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High strain thin-ply (HS-TPC) technology is being increasingly adopted forhigh-performance

aerospace applications. Albeit many of these structures such as deployable booms can be

modeled as one-dimensional beam problems, there is a lack of themoviscoelastic beam mod-

els to efficiently and accurately simulate HS-TPC. This work will use mechanics of struc-

ture genome (MSG) to construct linear thermoviscoelastic beam models that can homogenize

three-dimensional heterogeneous materials made of constituents with time- and temperature-

dependent behavior. The formulation derives the transient strain energy based on integral

formulation for thermorheologically simple materials subject to finite temperature changes

with the restriction that the strain is small. A lenticular boom is used as a numerical example

to verify the MSG-based linear thermoviscoelastic beam model against MSG-based shell/plate

model, which has already been validated against experimental data provided by NASA, and

direct numerical simulations performed in a finite element commercial package.

I. Introduction

More and more, high-performance aerospace applications such as deployable booms, space antennas [1] or solar

sails are relying on high strain thin-ply (HS-TPC) technology. Compared to traditional space-rated metals

such as Elgiloy, high strain thin-ply composites demonstrate improved thermal behavior [2] while offering excellent

packaging properties, lightweight and low-cost [3, 4]. These structures are designed to operate for long periods of time

and withstand certain mechanical loads under wide temperature variations. Polymeric matrices present in composite

materials are prone to have time-dependent behavior very sensitive to changes in temperature. The relaxation of

the polymeric matrix can indeed lead to an unsuccessful deployment, and their structural integrity, short-term and

long-term durability as well as thermal stability are of great concern [2, 5]. The reduction of the bending stiffness and
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an incomplete recovery of the structural shape caused by the relaxation of the matrix can compromise the success of

the mission for which the structure has been designed for [6, 7] and thus, more accurate models that also account for

thermoviscoelastic behavior are necessary.

Many HS-TPC structures such as deployed composite booms can be modeled as beams, thus leading to much simpler

governing equations and convenient interpretation of the results. One has to capture the behavior associated with the

eliminated two dimensions, described using the cross-sectional coordinates [8], to take advantage of this geometric

feature wihile miniizing the loss of accuracy. Bearing in mind its efficiency and simplicity, beam models are often

interesting to be used in system level analyses or preliminary designs. Traditional beam models, nonetheless, cannot

satisfactorily handle slender structures consisting of highly anisotropic, and heterogeneous materials such as HS-TPCs

because these models rely on different ad hoc assumptions such as the uniaxial stress assumption and Euler-Bernoulli

assumptions. Fully populated matrix of cross-sectional stiffness properties that capture the couplings among all forms

of global deformation and among both in- and out-of-plane components is difficult to be obtain ed using traditional

methods [9], and there is a gap between existing linear thermoviscoelastics constitutive models and existing beam

models. Most of the research in the linear thermoviscoelastic modelling with beam elements has been focused on

the experimental characterization of the bending stiffness [10, 11], using Euler-Bernoulli viscoelastic beam model in

draping simulation of textile composites [12] or Timoshenko beam model in frequency domain [13]. Few work has been

done in modeling HS-TPC by means of beam models. A recent work by De Zanet and Viquerat [14] is the only attempt

of considering Euler-Bernoulli elastic beam models to capture the behavior of HS-TPC that the authors are aware of.

In this work, mechanics of structure genome (MSG) [15] is used to construct an improved linear thermoviscoelastic

beam model that allows to homogenize three-dimensional heterogeneous materials made of constituents with time- and

temperature-dependent behavior. MSG relies only on the slenderness of the structure and the material and geometric

information of the structure, free from ad hoc assumptions and has the potential to be adapted for many constitutive

models, yet by making minor changes. It has been extensively demonstrated that the MSG beam model could achieve

the same accuracy as 3D direct numerical simulation (DNS) while similar efficiency to traditional beam models

[15, 16]. The formulation for the linear viscoelastic constitutive case derives the transient strain energy based on integral

formulation for thermorheologically simple materials subject to finite temperature changes with the restriction that

the strain is small [17]. The new formulation has been implemented in SwiftComp, a general-purpose multiscale

constitutive modeling code based on MSG.

II. MSG-based Linear Thermoviscoelastic Beam Formulation
Following the Boltzmann superposition principle and assuming that there is no strain history prior to C = 0 s, the

constitutive equation for an anisotropic linear thermoviscoelastic material with non-aging behavior is given by Zocher et
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al. [18] and Lakes [19] based on the formulation of Schapery [20] as

f8 9 (C) =
∫ C

0
�8 9:; (C − g) ¤Y:; (g)3g (1)

where f8 9 (C) are the instantaneous stress components, C is the time, �8 9:; (C) is the stress relaxation stiffness which is

a function of time, and ¤Y:; is the strain rate. The term �8 9:; represents the fourth-order tensor of relaxation moduli

relating stress to strain [18].

MSG-based thermoviscoelastic beam model can be developed considering the 1D Euler-Bernoulli beam model. The

kinematics accounts for four time-dependent displacement variables D1 (C), D2 (C), D3 (C), and \1 (C) with D1 (C), D2 (C),

D3 (C) describing displacements in three directions and \1 (C) representing the twist angle, also known as the beam

sectional rotation. Thus, the four beam strain measures are defined as [15, 16]

W11 (C) = D̄1,1 (C) ^11 (C) = \1,1 (C) ^12 (C) = −D̄3,11 (C) ^13 (C) = D̄2,11 (C) (2)

where W11 (C) stands for the instantaneous axial strain, and ^11 (C) denotes the instantaneous twist rate, and ^12 (C) and

^13 (C) represent the instantaneous curvatures around G2 and G3, respectively. It is noted that the double numbers

after comma in the subscript indicate the second derivatives, and D̄8 represents the displacements of the homogenized

structure.

The kinetics of 1D Euler-Bernoulli beam model contains four time-dependent stress resultants �1 (C), "1 (C),

"2 (C), "3 (C) with �1 (C) denoting the time-dependent axial force, and "1 (C), "2 (C), "3 (C) standing for the time-

dependent bending moments about three directions. Let us define Γ(C) = bW11 (C) ^11 (C) ^12 (C) ^13 (C)c) , e (C) =

b�1 (C) "1 (C) "2 (C) "3 (C)c) , and the 4 × 4 beam stiffness matrix �1
8 9
(C) as

�1 (C) =



�111 (C) �112 (C) �113 (C) �114 (C)

�112 (C) �122 (C) �123 (C) �124 (C)

�113 (C) �123 (C) �133 (C) �134 (C)

�114 (C) �124 (C) �134 (C) �144 (C)


(3)

Then, Eq. (1) can be rewritten in terms of 1D Euler-Bernouilli beam model as

e (C) =
∫ C

0
�1 (C − g) ¤Γ3g (4)

To solve for Eq. (4), similarly to the MSG-based solid case [17, 21] the direct time integration approach that uses a time
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marching procedure is considered. The constitutive relation can be represented by a recursive form in which the beam

stress and strain resultants in the current state are affected by the beam stress resultant history of the previous steps

[21, 22]. Thus, the beam stress resultants are computed as

e (C=+1) ≡ e (C=+1) − e (C) (5)

Let us assume that the terms of �1 (C) are expressed with Prony series as

�1 (C) = �1∞ +
<1∑
B1=1

�1B 4

(
− C

_B

)
(6)

where �1∞ is the long-term beam stiffness matrix, _B are the discrete stress relaxation times, and �1B stand for the

Prony coefficients of the beam stiffness matrix. For the sake of simplicity, the same discrete stress relaxation times

are considered for all the components of the 4 × 4 beam stiffness matrix. It is noted that when time- and temperature-

dependent experimental or simulation data is reduced, it is possible to constrain the _B in the algorithm to compute the

corresponding Prony coefficients.

Furthermore, we approximate the beam strains over the interval ΔC=+1 (i.e. C= ≤ C ≤ C=+1) as

¤Γ(g) =



¤W11 (g)

¤̂11 (g)

¤̂12 (g)

¤̂13 (g)


=



mW11
mg

m^11
mg

m^12
mg

m^13
mg


≈



'W11=

'^11=

'^12=

'^13=


≡



ΔW11
ΔC

Δ^11
ΔC

Δ^12
ΔC

Δ^13
ΔC


≡ 'Γ= (7)

where 'W11= , '^11= , '^12= and '^13= are constants representing beam strain changes over the interval, and 'Γ= is the

first-order tensor formed by these constants.

Substituting the approximations given by Eqs. (6)-(7), Eq. (4) can be integrated in a closed form leading to

Δe (C=+1) = �14@ΔΓ(C=+1) +Ω1 (8)
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with

�14@ ≡ �1∞ +
1

ΔC=+1

<∑
B=1

_B�
1
B

(
1 − 4

−ΔC=+1
_B

)
ΔΓ(C=+1) ≡ 'Γ=+1ΔC=+1

Ω1 ≡ −
<∑
B=1

(
1 − 4

−ΔC=+1
_B

)
0B (C=)

(9)

where 'Γ=+1 is a first-order tensor evaluated for the current time increment, and

0B (C=) = 4
−ΔC=
_B 0B (C=−1) + _B�1B 'Γ=

(
1 − 4

−ΔC=
_B

)
(10)

Finally, for a given beam strain Γ field, it is possible to compute Δe (C=+1) with the formulation here presented.

Then, e (C=+1) is given as

e (C=+1) = e (C=) + Δe (C=+1) (11)

III. Lenticular Boom Numerical Example

A. High Strain Composite Material

A lenticular boom (CTM) is used as the numerical example to verify the MSG-based linear thermoviscoelastic

beam model. A schematic drawing with design parameters is shown in Fig. 1 (a) and the numerical value of the

design paramerters is summarized in Table 1. The lenticular boom contains two different HS-TPCs: an MS30/PMT-F7

textile composite and an MR60H/PMT-F7 unidirectional composite. The effective lamina properties of both composite

materials have been computed using PMT-F7 resin characterized by NASA and MSG-based solid thermoviscoelastic

model that is available in SwiftComp TM [23]. The fiber constituent properties and microstructure characteristics for the

computation have been found in literature (see Ref. [24] for MS30/PMT-F7 and Ref. [9] for MR60H/PMT-F7). Prony

coefficients presented in Tables 2-3 have been used to represent the effective viscoelastic properties of both HS-TPC

materials at a reference temperature of 40◦C. In case of the ply orientation, [45*�/45%, ] for both the left and right

shells of the lenticular boom is selected.

Table 1 Fixed parameters of the lenticular boom design.

Name Symbol Fixed Value
Flattened height ℎ 5 45 mm
Web height ℎl 3 mm
Subtended angle U1 = U2 90 degree
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Table 2 Effective lamina viscoelastic properties of MS30/PMT-F7 textile composite at 40◦C.

s _B �11,B = �22,B �12,B �13,B = �23,B �33,B �44,B = �55,B �66,B

s MPa MPa MPa MPa MPa MPa
∞ 91,526.00 2,856.80 3,070.20 7,285.40 1,975.80 2,020.60
1 3.70E+01 765.69 379.04 447.69 993.64 254.12 266.56
2 1.00E+02 684.27 315.84 376.20 849.00 220.50 230.16
3 1.00E+03 575.65 267.59 318.51 716.91 185.74 194.00
4 5.00E+03 249.90 108.29 130.18 297.08 77.92 81.03
5 1.00E+04 252.27 118.50 140.78 316.55 81.94 85.61
6 5.00E+04 713.04 307.44 370.03 843.80 221.14 229.99
7 1.00E+05 70.53 28.36 34.57 79.42 20.94 21.72
8 5.00E+05 364.46 152.75 184.75 422.85 111.17 115.46
9 1.00E+06 218.08 85.97 105.20 242.39 64.08 66.40
10 5.00E+06 2.34 1.10 1.31 2.96 0.77 0.80

Table 3 Effective lamina viscoelastic properties of MR60H/PMT-F7 unidirectional composite at 40◦C.

s _B �1,B �2,B = �3,B �12,B = �13,B �23,B a12,B = a13,B a23,B

s MPa MPa MPa MPa MPa MPa
∞ 173,790.00 4,954.00 1,721.30 1,676.60 0.259 0.477
1 3.70E+01 555.47 905.26 266.56 254.12 0.000 0.000
2 1.00E+02 144.97 722.78 240.38 240.66 0.000 0.000
3 1.00E+03 107.36 604.62 203.91 202.14 0.000 0.000
4 5.00E+03 93.42 512.56 172.42 171.25 0.000 0.000
5 1.00E+04 34.53 208.97 71.06 70.05 0.000 0.000
6 5.00E+04 41.53 226.57 76.16 75.68 0.000 0.000
7 1.00E+05 99.88 594.68 201.96 199.31 0.000 0.000
8 5.00E+05 9.09 55.59 18.95 18.66 0.000 0.000
9 1.00E+06 48.89 297.03 101.11 99.64 0.000 0.000
10 5.00E+06 27.00 169.06 57.78 56.80 0.000 0.000

B. Full Paper

The full paper will extend the present formulation to also consider non-mechanical stress resultants due to temperature

changes. It will also contain the further verification of the MSG-based thermoviscoelastic beam model formulation. To

do so, a DNS of the lenticular boom shown in Fig. 1 (b) will be simulated using a finite element commercial package

(i.e. Abaqus [25]). This DNS will be considered as the baseline to verify the accuracy of MSG beam model. In these

DNS simulations, all the HS-TPC plies are going to be modeled by means of 588,800 linear hexahedral elements of type

C3D8. The effective orthotropic viscoelastic lamina properties of the plies will be introduced by means of user-defined

mechanical material behavior subroutine (UMAT) [25] in which the three-dimensional hereditary integral is solved

by means of a time-marching procedure. This UMAT has already been verified for isotropic viscoelastic materials

comparing it against by default material libraries of Abaqus CAE [25] and showed good agreement.
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(a) Cross-sectional parameters

X

Y

Z

(b) Direct numerical simulation (DNS) model

Fig. 1 Lenticular boom design.

In addition, the same formulation are extended to model HS-TPC and the same lenticular boom is modelled by

means of MSG-based plate/shell model and solved using shell elements in the same commercial finite element package.

For this case, the effective properties of the shell section behavior are defined by means of a user-defined general shell

section (UGENS) [25]. We have already validated the MSG-based plate/shell model and the UGENS subroutine against

Column Bending Test (CBT) experimental data provided by NASA showing excellent agreement as shown in Fig. 2.

Fig. 2 Validation of the MSG-based plate/shell simulation against CBT experimental data provided by NASA.

In summary, the final paper will verify the MSG-based thermoviscoelastic beam model formulation presented in the

previous section against DNS simulations and MSG-based plate/shell model considering for that the lenticular boom as

a case study. The efficiency and accuracy of the three models will also be reported.
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