholt, 1989), and has been used extensively in human-computer 

interaction studies to represent and quantify mental models (see Cooke, Neville, & Rowe, 1996). 

Moreover, quantitative comparisons between individual networks can be made using the C statistic 

(ranging from 0 [not related] to 1 [strongly related]), which is a measure of shared links for 

matching nodes. Specifically, the Pathfinder method provides the ability to quantify the degree to 

which a representative Design Model matches a User Model. A parallel multiple-mediation 

analysis could be used to analyze specific pathways (see Figure 7). Chancey and Politowicz (2020) 

used a similar statistical technique to establish the relationship between UAM concept of operation 

factors on public acceptance through individual factors of trust (i.e., Performance, Process, 

Purpose; see also Chancey et al., 2017). This approach could be used as a framework to pursue 

iterative experimental studies that begin validating the concepts outlined in this document. 
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Figure 7. Parallel multiple mediation model for the effects of Design and User mental model 
match on dependence behaviors through factors of trust. Note: The example model 
indicates that the Performance basis of trust should provide the strongest mediating effect 
on dependence behaviors because it is based on the degree of similarity between the Task 
Model and Performance Model.  

6.3. Adaptive Trust Calibration 

The concept of HAT implies that a human and automated system interact, dynamically, 

interdependently, and adaptively toward a common goal (cf. Salas et al., 1992, p. 7). Clearly, 

increasingly autonomous systems may be better “equipped” to enter into this type of collaboration 

with a human partner than systems at lower levels of automation (e.g., FMS). To this point, 

increasingly autonomous systems were described earlier as possessing the ability to be “generative 

and learn, evolve and permanently change their functional capacities as a result of the input of 

operational and contextual information” (Hancock, 2017, p. 284). Trust will play an important role 

in mediating the relationship between the human and increasingly autonomous system, and true 

teaming may be difficult to achieve if the system is unable to dynamically adapt to facilitate 

collaboration. To accomplish this, we introduce the concept of adaptive trust calibration, and 

propose an initial descriptive model that may be used to operationalize this concept (Figure 8). 
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Figure 8. Model for Adaptive Trust Calibration in HAT Paradigm. Note: Added feedback 
loop through Human State Variables, Latent User Model, Adaptive Automation, and 

Learning Management System.  
 

Although the model in Figure 8 possesses the same underlying theoretical principles outlined 

throughout this document, and in Figure 6, there are important differences that allow for the 

“adaptive” aspect of the model to function as a closed-loop process (i.e., closing the loop does not 

require iterative experiments to align the User Model and Design Model). Specifically, the 

Adaptive Trust Calibration model assumes that the increasingly autonomous system is consistently 

sampling, storing, and analyzing information about the human operator and the overall 

performance of the human-automation team. Human State Variables provide a baseline to establish 

the current state of the human (e.g., fatigue, workload, attentional tunneling), given the cognitive 

and physiological metrics available to the system (see Stephens et al., 2018, for overview of 

biocybernetic adaptation strategies in a closed-loop system). Both the Human State Variables and 

overall HAT performance metrics inform the Latent User Model, which is formed by the system 

as a dynamic analog to the Design Model discussed in the previous section. Here, the system 

constructs a hypothesized User Model in an attempt to anticipate potential trust miscalibration 

between the System Image and the actual User Model. Lattice Theory may offer a method to 

formalize the Latent User Model. Moray (1998; 1999) proposed the use of lattice notation as a 

mathematical modeling technique to represent homomorphic models that share similar qualities to 

the theoretical descriptions of mental models. Graphically, lattices form interconnected nodes 

(e.g., knowledge about a system) that are partially ordered sets to show how elements relate to 

each other (Moray, 1999; compare to Pathfinder method discussed in section 6.2). Moreover, 

adapting causal classifications originally introduced by Aristotle, Moray (1999) proposes that the 

ordering of nodes can be considered as causal links. Those classifications align well with the 

informational bases of trust outlined in the current work: 
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 Efficient Causes (related to Performance) refer to actions that bring about change. For 

example, clicking on a displayed drone causes the interface to give me additional control 

options for that drone. Selecting a destination causes that selected drone to go to that 

location.  

 Material Causes (related to Process) refer to the underlying processes. For example, if 

fog reduces visibility to less than 1 mile at the peninsula, then that will cause the 

vertiports to be out of service in that location.  

 Final Causes (related to Purpose) refer to the end purpose for which the event happens. 

For example, the package arrived at my doorstep by drone because I wanted it within the 

hour. 

 

To construct the lattice, however, the system requires a method to sample pertinent information 

from the user and organize it into a coherent model. The Conant Method of Extended Dependency 

Analysis may provide a means to construct user mental models of increasingly autonomous 

systems via operator control strategies (see Conant, 1976, Conant, 1996, Jamieson, 1996, and 

Moray 1999 for descriptions of this method). Beyond interactions and control strategies, eye 

tracking techniques may offer additional information to create robust intentional strategy models 

to complement this method.  

 

Once the autonomous system has created the Latent User Model, if the system hypothesizes a 

misaligned mental model that would lead to inappropriate (miscalibrated) trust, then it has two 

methods to alter the system image. First, adaptive automation strategies could be employed to 

dynamically reconfigure or add/remove informational elements in the displays (see Kaber, Riley, 

Tan, & Endsley, 2001, Rouse, 1988, and Scerbo, 1996, for reviews). Additionally, the system 

could also attempt to reorient or alert the user to important environmental or display elements. 

Second, a Learning Management System (LMS; e.g., Blackboard®) could prepare and tailor 

training material that explicitly attempts to realign the User Model, or Artificial Intelligence 

scheduling algorithms that choose training courses and even schedule learning events for students, 

as used in the United States Air Force (Carlin, Ward, & Freeman, 2016). Both approaches could 

be used to update the System Image and support Adaptive Trust Calibration. 

 

7. Conclusion 

To enable effective HAI and HAT in the context of AAM, the current paper has outlined a 

theoretical framework to design and train for appropriate trust in automation. The main 

contributions of this work reside in connecting the construct of trust to mental models. Using the 

outlined mental model approach, novel HAT strategies such as Adaptive Trust Calibration could 

be researched for use in increasingly autonomous systems within AAM operations and beyond. 

This work, however, represents only an initial proposal for future studies and more research is 

required to validate the ideas presented in this paper.   
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