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Key points 14 

• This study quantifies changes in meteorology and carbon caused by an idealized US drought 15 

(~500,000 km2). 16 

• Drought-area GPP decreases by 23% in the recovery month immediately after the drought 17 

while remote impacts on GPP are not spatially uniform. 18 

• Drought-induced increase in column-averaged CO2 of 0.78ppm is at the edge of the single 19 

sounding uncertainty of current GHG satellites.  20 

 21 

 22 

 23 
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Abstract 24 

The impacts of drought on regional land and atmospheric carbon are still poorly 25 

understood. Here we quantify the impact of a regional US drought on land carbon fluxes (Gross 26 

Primary Production, or GPP, and Net Biosphere Production, or NBP) and atmospheric carbon 27 

(CO2) by imposing an idealized 3-month meteorological drought in an ensemble of coupled land-28 

atmosphere climate simulations. The imposed drought, applied to the lower Mississippi River 29 

Valley (~500,000 km2), leads to a 23% GPP reduction in the drought area in the month 30 

immediately following the drought’s termination. The drought also caused GPP reductions in some 31 

remote areas through drought-induced impacts on remote meteorology, particularly the areas 32 

adjacent to the imposed drought. In the remote areas, the induced precipitation changes are 33 

responsible for most of the anomalous land productivity. The impact of the drought-induced 34 

meteorological anomalies on GPP is greater than that of the CO2 anomalies by at least an order of 35 

magnitude. While their impact on GPP is secondary, the drought-induced atmospheric CO2 36 

anomalies near the land surface can be as large as 3.57ppm. The significant CO2 anomalies cover 37 

an area up to three times of that of the imposed drought, suggesting that atmospheric transport 38 

needs to be considered in the interpretation of drought-induced CO2 anomalies in the atmosphere. 39 

The imposed drought also leads to column-averaged CO2 increases of up to 0.78ppm, which is at 40 

the edge of the uncertainty from single soundings of current greenhouse gas (GHG) observing 41 

satellites.  42 

 43 

 44 

 45 

 46 
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Plain Language Summary 47 

 During a regional drought, a deficiency of precipitation affects vegetation productivity, 48 

which can alter net carbon exchange between the land and the atmosphere, and in turn, the CO2 49 

concentration in the atmosphere. Moreover, the anomalous heat and moisture fluxes at the land 50 

surface caused by the drought can generate changes in meteorology, affecting areas beyond the 51 

original drought area. Using a version of the NASA GEOS Earth System Model that allows full 52 

characterization of the carbon-water-energy feedback processes, we imposed an idealized spring 53 

drought over the lower Mississippi River Valley (~500,000 km2) and quantified the resulting 54 

changes in vegetation productivity, net carbon exchange flux and atmospheric CO2 55 

concentration.  We found that the productivity in the drought area decreases by 23% and that the 56 

productivities in some remote areas, particularly areas adjacent to the imposed drought, are also 57 

affected through impacts on remote meteorology.  The anomalous atmospheric CO2 caused by 58 

the idealized spring drought is at the edge of the measurement uncertainty of current greenhouse 59 

gas observing satellites. Due to atmospheric transport (e.g., wind), it covers an area up to three 60 

times of that of the imposed drought.  61 

 62 

 63 

 64 

 65 

 66 
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1 INTRODUCTION 70 

 A meteorological drought triggers anomalous hydrologic response at the land surface and 71 

in the atmosphere. The precipitation deficit reduces surface and root-zone soil water contents and, 72 

consequently, evapotranspiration, and this can lead to surface heat anomalies. These local 73 

environmental stresses can affect remote areas by perturbing the regional hydrological cycle 74 

(Koster et al., 2016) and delaying the rainy season onset (Shi et al., 2019). The soil moisture 75 

reduction and heat anomaly can also decrease vegetation activity, which can be observed by 76 

satellites as a decline of solar-induced chlorophyll fluorescence (SIF) and Normalized Difference 77 

Vegetation Index (NDVI), as in the case of the 2010 Russian drought (Yoshida et al., 2015).  78 

Overall land productivity and carbon sink capacity are accordingly affected (Schwalm et al., 2010).  79 

    Observational studies showing an impact of dryness and heat on carbon anomalies include 80 

a recent analysis of multiple measurements of the FLUXNET network (von Buttlar et al., 2018) 81 

and a study connecting anomalies of net land carbon exchange to the precipitation deficit in 82 

tropical South America during the strong 2015-2016 El Niño period (Liu et al., 2017). Modeling 83 

studies such as the Multi-scale Synthesis and Terrestrial Model Inter-comparison Project 84 

(MsTMIP) also estimated the range of the anomalous changes in terrestrial carbon productivities 85 

and fluxes in response to droughts (Zscheischler et al., 2014; Kolus et al., 2019). Net carbon 86 

anomalies in the inversion analyses that assimilated remotely sensed atmospheric CO2 managed 87 

to infer drought signals (Liu et al., 2018; Byrne et al., 2019). 88 

 Recent US drought events (e.g., the 2011 TexMex drought and 2012 central US drought) 89 

demonstrate the complexity of the terrestrial ecosystem’s response to a regional drought (Parazoo 90 

et al., 2015; Sun et al., 2015; Wolf et al., 2016; Liu et al., 2018). During the year-long drought in 91 

the TexMex region in 2010/2011, during which the precipitation was reduced to less than half of 92 
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the long-term mean value, the reduction in the regional summer carbon uptake was large enough 93 

to cause a negative anomaly in the annual total carbon uptake over the entire CONUS region 94 

(Parazoo et al., 2015). On the other hand, while the 2012 US central drought also led to a decrease 95 

in the summer carbon uptake, the relatively warmer spring of that year increased the spring carbon 96 

uptake, resulting in little change in the annual total carbon uptake (Wolf et al., 2016).  97 

 Disentangling the interactions between meteorological and carbon variations during and 98 

after a drought is a significant challenge, especially if one wants to account for two-way feedbacks 99 

between the land and the atmosphere. Modeling tools capable of simulating the feedback processes, 100 

e.g., Earth System Models (ESMs), allow us to explore such questions, since they integrate 101 

multiple facets of drought, including the impact of drought-induced stressors on ecosystems. 102 

Koster et al. (2016) imposed idealized meteorological droughts over 21 fractional areas in the US 103 

using the NASA Goddard Earth Observing System (GEOS) atmospheric general circulation model 104 

(AGCM) and quantified the resulting local and remote impacts on temperature and precipitation.  105 

They showed, for example, that a drought imposed in the lower Mississippi River Valley (part of 106 

the historical 2011 TexMex drought) can have impacts on temperature and precipitation in areas 107 

far outside the imposed drought.   108 

The present study, in effect, builds on that of Koster et al. (2016) by adding a fully interactive 109 

carbon-cycle to their experiment – by allowing variations in water, energy, and carbon variables 110 

in both the land and the atmosphere to feedback on each other through a coupled treatment of the 111 

water, energy, and carbon cycles. We aim in particular to determine the magnitude and spatial 112 

extent of the temperature, precipitation, land carbon (GPP and NBP), and atmospheric carbon (CO2) 113 

changes caused by an imposed regional US meteorological drought. The fully coupled cycles in 114 
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the modeling system should allow an unprecedented examination of the feedbacks that may 115 

enhance or mitigate drought impacts on carbon fluxes.  116 

Given the complexity of the problem, we employ a stepwise strategy. After describing our 117 

modeling tools and experimental methods, we demonstrate that the land model used responds 118 

sensibly to drought and is thus appropriate for this analysis; we do this by evaluating, against 119 

observation-based datasets, how well it reproduces the land carbon anomalies associated with a 120 

recent regional US drought event when driven offline with reanalysis meteorology. We then 121 

present results from two suites of coupled land-atmosphere ensemble simulations in which, for 122 

one of them, a 3-month, idealized regional drought is imposed in the lower Mississippi River 123 

Valley. Lastly, we isolate the impacts of the different induced meteorological anomalies 124 

(temperature, precipitation and atmospheric CO2) on the terrestrial GPP anomalies using 125 

supplemental offline model simulations with forcing derived from the fully coupled simulations. 126 

We conclude with discussion and summary.  127 

 128 

2 METHODS 129 

2.1 Goddard Earth Observing System (GEOS) Model 130 

 We used the GEOS Earth System model maintained by the Global Modeling and 131 

Assimilation Office (GMAO) at the National Aeronautics and Space Administration’s Goddard 132 

Space Flight Center (NASA GSFC). The GEOS model has been widely used to study various 133 

aspects of interactions among the Earth System components (e.g., Molod et al., 2012; Schubert et 134 

al., 2014; Koster et al., 2016; Wang et al., 2014). In this study, we used the Atmospheric General 135 

Circulation Model (AGCM) configuration (i.e., no coupled ocean component) in order to focus on 136 

the interactions between the atmosphere and the land ecosystem. In addition to the water and 137 
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energy feedbacks between the land and the atmosphere already existing in the system, we have 138 

added for this analysis the carbon-cycle feedback, so that the model’s prognostic atmospheric CO2 139 

can affect vegetation growth (and thus prognostic carbon reservoirs in the land) and simultaneously 140 

be affected by the model’s net carbon exchange at the land surface. On the C90 cubed-sphere grid, 141 

which approximates a 1° latitude ´1° longitude grid, the transport of atmospheric CO2 is computed 142 

with a time step of 15 minutes, including updates near the surface from fossil fuel emissions and 143 

CO2 transfers across the atmosphere-land and atmosphere-ocean interfaces. The land carbon flux 144 

from the land component is updated every 3 hours.  145 

 The land carbon fluxes (e.g., GPP and NBP) are computed in this study by the process-146 

based Catchment-CN terrestrial biosphere model. Catchment-CN is an extension of the original 147 

GEOS Catchment model, a hydrology-focused land surface model for simulating water and energy 148 

dynamics (Koster et al., 2000). Catchment-CN includes the terrestrial carbon-nitrogen (CN) 149 

dynamics contained within the National Center for Atmospheric Research (NCAR) Community 150 

Land Model version 4.0 (CLM4). The CLM4 routines allow Catchment-CN to follow carbon 151 

prognostic variables and compute a photosynthesis-based canopy conductance for the energy and 152 

water balance calculations, which still follow the strategy of the original Catchment model. Using 153 

time-steps of 7.5 minutes for energy and water dynamics and 90 minutes for carbon-nitrogen 154 

dynamics, the model provides simulated terrestrial carbon fluxes such as GPP, respiration, and 155 

NBP, the latter computed as: 156 

 157 

NBP = GPP - Ecosystem respiration - Fire    (1) 158 

 159 
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The model carbon fluxes are computed using the environmental variables (temperature, 160 

precipitation, radiation, humidity, wind and atmospheric CO2 listed in Table S1). More details on 161 

the Catchment-CN model can be found in Koster et al. (2014a) and Lee et al. (2018).   162 

 For our supplemental experiments run in stand-alone (offline) mode, the Catchment-CN 163 

model is forced by meteorological fields from NASA’s Modern-Era Retrospective analysis for 164 

Research and Applications, version 2 (MERRA-2) dataset (Gelaro et al., 2017) and by surface CO2 165 

fields from NOAA’s CarbonTracker (http://carbontracker.noaa.gov). The MERRA-2 166 

meteorological fields (see Table S1 for details) have an hourly temporal resolution and a 0.5° 167 

latitude ´ 0.625° longitude spatial resolution. The MERRA-2 precipitation used in this study went 168 

through two additional correction processes: (1) it was first corrected with the gauge-based, global 169 

daily precipitation (the Climate Prediction Center Unified Gauge-based Analysis of Global Daily 170 

Precipitation, or CPCU), as described in Reichle et al. (2017a and 2017b); and (2) the corrected 171 

MERRA-2 precipitation from (1) was further scaled so that the background precipitation matches 172 

the climatology of the Global Precipitation Climatology Project, version 2.2 (GPCPv2.2) pentad 173 

precipitation. The NOAA CarbonTracker surface CO2 has a 3-hourly temporal resolution and a 2° 174 

latitude ´ 3° longitude spatial resolution. Details on the spin-up process of the offline Catchment-175 

CN are provided by Lee et al. (2018).  176 

2.2 Observation-based datasets of drought-carbon connections 177 

 To evaluate GPP anomalies simulated by Catchment-CN offline, we used the FluxSat GPP 178 

product derived from MODerate-resolution Imaging Spectroradiometer (MODIS) surface 179 

reflectance data (Joiner et al., 2018). The offline model’s NBP (see Equation 1) anomaly was 180 

compared to flux estimates from NOAA's CarbonTracker, version CT2017 (Peters et al., 2007, 181 
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with updates documented at http://carbontracker.noaa.gov), which were derived from in situ 182 

atmospheric CO2 observations. 183 

2.3 Experimental design and analysis metrics  184 

2.3.1 Coupled AGCM simulations 185 

 We performed two suites of ensemble simulations using the GEOS AGCM. The 186 

simulations are free-running, meaning that they are informed by observed sea surface temperature 187 

(SST) distributions for a particular year but do not utilize any atmospheric data assimilation. Large 188 

numbers of simulations (i.e., large ensembles) with and without the imposed drought perturbation 189 

were run to separate the drought signal from internal atmospheric noise. The SST of year 2012 190 

was applied to all simulations to minimize the influence of interannually-varying SSTs. Note, 191 

however, that while interannual SST variability was removed, the seasonal evolution of 2012 SST 192 

was retained. 193 

Each ensemble suite consists of 45 simulations starting on April 1st and ending September 194 

30th. The control suite (CTRL) allowed the land surface to receive the atmospheric model-195 

produced precipitation over the entire simulation period. The drought suite (DROUGHT) applied 196 

an idealized, artificially imposed meteorological drought to a ~7° x ~7° area (on the C90 cubed-197 

sphere grid, similar to 49 cells of 1° ´1° resolution) in the lower Mississippi River Valley (30-37N 198 

and 90-97W, see the grey area in Figure 1). The artificial drought was imposed from April 1st to 199 

June 30th; during this period, the model precipitation over the drought area was set to zero before 200 

it reached the land surface. The atmospheric variables responsible for generating precipitation were 201 

left unchanged. During the three-month recovery period that followed (July 1st through September 202 

30th), the land surface received the model’s precipitation, as in CTRL.  203 
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 To provide a range of initial conditions for the 45 members of an ensemble suite, 15 204 

members utilized the initial conditions that represent the land and atmospheric status of the 205 

MERRA-2 product on April 1st of each year during 2000 through 2014. Note that because 2012 206 

SSTs were used in all simulations, the free-running simulations do not represent any particular 207 

year. The other 30 members of an ensemble used initial conditions constructed by applying slight 208 

atmospheric perturbations to the original 15 members (as in Koster et al., 2014b and Koster et al., 209 

2016). All simulations were performed on the C90 cubed-sphere grid (~1° latitude ´1° longitude). 210 

 A z-score statistic was used to evaluate the significance of the drought-induced anomalies 211 

(Equation 2). s is the standard deviation of the 45 values in the CTRL suite and N=45 is the number 212 

of ensemble members in each suite. The 95% confidence level (p < 0.05) was applied to determine 213 

the statistical significance of the anomalies.   214 

 215 

𝑧 = ("#$%&'())))))))))))))))*+(#,))))))))))	
!
√#

     (2) 216 

 217 

2.3.2 Offline Catchment-CN simulations using the coupled model meteorology 218 

After completing the full coupled ensemble simulations, we conducted additional offline 219 

simulations in which the stand-alone Catchment-CN model was driven by different combinations 220 

of the (archived) meteorological and surface CO2 fields generated in the coupled simulations. 221 

These offline simulations are designed to quantitatively isolate the effect of the different drought-222 

induced atmospheric anomalies on land-carbon fluxes.  223 

In the baseline run of the offline simulations, we used the monthly temperature and 224 

precipitation climatologies (2000-2014) of MERRA-2 and AGCM CTRL simulations to scale the 225 

hourly MERRA-2 temperature and precipitation forcing.  In essence, through the scaling, the 226 
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monthly temperature and precipitation climatologies of the hourly offline baseline meteorological 227 

forcing were forced to match those of the AGCM CTRL simulations. By doing so, the offline 228 

baseline simulations mimic the AGCM CTRL simulations. We then performed four offline 229 

experiments using the temperature, precipitation, and surface CO2 written out during the AGCM 230 

DROUGHT experiments:  231 

EXPT2M: same as the baseline but AGCM CTRL 2-meter air temperature (T2M) 232 

climatology was replaced by that from the AGCM DROUGHT experiments; 233 

EXPPRCP: same as the baseline but AGCM CTRL precipitation (PRCP) climatology was 234 

replaced by that from the AGCM DROUGHT experiments, with the drought area 235 

again receiving zero precipitation during April 1 - June 30;    236 

EXPCO2: the monthly surface CO2 anomalies (AGCM DROUGHT minus AGCM CTRL) 237 

were added to the NOAA CarbonTracker CO2 forcing which was used in the 238 

baseline run, and  239 

EXPALL: all of the forcing changes in EXPT2M, EXPPRCP, and EXPCO2 were employed.  240 

The baseline and the four experiments each consisted of 15 simulations (each simulation taking 241 

forcing and land surface initial conditions from a different year in 2000-2014) and was six months 242 

long (April through September) to match the coupled AGCM simulations. A fully spun-up 243 

Catchment-CN simulation driven by MERRA-2 meteorology and NOAA CarbonTracker 244 

atmospheric CO2 provided the April 1 land surface initial conditions used in these offline 245 

simulations. The contribution of drought-induced meteorological or CO2 changes to terrestrial 246 

GPP was analyzed in terms of the simulated GPP anomaly (EXP GPP minus baseline GPP). 247 

 248 

3 RESULTS 249 
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3.1 Evaluation of the offline model’s response to a US drought 250 

 We first evaluate the response of the offline Catchment-CN model to a historical US 251 

drought: the central US drought of 2011. The simulated land carbon anomalies (GPP and NBP), 252 

as produced by the model when driven with MERRA-2 reanalysis meteorology and CarbonTracker 253 

CO2, are compared here to the observation-based GPP (FluxSat) and NBP (CT2017) products. 254 

 Overall, the Catchment-CN’s GPP anomalies agree well with FluxSat GPP anomalies 255 

(Joiner et al., 2018) during the 2011 TexMex drought. The observed negative anomalies during 256 

April through June (AMJ, Figure 2a), as well as the strong negative anomalies in the southern US 257 

during the July through September (JAS) period (Figure 2b), are well reproduced by the 258 

Catchment-CN. Over CONUS as a whole (24N-50N, 125W-67W), the simulated GPP anomalies 259 

(-0.08 PgC for AMJ and -0.05 PgC for JAS) agree well with the FluxSat GPP anomalies (-0.07 260 

PgC for AMJ and -0.02PgC for JAS). 261 

 The spatial pattern of the simulated NBP anomalies during AMJ (top graph in Figure 2c) 262 

reflects the pattern of the simulated GPP anomalies (Figure 2a) and agrees reasonably well with 263 

the anomaly pattern of CT2017 NBP (bottom graph in Figure 2c). During JAS, the negative NBP 264 

anomaly in the TexMex area is less dispersed than the CT2017 anomaly (Figure 2d). As CT2017 265 

uses the first-guess (a priori) land fluxes based on the Carnegie-Ames Stanford Approach (CASA) 266 

biogeochemical models (CASA-GFED 4.1s and CASA_CMS) (CarbonTracker Team, 2018) for 267 

the atmospheric inversion, the differences in the mechanistic representations between the 268 

Catchment-CN model and the CASA model can introduce a difference in the spatial pattern. The 269 

sign and magnitude of model NBP anomalies over CONUS (-0.08 PgC during AMJ and -0.05 PgC 270 

during JAS) are comparable to the CT2017 estimates (-0.03 PgC during AMJ and -0.02 PgC during 271 

JAS).  272 
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 GPP anomalies show better agreement with the observation-based product than do NBP 273 

anomalies presumably because the model GPP responds directly to a given meteorological forcing 274 

whereas the model NBP calculation includes other carbon fluxes such as respiration and fire 275 

(Equation 1) that introduce additional uncertainties. The poorer agreement between model NBP 276 

and CT2017-based NBP may also reflect some deficiencies in the performance of the CT product. 277 

For example, the interannual variability of net carbon flux during recent drought events was not 278 

well captured in the previous version (CT2016); the summer net carbon flux anomalies in the 279 

northern extratropics did not show a good correlation with temperature anomalies and a drought 280 

index (Byrne et al., 2019). Note that the comparisons in Figure 2 can be considered representative; 281 

a corresponding evaluation of the model’s ability to capture GPP and NBP anomalies during the 282 

2012 central US drought shows similar model performance (Figure S1). 283 

3.2 Results of an idealized drought experiment  284 

 By performing the idealized drought experiments with the atmospheric GEOS model as 285 

described in Section 2.1, we can estimate drought-induced land carbon anomalies (GPP and NBP) 286 

and atmospheric CO2 anomalies in the context of coupled energy, water, and carbon cycles. 287 

3.2.1 Localized impact in the area of imposed drought 288 

 Figure 3 shows the 2-meter air temperature (T2M) and carbon anomalies from the coupled 289 

ensemble simulations (DROUGHT minus CTRL). The impact of the imposed drought over the 290 

drought area is summarized in Figure 4.  The drought caused T2M to increase in the drought area 291 

by up to 1°C (Figures 3a and 4a). More importantly, the largest positive temperature anomaly 292 

occurs in July (+1K or +0.3%, p < 0.05) after we stopped artificially imposing the meteorological 293 

drought, which demonstrates the drought’s extended temporal impact. This warm temperature 294 

anomaly continues throughout the entire recovery period (July through September) and is 295 
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statistically significant at p < 0.05 (Figure 4a). Precipitation anomalies in the drought area do not 296 

appear to be statistically significant during the recovery period, except for the month (July) 297 

immediately after the drought ends (-0.2 mm/day or -13% reduction in July, also see Figure 4b). 298 

The soil moisture at the land surface and in the root-zone is significantly (p < 0.05) reduced by the 299 

drought (Figures 4c and 4d), and the impact continues during the recovery period, particularly for 300 

the root-zone soil moisture (Figure 4d); the reduction of evapotranspiration through this reduced 301 

soil moisture presumably explains the positive temperature anomalies. 302 

 The land carbon fluxes (e.g., GPP and NBP) in the drought area and the atmospheric CO2 303 

are significantly impacted by the drought-induced air temperature and soil moisture anomalies. 304 

Indeed, the drought’s extended effect during the recovery period manifests itself particularly 305 

strongly in the carbon anomalies (Figures 4e, 4f, 4g and 4h). The drought-induced GPP reductions 306 

are strong: the last drought month (June) shows a -11.8% reduction, and even larger reductions are 307 

seen during recovery (-23.1% in July, -21.0% in August, and -13.7% in September; all statistically 308 

significant at p < 0.05; see Figure 4e). The negative NBP anomalies (meaning that the land is a 309 

smaller carbon sink or a larger carbon source) in the drought area are significant (p < 0.05), starting 310 

from the second month of the drought period and persisting through recovery period. The drought 311 

also causes an earlier transition of the NBP seasonality. Under the normal climate (i.e. CTRL), the 312 

land ecosystem in this area shifts from being a carbon sink to a carbon source between July and 313 

August. The imposed drought causes the transition to occur one month earlier than usual (Figure 314 

4g). Lastly, the drought induces positive anomalies of surface CO2 (p < 0.05, Figure 4h); these 315 

correspond to the aforementioned negative NBP anomalies (Figures 3c and 3d).  316 

3.2.2 Impact in remote regions 317 
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The meteorological anomalies generated by a drought through land-atmosphere feedback 318 

need not be strictly local; anomalies can be translated to remote areas through atmospheric 319 

transport, and even the nature of the transport itself may be modified by the local anomalies (Koster 320 

et al. 2016). Here we examine the drought-induced anomalies in the six remote areas immediately 321 

adjacent to the drought area (Figure 1).  322 

In the west and east remote regions, the positive T2M anomalies induced by the drought 323 

are statistically significant (p < 0.05) during the drought period. This does not, however, translate 324 

to significant GPP changes there in May and June (Figure 3b); while the June GPP anomalies, for 325 

example, are generally consistent with the June T2M anomalies (e.g., along the Gulf Coast), they 326 

are simply less spatially extensive. The negative NBP anomaly and the positive surface CO2 327 

anomaly in the east are statistically significant during the drought period. In the southwest remote 328 

region, the land and atmospheric carbon anomalies are all statistically significant (p < 0.05) during 329 

the drought period, but the changes are relatively small (Table 1), as the regional productivity there 330 

is relatively low. 331 

Interestingly, positive atmospheric CO2 anomalies are statistically significant (p < 0.05) in 332 

most remote areas: in N, W, E and SW during the drought period (Table 1), and in N, NE, W and 333 

SW during the recovery period (Table 2). In particular, the surface CO2 anomaly increases by up 334 

to 0.66 ppm in N during the recovery period (Table 2), indicating a delayed response of the 335 

terrestrial ecosystem to the drought. Moreover, this region’s surface CO2 anomaly is statistically 336 

significant while its NBP anomaly is not, which suggests that the CO2 anomaly is induced, at least 337 

partially, by advected CO2 anomalies from the drought region. Overall, the general increase in 338 

surface CO2 across much of CONUS in Figure 3d illustrates the role of atmospheric transport (i.e., 339 

by wind) of anomalous surface CO2 from the region of imposed drought to remote areas.  340 
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3.3 Isolating the contribution of different drought-induced anomalies to GPP 341 

 Through land-atmosphere feedback, the imposed drought in our experiment has impacts 342 

on local and remote air temperature, precipitation, and atmospheric CO2 throughout the 343 

simulations. Changes in each of these fields can in turn feedback on the simulated land carbon 344 

fluxes. How important are these feedbacks? Is it possible, for example, that the drought-induced 345 

increases in atmospheric CO2 can “fertilize” to some extent the remote vegetation? To isolate the 346 

strengths of the different feedbacks, we performed the additional offline Catchment-CN 347 

simulations described in Section 2.3.2. In essence, the drought-induced T2M, precipitation and 348 

atmospheric CO2 anomalies generated in the coupled ensemble simulations above were applied 349 

separately to the land surface in the offline ensembles, and the resulting simulated GPP was 350 

compared to that of the offline control ensemble. 351 

 Results are shown in Figure 5. In the area of imposed drought, the drought-induced positive 352 

temperature anomalies by themselves contribute to a GPP reduction (-4.1% during the drought 353 

period and -12.2% during the recovery period; see Figure 5a). The majority of the GPP reduction 354 

in the drought area (-92.4% during the drought period and -88.0% during the recovery period), 355 

however, is attributable to precipitation changes (Figure 5b). The positive surface CO2 anomalies 356 

in the atmosphere do act as a very slight fertilizer to the vegetation (Figure 5c); the GPP increases 357 

are indeed very small, an order of magnitude smaller than the decreases induced by the 358 

precipitation and air temperature anomalies.  Note that the sum of the contributions of temperature, 359 

precipitation and surface CO2 anomalies to GPP changes is close to that obtained when all three 360 

forcing changes are applied simultaneously (Figure 5d, showing changes that are 96.1% of the sum 361 

of Figures 5a, b, and c, during the drought period and 99.8% during the recovery period), 362 
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suggesting that the impacts of these chosen meteorological anomalies on GPP are essentially 363 

independent of each other.   364 

 Considering the six remote areas outlined in Figure 1, the precipitation anomaly by itself 365 

causes a slight increase in GPP directly to the north (Figure 5b), roughly compensating for about 366 

4.4% of the GPP decrease seen in the drought area. On the other hand, the precipitation-induced 367 

GPP anomalies in the west, east and southwest are all negative (Figure 5b). In fact, in the east, the 368 

precipitation-induced GPP reduction is roughly 10% of that seen in the drought area itself during 369 

the recovery period – the dryness impacts of the imposed drought extend not only temporally after 370 

the drought ends but also spatially, in a significant way. 371 

Remote temperature impacts on GPP appear negligible. Remote surface CO2 impacts are 372 

always positive (i.e., the CO2 fertilization effect) but the increment is very slight (Figure 5c). In 373 

neither local nor remote regions are the increases in surface CO2 significant enough to compensate 374 

for the GPP reductions caused by lower water availability.   375 

 376 

4 DISCUSSION AND CONCLUSIONS 377 

Our study provides a unique look at the joint evolution of energy, water and carbon 378 

anomalies induced by an imposed regional drought. Through a land-atmosphere modeling system 379 

featuring coupled energy, water, and carbon cycles, we show that imposing an idealized drought 380 

within a 7° x 7° area (~500,000 km2) in the lower Mississippi River Valley for three months 381 

produces impacts on land and atmospheric carbon that extend well beyond this area and time 382 

period. The response of the terrestrial carbon cycle to the imposed drought lags behind the drought 383 

by one or two months, consistent with the lag times seen in a previous study using multiple offline 384 

land carbon models in MsTMIP (Kolus et al., 2019). This delayed response may be even longer in 385 
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reality (Kolus et al., 2019), and it can, in turn, cause slower vegetation recovery (i.e., drought 386 

legacy effect) in forest ecosystems (Anderegg et al., 2015). The spatial extent of the drought’s 387 

impact on land carbon anomalies is largely limited to the areas adjacent to the imposed drought 388 

(Figure 3); areas farther away are not so affected (Figure S2).  389 

Through supplemental offline experiments, this study also quantifies the isolated impact of 390 

drought-induced meteorological anomalies (temperature, precipitation and atmospheric CO2) on 391 

terrestrial GPP. Over the course of the drought and recovery periods, the GPP in remote areas is 392 

mostly affected by precipitation anomalies (~90%). While the spatial extent of the positive 393 

atmospheric CO2 anomalies induced by the drought is large (Figure 3d), their impact on GPP is at 394 

least an order of magnitude smaller than that of the meteorological anomalies. The marginal impact 395 

of this drought-induced CO2 “fertilization” in the fully coupled system, though not unexpected, is 396 

nevertheless (to our knowledge) quantified here for the first time. 397 

 Note that we are assuming here a resilient terrestrial ecosystem; the drought is not allowed 398 

to induce a permanent change in land cover type. Our coupled ensemble simulations, which are 399 

designed to illustrate the overall land-atmospheric response to an idealized regional drought at 400 

time scales out to 6 months, do not address longer term impacts. The timing and frequency of 401 

actual drought(s) occurring (perhaps episodically) over longer periods may result in an ecosystem 402 

transition from one state to another state (for example, forest conversion to grasslands). This may 403 

lead to a greater impact of drought through atmospheric teleconnections (Swann et al., 2018), or 404 

result in a different fate of the land ecosystem (Sippel et al., 2016).  405 

In the course of our analysis, we considered the hypothesis that drought-induced reductions 406 

in leaf area index (LAI) might reduce evapotranspiration after the (meteorological) drought ends. 407 

The reduced evapotranspiration sink might allow precipitation to fill the soil column faster and 408 
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thereby might speed soil moisture recovery. That is, drought-induced degradations of vegetation 409 

might actually contribute to faster drought recovery times. Using the offline model, we examined 410 

soil moisture deficit recovery following drought termination in a simulation with appropriately 411 

degraded LAI against that in a simulation using climatological LAI. Changes in soil moisture 412 

recovery time were found to be essentially negligible. This, however, should be considered a 413 

preliminary result; future work is necessary to pin down more carefully the effect of drought-414 

induced LAI changes on soil moisture recovery time.  415 

A major advantage of using a coupled model over an offline model in a study of drought 416 

impacts is the direct simulation of the atmospheric CO2 concentration; this allows us to avoid 417 

having to estimate and interpret drought-induced CO2 variations via other, presumably indirect, 418 

means. It also allows us to account directly for the effect of atmospheric transport on the spatial 419 

translation of drought-induced signals. Explicitly including the carbon feedback between the land 420 

and the atmosphere and the effect of dynamic phenology on the meteorology should, in principle, 421 

yield a more realistic simulation of the evolution of drought over its onset, maintenance, and 422 

recovery periods. 423 

The drought-induced CO2 anomalies at the surface level, averaged over a month, can be as 424 

large as 3.57ppm (Figure S3a) (or 1.5ppm averaged over the drought area in July – one month 425 

after the drought termination). An observation-based study focusing on drought impacts on CO2 426 

provides some basis for comparison. During the 2010 Amazon drought, the positive CO2 427 

anomalies at four aircraft sample sites were reported to range from 2 to 4 ppm (Gatti et al., 2014; 428 

see their Figures 3a-d), comparable to the surface CO2 anomalies simulated here. We note, 429 

however, that another study (Peters et al., 2018) uses isotope measurements to suggest that Earth 430 

system models in general may underestimate the actual impact of drought on carbon uptake. 431 



 20 

On the other hand, the drought-induced anomalies of the column-averaged CO2 (i.e., total 432 

moles CO2 divided by total moles wet air) are up to 0.78 ppm (Figure S3b). This value is the 433 

monthly anomaly within a particular grid cell in July and August, the months immediately 434 

following the termination of the artificial drought. While our column CO2 does not represent 435 

exactly the same variable as the column-averaged dry air mole fraction of atmospheric CO2 (XCO2), 436 

which the carbon observing satellites such as the Greenhouse gases Observing Satellite (GOSAT) 437 

and Orbiting Carbon Observatory 2 (OCO-2) actually measure, these simulated and satellite-438 

measured variables are similar enough to warrant comparison.  While the maximum value of the 439 

column CO2 anomaly in our experiments is smaller than a single sounding uncertainty estimate 440 

(~1ppm) of the OCO-2 satellite (Eldering et al., 2017), it is greater than the systematic bias of 441 

0.6ppm found by Kulawik et al. (2019).  Note that the error characteristics of the carbon observing 442 

satellite measurements remain an active area of research and that the OCO-2 error characteristics 443 

change with subsequent versions of the NASA Atmospheric CO2 Observations from Space 444 

(ACOS) XCO2 retrieval algorithm (Kiel et al., 2019; Kulawik et al., 2019; O’Dell et al., 2018). 445 

Based on the available observational error estimates, our simulation results suggest that the impact 446 

of a spring drought of this size (~500,000 km2) on atmospheric carbon is at the edge of the 447 

uncertainty levels associated with single soundings of the carbon observing satellites in operation.  448 

One caveat about our study regards our use of the same (2012) SST field in every 449 

simulation.  While this was done to simplify our interpretation of the results, we note that simulated 450 

drought impacts (particularly remote impacts) may have been different under different SST 451 

conditions (e.g., under different El Niño–Southern Oscillation states). SST in the Gulf of Mexico 452 

could play a very important role in regional and large-scale dynamics and transport. For example, 453 

in summer, the regional wind pattern in the southern US is dominated by wind that blows in from 454 
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the Gulf of Mexico after passing over the Atlantic Ocean. Different SSTs in the Gulf could either 455 

amplify or dampen the temperature gradient between the land and the ocean, which could alter the 456 

teleconnection pattern and thereby affect the regional monsoon. The potential impact of inter-457 

annually varying SST conditions on carbon-related drought impacts requires further study. 458 

Atmospheric transport does appear to play an important role in extending spatially the 459 

impacts of a local drought on atmospheric CO2. The aforementioned land-ocean temperature 460 

gradient should be enhanced by drought-induced warming, which could intensify the onshore sea 461 

breeze. We see some hints of this impact in our results: the northern part of the drought region and 462 

the adjacent remote regions to the north show positive anomalies of surface CO2 in June and July, 463 

whereas the southern part of the drought region shows negative anomalies in August and 464 

September (Figure 3d).  Our ongoing work is in fact aimed at isolating and quantifying the separate 465 

effects of land carbon flux variability and atmospheric transport variability on the variability of 466 

atmospheric CO2.  467 
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Figure 1. Domain of the imposed regional drought in the US (grey area of ~500,000 km2, 
located at 30N-37N and 90W-97W). In the DROUGHT suite, model-generated precipitation 
within the grey area was set to zero for April, May and June, but was retained for July, August, 
and September. Six equal areas adjacent to the local drought are chosen to study the remote 
impact of the drought. 
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Figure 2.  Model and observed GPP anomalies during (a) April-May-June (AMJ) and (b) July-
August-September (JAS) during the 2011 TexMex drought.  NBP anomalies are shown in (c) 
and (d). The anomalies were computed as the value for 2011 relative to the 14-year (2003-2016) 
climatology.  
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Figure 3. Monthly anomalies (DROUGHT minus CTRL) caused by the imposed drought: (a) 
T2M (°C), (b) GPP (gC/m2/day), (c) NBP (gC/m2/day), and (d) surface CO2 (ppm) in the lowest 
atmospheric model layer (about 50m).  Hatched areas indicate the anomalies that are statistically 
significant with p < 0.05. Note that the drought period is from April to June, followed by the 3-
month recovery period from July to September. 
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Figure 4. Mean monthly values of (a) T2M (°C), (b) PRCP (mm/day), (c) Surface soil water 
(m3/m3), (d) Root-zone soil water (m3/m3), (e) GPP (gC/m2/day), (f) heterotrophic respiration 
(gC/m2/day), (g) NBP (gC/m2/day), and (h) surface CO2 (ppm) in the area of imposed drought 
during the drought (April-May-June) and the recovery period (July-August-September) (Blue: 
CTRL; Red: DROUGHT). A red bar being higher (lower) than the upper (lower) limit of the 
paired blue bar’s error ranger indicates that the change is statistically significant at p < 0.05. 
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Figure 5. Contributions of isolated drivers to GPP as determined in supplemental experiments 
with the offline Catchment-CN model. The isolated contributions of drought-induced (a) T2M, 
(b) PRCP and (c) surface CO2 anomalies to GPP are shown (note a different scale in c). The GPP 
anomalies in (d) indicate the anomalies from the combined contribution of T2M, PRCP and CO2 
anomalies.   
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Drought DT2M 
(°C) 

DGPP 
(gC/m2/day) 

DNBP 
(gC/m2/day) 

DCO2 
(ppm) 

Drought area +0.6 -0.342 -0.278 +0.53 
NW -0.2 +0.009 +0.016 -0.02 
N -0.1 +0.014 +0.012 +0.17 
NE -0.1 -0.002 +0.007 +0.10 
W +0.2 -0.011 -0.028 +0.31 
E +0.2 -0.013 -0.037 +0.22 
SW +0.1 -0.004 -0.003 +0.03 

 
Table 1. Mean anomalies of T2M (°C), GPP (gC/m2/day), NBP (gC/m2/day), and surface CO2 
(ppm) in the drought area and six remote areas during the drought period (April-May-June). The 
remote areas are adjacent to the drought area, as illustrated in Figure 1. The anomalies shown are 
for DROUGHT minus CTRL, and the shaded values are statistically significant at p < 0.05. 
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Recovery DT2M 
(°C) 

DGPP 
(gC/m2/day) 

DNBP 
(gC/m2/day) 

DCO2 
(ppm) 

Drought area +0.7 -0.968 -0.620 +0.70 
NW -0.1 +0.029 +0.018 +0.25 
N +0.01 -0.001 -0.024 +0.66 
NE +0.01 -0.006 -0.018 +0.55 
W +0.1 -0.029 -0.023 +0.37 
E +0.1 -0.075 -0.038 +0.19 
SW 0.0 -0.003 -0.002 +0.03 

 
Table 2. Mean anomalies of T2M (°C), GPP (gC/m2/day), NBP (gC/m2/day), and surface CO2 
(ppm) in the drought area and the six remote areas during the recovery period (July-August-
September). The remote areas are adjacent to the drought area, as illustrated in Figure 1. The 
anomalies shown are for DROUGHT minus CTRL, and the shaded values are statistically 
significant at p < 0.05. 
 
 

 

 

 
 

 


