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A B S T R A C T

The soil moisture (SM) data retrieved from the Soil Moisture Active and Passive (SMAP) satellite are available at
a 9 km grid spacing since April 2015. This product can provide valuable information for research and appli-
cations in hydrology and other related fields. However, the resolution may be too coarse for applications at
catchment or field scale. In this study, an established downscaling methodology, which had a major modification
regarding its application on the SMAP 33 km domain, was implemented to develop a 1 km soil moisture product
based on the SMAP 9 km data. The algorithm proposed here is based on the thermal inertia principle and
developed by modeling the relationship between surface temperature difference and SM for different Normalized
Difference Vegetation Index (NDVI) classes. The model functions were established and tuned using data from the
NASA’s Land Information System (LIS) North America Land Data Assimilation System (NLDAS) and remotely
sensed VISible/InfRared (VIS/IR) reflectance data from Long Term Data Record (LTDR) AVHRR (Advanced Very
High Resolution Radiometer) for the growing season months of April-September 1981–2018. These were then
implemented using the MODIS (Moderate Resolution Imaging Spectroradiometer) data over the Continental
United States (CONUS) domain. Validation activities were carried out using in situ measurements distributed
through the International Soil Moisture Network (ISMN). The validation results computed using the 1 km SM
data showed that the R2, unbiased RMSE (root mean square error) and bias were improved relative to the 9 km
SMAP product by 0.045, 0.018m3/m3 and 0.001m3/m3, respectively. The 1 km SM also exhibited a strong time-
series autocorrelation. Further accuracy assessment analyses indicated that precipitation might contribute to the
uncertainties in both the 9 km SMAP and 1 km downscaled SMAP SM products.

1. Introduction

Soil moisture (SM) observations provide important information for
studying the exchange of water and energy between the land and the
atmosphere and serve as a key input variable in numerical models for
weather forecasting, ecology, and agriculture applications as well as the
prediction of hydrological extremes such as floods and droughts. As
compared to point scale SM from ground-based sensors, satellite ob-
servations (in particular microwave-based remote sensing) provide
routine and almost continuous global coverage (Lakshmi et al., 1997;
Lakshmi, 2004). During the past decades, a number of active and pas-
sive microwave satellites have been launched that are capable of
measuring surface moisture at a global scale. These include Advanced
Microwave Scanning Radiometer for the Earth Observing System
(AMSR-E) (Njoku et al., 2003; Jackson et al., 2010; Sridhar et al.,

2013), Advanced Microwave Scanning Radiometer 2 (AMSR2) (Imaoka
et al., 2010; Oki et al., 2010, Bindlish et al, 2018), Advanced SCATte-
rometer (ASCAT) (Wagner et al., 2013; Kim et al., 2018), Aquarius
(Bindlish et al., 2015), Soil Moisture and Ocean Salinity (SMOS) (Kerr
et al., 2001, Jackson et al., 2012) and Soil Moisture Active/Passive
(SMAP) (McNairn et al., 2014, Chan et al., 2016; Colliander et al.,
2017a; Chan et al., 2018; Kim and Lakshmi, 2018). The L-band mi-
crowave radiometer observations are preferred because they provide
more reliable surface SM information (accuracy and contributing
depth) (Schmugge et al., 1986; Jackson 1993; Schmugge and Jackson,
1994; Njoku and Entekhabi, 1996; Lakshmi and Susskind, 2000;
Lakshmi, 2013; Lakshmi, 2014). Although Radio Frequency Inter-
ference (RFI) effect was a concern at L-band, the SMAP mission has
addressed RFI through avoidance and filtering approaches. (Spencer
et al., 2013; Piepmeier et al., 2013; Colliander et al., 2017a).
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The spatial resolution of the currently available passive microwave
SM products is on the order of tens of kilometers, which is determined
by the antenna aperture (Le Vine et al., 1994). Such spatial resolution
does not satisfy the demands of many hydrological or agricultural
studies that require the characterization of SM variability at finer
scales. Recent research examined the use of downscaling algorithms as
a solution to the spatial resolution problem (Merlin et al., 2015; Peng
et al., 2017; Sabaghy et al., 2018). The available downscaling algo-
rithms can be classified as (1) using data from satellite observations. For
example, some of the proposed methods have downscaled coarse re-
solution passive microwave SM retrievals which rely on the use of
higher resolution radar observations (Bindlish and Barros, 2002; Bolten
et al., 2003; Narayan et al., 2004; Narayan et al, 2006; Narayan and
Lakshmi, 2008; Fang et al., 2019; Zhan et al., 2017), or satellite VIS/IR
(Visible/Infrared) observations (Piles et al., 2011; Piles et al., 2014;
Fang et al., 2013; Colliander et al., 2017b), (2) using information from
the other related land surface variables such as vegetation and soil

properties (Fang and Lakshmi, 2014a; Kim et al., 2017; Merlin et al.,
2010, 2013; Mishra et al., 2018; Peng et al., 2015, 2016; Tagesson
et al., 2018), or (3) statistical-based or model-based (land surface
model, LSM) approaches using derived geophysical variables at high
spatial resolution (Sánchez-Ruiz et al., 2014; Zhao et al., 2018).

In this investigation, we implemented a modified SM downscaling
algorithm based on thermal inertia principle and used satellite VIS/IR
observations to downscale the enhanced 9 km SMAP data. We validated
the 1 km downscaled and 9 km SMAP SM observations and discussed
their performances over the CONUS domain.

A detailed description of the original downscaling algorithm applied
here can be found in Fang et al. (2013). The algorithm originally
exploited the previously well-studied NDVI modulated relationship
between SM and surface temperature (Gillies et al., 1997; Carlson,
2007; Mallick et al., 2009; Minacapilli et al., 2009; Lakshmi et al., 2001;
Lakshmi et al., 2011). In this investigation, a major modification was
performed to downscale the enhanced 9 km SMAP SM over the 33 km

Fig. 1. Conceptual diagram of (a) fitting and implementing the −θ TΔ s relationship from NLDAS model grid size (12.5 km) to MODIS pixel size (1 km); (b) per-
forming downscaling of the 9 km SMAP SM using SM which is calculated from −θ TΔ s model at 33 km domain. The red and blue boxes denote the two adjacent 33 km
domains of the 9 km apart SMAP SM points. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)

Fig. 2. Locations of the ISMN ground stations used to validate the downscaled 1 km SM product. The selected stations are part of the COSMOS, SCAN, SoilSCAPE and
USCRN networks covering different CONUS states.

B. Fang, et al. Journal of Hydrology 588 (2020) 125043

2



domain, which is the contributing domain of SMAP radiometer ob-
servations. It utilizes the high spatial resolution satellite surface tem-
perature and VIS/IR-based vegetation index from MODIS to produce a
wide coverage and routinely available SM retrievals (Fang and
Lakshmi, 2014b; Fang et al., 2018a; Fang et al., 2018b; Senanayake
et al., 2019; Dandridge et al., 2020).

2. Brief description of the downscaling methodology

The original downscaling algorithm is based on the thermal inertia
theory that wetter objects tend to have a greater volumetric heat ca-
pacity and lower temperature change, and vice versa for dry objects.
The assumption made is that the rate of change in surface soil moisture
is negatively correlated to the rate of change in surface temperature
(Matsushima et al., 2012). This is especially true during the summer
months when the evapotranspiration rate is the dominant factor.
Therefore, in the application of the algorithm, it is assumed that the
maximum diurnal surface temperature difference can be estimated by
the difference of surface temperature between the two overpass times of
Aqua MODIS 1:30 p.m. (time of maximum surface temperature) and
1:30 a.m. (time of minimum surface temperature) (Fang et al., 2013),
and this would correspond to the SMAP SM overpasses, i.e. 6:00 a.m. or

6:00 p.m. The relationship between the NLDAS Noah model derived
surface skin temperature change TΔ s and SM θ between 1981 and 2018
can be modeled using a linear regression fit. The LTDR NDVI data were
used to classify the corresponding NLDAS −θ TΔ s relationship by
grouping them at an interval of 0.1 over the 0 – 1 NDVI range. The
relationship was then developed separately for each class and applied
on 1 km MODIS LST grids which were included within the corre-
sponding NLDAS grid’s boundaries, to calculate the 1 km SM. We made
an assumption that the spatial variability of the −θ TΔ s relationship
within one NLDAS grid could be ignored.

The 1 km SM calculated from the −θ TΔ s model needs to be ad-
justed by the difference between SMAP 9 km SM and the average of all
1 km −θ TΔ s model output grids located in the 33 km contributing
domain, which is the native spatial area to the 9 km SMAP radiometer
TB grid (Chan et al., 2018). This modification can effectively reduce the
sharp edge effect which is most likely caused by the errors of NLDAS
and MODIS data. This is the major improvement of the original
downscaling algorithm developed by Fang et al. (2013).

The conceptual diagram of the model building, implementation, and
downscaling is given in Fig. 1.

Table 1
Descriptions of the ISMN data, including SM network, number of stations, period of records, land cover types and main soil types.

SM Network Number of Stations Period of Records Land Cover Types Main Soil Types

COSMOS 14 2015–2018 Grassland, shrubland, forest Sand, clay
SCAN 32 2015–2018 Rainfed cropland, grassland, shrubland, urban area, forest Sand, clay
SoilSCAPE 35 2015–2016 Grassland, shrubland Sand
USCRN 19 2015–2018 Grassland, shrubland, forest Sand, clay

Fig. 3. R2 from the NLDAS derived −θ TΔ s linear regression fit between the months of April and September at the SMAP descending overpass (6:00 a.m.) over the
San Pedro Watershed. The grid values represent the average R2 from all NDVI classes.
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3. Study area and data description

3.1. Study area

The SM downscaling algorithm was used to derive a downscaled
1 km soil moisture product using the available SMAP 9 km daily SM
product between 2015 and 2018 over the CONUS domain. A major
reason for limiting the spatial domain to CONUS was determined by the
need of long-term estimates of surface skin temperature change ΔTs and
SM θ. One way to address this need at a global scale is to use readily
available model-based products. The regression model was applied by
utilizing the NLDAS model output data, which provides spatial cov-
erage limited to the CONUS area at 12.5 km model grid spacing.

3.2. Data

3.2.1. NLDAS data
NLDAS provides forcing data and LSM data at hourly time step and

12.5 km model grid spacing. It spans from January 1979 to the present.
NLDAS data integrates LSM datasets and ground observations. In this
study, we used the NLDAS NOAA (National Oceanic and Atmospheric
Administration) Noah LSM Level 4 variables: surface skin temperature
(unit: K) and SM (unit: m3/m3) at 0–10 cm (http://ldas.gsfc.nasa.gov/
nldas/) to build the −θ TΔ s model. The NLDAS Noah model was de-
veloped from the NCEP (National Centers for Environmental
Prediction) mesoscale Eta model. There have been numerous publica-
tions on validation of the NLDAS data, such as Ek et al. (2003), Schaake
et al., 2004, Mitchell et al. (2004) and Xia et al. (2013), Fang et al.
(2016).

3.2.2. LTDR NDVI data
The LTDR is a project launched by NASA for publishing global

surface climate data record and currently the LTDR Version 5 NDVI is
derived from NOAA satellites N07∼N19 (AVH13C1) AVHRR (1981 –
present) and Terra/Aqua MODIS (2000 - present) (Pedelty et al., 2007).
The daily NDVI product is originally projected at 0.05° spatial resolu-
tion Climate Modeling Grid (CMG) and is available at https://ltdr.
nascom.nasa.gov/. The previous study showed a strong overall corre-
lation of 0.87 between AVHRR and MODIS NDVI data, which suggested
that the MODIS NDVI data could be used to supplement the existing
AVHRR historical data (Bédard et al., 2006). In this study, we only used
the LTDR AVHRR data and upscaled it to 12.5 km resolution to match
with NLDAS grids for the −θ TΔ s model building.

3.2.3. MODIS products
MODIS is onboard two NASA satellites Terra and Aqua. MODIS

provides daily observations of land surface variables, including radia-
tion, temperature and vegetation at a global scale. It has a total of 36
visible/infrared bands, which range between 250m and 1 km spatial
resolution (Tucker, 1979; Wan and Li, 1997). In this study, the 1 km
daily Aqua MODIS LST (MYD11A1) and the biweekly NDVI products
(MYD13A2) were acquired from Land Processes Distributed Active
Archive Center (LP DAAC) at https://lpdaac.usgs.gov/.

Fig. 4. Scatter plots of the −θ TΔ s agreement for the month of July (1981–2018) computed per NDVI class for the descending overpass SMAP θ.

Table 2
R2 from the linear regression fit of the −θ TΔ s relationship of different NDVI
classes from descending overpass in July between 1981 and 2018 at the six
selected NLDAS grids in CONUS: San Pedro Basin, Tonzi Ranch, Reynolds
Creek, Stillwater, Little River and Ithaca. Each site represents different vege-
tation cover and SM conditions.

NDVI San Pedro
Basin

Reynolds
Creek

Tonzi
Ranch

Stillwater Little
River

Ithaca

0–0.1 0.516 0.251 0.417 0.28 0.243 0.126
0.1–0.2 0.707 0.197 0.408 0.13 0.286 0.074
0.2–0.3 0.782 0.266 0.222 0.142 0.165 0.127
0.3–0.4 – 0.234 0.213 0.284 0.183 0.068
0.4–0.5 – – – 0.305 0.189 0.118
0.5–0.6 – – – 0.243 0.215 0.014
0.6–0.7 – – – 0.171 – 0.064
0.7–0.8 – – – – – 0.011
0.8–0.9 – – – – – 0.195
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3.2.4. SMAP data
The SMAP mission was launched in January 2015, and it has an L-

band mission (radiometer centered at 1.41 GHz) that operates in a near-
polar sun-synchronous orbit. It has a revisit time of 2–3 days and ob-
serves the Earth at 6 a.m/6 p.m. The SM estimates represent the top
0–5 cm of soil layer with a threshold of vegetation water con-
tent≤ 5 kg/m2 (Chan et al., 2016). In this study, the enhanced Level-2
half orbit 9 km SM product (SPL2SMP_E) was acquired from NSIDC
(National Snow and Ice Data Center) at https://nsidc.org/data/
SPL2SMP_E for downscaling. The SMAP SM retrievals are solely de-
rived from the L-band radiometer TB data using the Single Channel
Algorithm (Jackson, 1993) at the native spatial resolution of 33 to
40 km. The retrievals are enhanced to 9 km EASE (Equal Area Scalable
Earth) grid using the approach developed by Chan et al. (2018), which

is based on interpolating antenna temperature data in the original
SMAP Level 1B TB data, by using Backus-Gilbert optimal interpolation
technique.

3.2.5. GPM (global precipitation measurement) data
The GPM satellite mission is designed to provide new standard

rainfall and snowfall observations at a global scale every 3 h. This sa-
tellite has Dual-Frequency DPR (Precipitation Radar) and GMI (GPM
Microwave Imager) mounted and extends the measurement range of the
TRMM (Tropical Rainfall Measuring Mission) (Hou et al., 2014;
Huffman et al., 2015). The IMERG (Integrated Multi-satellitE Retrievals
for GPM) precipitation data were downloaded from https://pmm.nasa.
gov/data-access/downloads/gpm and were used as reference data, to
study the SM spatial and temporal variability of the downscaled SM as

Fig. 5. 8-day composites of the 1 km downscaled and the original 9 km SMAP L2 half-orbit enhanced radiometer SM retrievals. Maps display the results from the
ascending and the descending overpasses during the 1st half of June 2018.
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well as the influence of precipitation on the performance of the
downscaling algorithm.

3.2.6. ISMN data
The ISMN hosts in situ SM measurements collected starting 1952 to

present from a total of 35 international SM networks, which include
more than 1400 stations. The purpose of ISMN is to validate, calibrate
and improve the accuracy of remote sensing SM retrieval algorithms
and LSM SM outputs as well as to provide other variable measurements,

including soil temperature and precipitation for the better interpreta-
tion of soil moisture (Dorigo et al., 2011, 2013; Gruber et al., 2013).
The ISMN data from the various SM networks were downloaded from
https://ismn.geo.tuwien.ac.at/. Discussions and evaluations of the ac-
curacy and uncertainties between different ISMN soil networks can be
found in the research by Han et al. (2014), Rosolem et al. (2013), Zreda
et al. (2012), Coopersmith et al. (2016), Bell et al. (2013a,b) and
Diamond et al. (2013).

The downscaled SMAP 1 km SM estimates were evaluated using in

Fig. 6. For the 4 SM networks: (a) the average number of days between 2015 and 2018 which have both ISMN and 9 km SMAP SM data versus the average number of
days which have no 1 km downscaled SMAP SM data; (b) the average number of days between 2015 and 2018 from MODIS LST/9 km SMAP data which account for
the missing days of the 1 km downscaled SMAP SM data.
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situ SM measurements from 100 ISMN stations in CONUS. As the Fig. 2
shows, the validation data include the stations from 4 SM networks for
validating SMAP SM retrieval algorithms. The ISMN SM networks in-
clude: COSMOS (COsmic-ray Soil Moisture Observation System),
SoilSCAPE (Soil Moisture Sensing Controller And oPtimal Estimator),
USCRN (U.S. Climate Reference Network) and SCAN (Soil Climate
Analysis Network). Table 1 shows the brief descriptions of the 4 SM
networks. These stations cover different types of climate zones, soil
properties, land cover types, and vegetation types, which allow us to
thoroughly examine the performance of the downscaling algorithm
over the CONUS domain. In addition, the San Pedro watershed was
used for mapping 1 km / 9 km SMAP SM and showing the spatial and
temporal SM variabilities.

4. Results and analyses

4.1. θ-ΔT model evaluation

The Eqs. (1) – (5) of the statistical variables (R2, unbiased RMSE,

bias, spatial standard deviation and average) are shown below. They
were used for evaluating and validating the 1 km/9 km SMAP SM es-
timates as well as the model performance (Willmott, 1982).
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Fig. 7. (a) 1 km downscaled SM comparing with 9 km SMAP SM of descending overpass between June 18 – 23, 2018 at San Pedro Watershed, AZ. The 9 km SMAP
grids are outlined. The black dotted line box outlines the channel of San Pedro River and the pink dotted line boxes outline the wet areas which are only captured by
1 km SM maps, (b) Difference map between the 1 km and 9 km SMAP SM, and the accumulated GPM precipitation (unit: mm) between June 16 – 17, which was the
only rainfall occurred during this time period. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)
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where, R2 and b are the coefficient of determination and bias between in
situ SM θ and estimated SM ̂θ (1 km downscaled and 9 km SMAP), re-
spectively. ubRMSE is the unbiased RMSE which removes the bias b
from ̂θ . σ is the spatial standard deviation of estimated or in situ SM. m
is the averaged SM.

In addition, in order to analyze the non-randomness and the cor-
relation of the data in the time series, the autocorrelation function was
applied on all three SM data sets and the autocorrelation R at the lag k
is calculated as
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where, θi is the SM estimate on the day i. In this equation, the time
variable is not used for calculating the correlation coefficient, but the
two SM estimates on the days i and +i k were used instead. Usually, the
first correlation when lag=1 is of interest in practical use.

The first step of the downscaling algorithm was to establish a reli-
able relationship between θ and TΔ s using outputs from the NLDAS
Noah model between 1981 and 2018, separately for each NDVI-class on

a monthly basis. Fig. 3 shows the overall R2 averaged from all NDVI
classes for each NLDAS grid over the San Pedro watershed for the
months of April through September, where each grid value represents
the average value from the −θ TΔ s linear regression fit of all NDVI
classes. The maps demonstrate a change in the −θ TΔ s agreement for
the April to September period. Higher R2 are achieved during the
months of June and July. It can be concluded that generally the warm
months exhibit a stronger thermal inertia relationship between θ and

TΔ s. June and July had relatively better overall R2, and most of the grid
values in these two months are greater than 0.4. In addition to these, we
observe that some grids have relatively lower overall R2. These areas
correspond to complex terrain and higher vegetation coverage, which
can lead to higher errors of NLDAS outputs (Hong et al., 2009). Fig. 4
and Table 2 summarize the −θ TΔ s linear regression fit statistics using
the data between 1981 and 2018 at 6 locations for the month of July.
These results demonstrate generally better R2 at the San Pedro Basin
(R2 ranges 0.516–0.782) and Tonzi Ranch (R2 ranges 0.417–0.213)
compared to the other sites. It also can be noted that the NDVI range at
the San Pedro Basin is the narrowest which is approximately between 0
and 0.3, while the other sites have wider NDVI ranges. In addition, the
R2 computed at the sites located in the western U.S. (i.e., San Pedro
Basin, Reynolds Creek, and Tonzi Ranch), where have generally lower
vegetation coverage, are generally better than the sites located in the
eastern U.S. (i.e., Stillwater, Little River and Ithaca). We may conclude

Fig. 7. (continued)
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that the vegetation has an influence on the −θ TΔ s relationship. Ad-
ditionally, the R2 of the −θ TΔ s relationship does not show a regular
descending trend as NDVI increased.

4.2. Downscaled SMAP SM results

The 1 km downscaled SMAP SM and the original 9 km SMAP SM are
shown in Fig. 5. Maps represent 8-day composites generated using SM
estimates from the ascending and the descending overpasses separately
between June 1 and 16, 2018 over the CONUS domain. The 1 km SM
maps display similar patterns as the 9 km SM maps, but with greater
detail. The 1 km SM maps have missing spatial coverage, which is due
to the removal of cloud-contaminated pixels from the MODIS products,

the removal of low-quality pixels, as well as the gaps between the
swaths of the MODIS and the SMAP products. From the Fig. 6a, when
compared the average number of days between 2015 and 2018 which
have both ISMN and 9 km SMAP SM data with the average number of
days which have no 1 km SMAP SM data, it is found that the ratio
between ISMN/9 km availability and 1 km SM unavailability is ap-
proximately 2:3 for three networks: COSMOS, SCAN and USCRN, while
this ratio is approximately 1:3 for SoilSCAPE. From the Fig. 6b, if
analyzed regarding the source of the missing days of the 1 km down-
scaled SMAP SM data, the MODIS LST data approximately account for
65% of missing days, while the 9 km SMAP data approximately account
for the remaining 35%.

Fig. 7a-b shows maps of the 1 km downscaled and 9 km SMAP SM,

Fig. 8. Comparison between 1 km and 9 km SMAP SM on June 23, 2018. The SM values along the black transection lines proved that the downscaled map captured
more SM spatial features than 9 km map. Peaks and dips, which represented SM dry-down and wetting events were better shown on the curve of 1 km SM. Especially,
the pink boxes shown that the two dips were captured by 1 km map while 9 km map did not. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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Table 3
a-b. Statistical variables R2, unbiased RMSE, bias, p-value and confidence interval at significance level of 0.05 from the validations of (a) 1 km downscaled and (b)
9 km SMAP radiometer SM estimates of descending overpass by ISMN in situ measurements between 2015 and 2018 from 100 validation sites in CONUS, including
sites from the networks COSMOS, SCAN, SoilSCAPE, and USCRN.

Site Name Network Number R2 ubRMSE bias p-value Confidence interval

ARM-1 COSMOS 92 0.584 0.022 −0.017 0.000 0.229
Fort Peck COSMOS 116 0.525 0.010 0.007 0.000 0.235
Kendall COSMOS 23 0.637 0.022 0.023 0.000 0.283
Lower Salt Creek COSMOS 103 0.104 0.025 0.007 0.001 0.162
Lucky Hills COSMOS 24 0.594 0.021 0.021 0.000 0.434
Manitou Forest Ground COSMOS 87 0.421 0.022 −0.008 0.000 0.134
Marshall Colorado COSMOS 115 0.651 0.011 0.007 0.000 0.140
Metolius COSMOS 186 0.415 0.022 0.001 0.000 0.085
Reynolds Creek COSMOS 150 0.585 0.031 0.026 0.000 0.095
SMAP-OK COSMOS 79 0.671 0.006 0.005 0.000 0.171
Santa Rita Criosote COSMOS 103 0.729 0.024 −0.024 0.000 0.149
Santa Rita Mesquite COSMOS 26 0.790 0.014 −0.005 0.000 0.382
Soaproot COSMOS 62 0.540 0.031 −0.011 0.000 0.107
Tonzi Ranch COSMOS 165 0.702 0.018 0.017 0.000 0.086
Abrams SCAN 116 0.220 0.007 0.004 0.000 0.460
Bragg Farm SCAN 83 0.491 0.018 0.003 0.000 0.141
Cave Valley SCAN 75 0.326 0.023 −0.023 0.000 0.320
Deep Springs SCAN 180 0.168 0.032 0.025 0.000 0.123
Desert Center SCAN 58 0.127 0.017 −0.007 0.006 0.186
Dexter SCAN 83 0.395 0.007 0.006 0.000 0.292
Enterprise SCAN 185 0.428 0.009 0.003 0.000 0.127
Essex SCAN 110 0.242 0.031 −0.014 0.000 0.074
Ford Dry Lake SCAN 52 0.212 0.018 0.000 0.001 0.170
Fort Assiniboine #1 SCAN 174 0.682 0.025 −0.012 0.000 0.090
Grouse Creek SCAN 82 0.655 0.021 −0.005 0.000 0.133
Hals Canyon SCAN 69 0.417 0.016 −0.001 0.000 0.205
Holden SCAN 159 0.600 0.016 −0.008 0.000 0.190
Knox City SCAN 118 0.503 0.011 −0.006 0.000 0.186
Levelland SCAN 83 0.370 0.005 −0.001 0.000 0.279
Lind #1 SCAN 169 0.690 0.013 −0.001 0.000 0.072
Los Lunas Pmc SCAN 154 0.133 0.021 −0.003 0.000 0.179
Lovelock Nnr SCAN 139 0.524 0.021 −0.021 0.000 0.156
Mammoth Cave SCAN 98 0.479 0.033 −0.004 0.000 0.113
Marble Creek SCAN 150 0.236 0.022 −0.017 0.000 0.148
Mason #1 SCAN 83 0.472 0.019 −0.018 0.000 0.252
Mcalister Farm SCAN 81 0.772 0.034 −0.002 0.000 0.071
North Issaquena SCAN 67 0.183 0.033 0.031 0.000 0.398
Price SCAN 126 0.371 0.028 −0.027 0.000 0.206
Sand Hollow SCAN 129 0.371 0.024 −0.022 0.000 0.189
Scott SCAN 68 0.398 0.012 0.007 0.000 0.250
Sevilleta SCAN 88 0.356 0.027 −0.010 0.000 0.110
Spooky SCAN 138 0.217 0.013 −0.012 0.000 0.247
Torrington #1 SCAN 112 0.476 0.021 −0.020 0.000 0.165
UAPB Point Remove SCAN 118 0.420 0.014 −0.012 0.000 0.172
Vermillion SCAN 197 0.147 0.030 −0.017 0.000 0.104
Walnut Gulch #1 SCAN 104 0.700 0.019 0.011 0.000 0.101
node1019 SOILSCAPE 45 0.877 0.028 −0.026 0.000 0.167
node1023 SOILSCAPE 46 0.799 0.026 −0.022 0.000 0.120
node1403 SOILSCAPE 11 0.613 0.024 0.004 0.074 0.481
node1500 SOILSCAPE 35 0.601 0.025 0.025 0.000 0.244
node1506 SOILSCAPE 17 0.878 0.013 −0.009 0.000 0.219
node401 SOILSCAPE 113 0.751 0.032 0.028 0.000 0.073
node402 SOILSCAPE 108 0.708 0.015 −0.015 0.000 0.175
node404 SOILSCAPE 60 0.818 0.018 −0.012 0.000 0.118
node405 SOILSCAPE 113 0.644 0.017 −0.011 0.000 0.095
node406 SOILSCAPE 112 0.729 0.026 0.008 0.000 0.065
node408 SOILSCAPE 113 0.799 0.028 −0.018 0.000 0.057
node410 SOILSCAPE 54 0.783 0.030 −0.029 0.000 0.126
node412 SOILSCAPE 113 0.761 0.027 0.024 0.000 0.078
node413 SOILSCAPE 107 0.821 0.011 0.006 0.000 0.071
node414 SOILSCAPE 52 0.840 0.026 −0.022 0.000 0.088
node415 SOILSCAPE 111 0.721 0.017 0.006 0.000 0.078
node416 SOILSCAPE 106 0.756 0.020 0.001 0.000 0.069
node502 SOILSCAPE 50 0.792 0.018 0.013 0.000 0.112
node504 SOILSCAPE 117 0.693 0.024 0.019 0.000 0.085
node508 SOILSCAPE 33 0.681 0.021 0.011 0.000 0.172
node513 SOILSCAPE 118 0.668 0.033 0.013 0.000 0.062
node517 SOILSCAPE 40 0.780 0.026 0.004 0.000 0.138
node710 SOILSCAPE 40 0.793 0.033 −0.029 0.000 0.199
node900 SOILSCAPE 47 0.707 0.030 −0.022 0.000 0.131
node901 SOILSCAPE 83 0.692 0.020 −0.018 0.000 0.126
node902 SOILSCAPE 42 0.789 0.005 −0.005 0.000 0.159

(continued on next page)
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Table 3 (continued)

Site Name Network Number R2 ubRMSE bias p-value Confidence interval

node905 SOILSCAPE 82 0.711 0.023 −0.001 0.000 0.091
node906 SOILSCAPE 82 0.652 0.033 −0.027 0.000 0.111
node909 SOILSCAPE 83 0.798 0.016 −0.013 0.000 0.091
node910 SOILSCAPE 20 0.425 0.014 −0.002 0.002 0.366
node911 SOILSCAPE 83 0.656 0.021 −0.012 0.000 0.112
node912 SOILSCAPE 82 0.738 0.024 0.020 0.000 0.103
node913 SOILSCAPE 83 0.771 0.017 0.009 0.000 0.090
node914 SOILSCAPE 40 0.574 0.020 −0.018 0.000 0.220
node916 SOILSCAPE 55 0.644 0.023 −0.005 0.000 0.134
Baker 5W USCRN 153 0.301 0.013 −0.011 0.000 0.176
Bowling Green 21 NNE USCRN 90 0.548 0.024 0.023 0.000 0.153
Bronte 11 NNE USCRN 144 0.518 0.031 −0.031 0.000 0.175
Corvallis 10 SSW USCRN 170 0.772 0.021 −0.021 0.000 0.085
Elgin 5 S USCRN 111 0.463 0.012 −0.008 0.000 0.152
Fallbrook 5 NE USCRN 124 0.360 0.008 −0.004 0.000 0.162
John Day 35 WNW USCRN 163 0.561 0.028 −0.027 0.000 0.126
Medora 7 E USCRN 123 0.525 0.011 −0.004 0.000 0.131
Mercury 3 SSW USCRN 101 0.149 0.011 −0.008 0.000 0.236
Monahans 6 ENE USCRN 152 0.461 0.016 −0.016 0.000 0.256
Nunn 7 NNE USCRN 113 0.666 0.029 −0.028 0.000 0.161
Panther Junction 2N USCRN 98 0.318 0.030 0.021 0.000 0.127
Riley 10 WSW USCRN 112 0.577 0.016 0.011 0.000 0.120
Sandstone 6W USCRN 114 0.309 0.025 −0.024 0.000 0.217
Socorro 20N USCRN 121 0.158 0.026 0.006 0.000 0.213
Stillwater 5 WNW USCRN 122 0.768 0.013 0.005 0.000 0.081
Stovepipe Wells 1 SW USCRN 103 0.510 0.019 −0.019 0.000 0.325
Tucson 11W USCRN 177 0.515 0.026 −0.024 0.000 0.083
Whitman 5 ENE USCRN 149 0.458 0.011 −0.011 0.000 0.163
ARM-1 COSMOS 92 0.558 0.023 −0.018 0.000 0.239
Fort Peck COSMOS 116 0.642 0.012 −0.001 0.000 0.184
Kendall COSMOS 23 0.555 0.023 0.022 0.000 0.332
Lower Salt Creek COSMOS 103 0.197 0.026 0.002 0.000 0.109
Lucky Hills COSMOS 24 0.570 0.024 0.024 0.000 0.356
Manitou Forest Ground COSMOS 87 0.482 0.022 0.003 0.000 0.125
Marshall Colorado COSMOS 115 0.627 0.026 −0.026 0.000 0.107
Metolius COSMOS 186 0.209 0.031 0.003 0.000 0.088
Reynolds Creek COSMOS 150 0.562 0.021 0.016 0.000 0.077
SMAP-OK COSMOS 79 0.664 0.031 −0.030 0.000 0.180
Santa Rita Criosote COSMOS 103 0.564 0.020 −0.019 0.000 0.090
Santa Rita Mesquite COSMOS 26 0.724 0.015 −0.014 0.000 0.246
Soaproot COSMOS 62 0.463 0.033 0.017 0.000 0.098
Tonzi Ranch COSMOS 165 0.684 0.031 0.027 0.000 0.062
Abrams SCAN 116 0.202 0.018 0.015 0.000 0.438
Bragg Farm SCAN 83 0.533 0.020 0.001 0.000 0.137
Cave Valley SCAN 75 0.376 0.067 −0.067 0.000 0.232
Deep Springs SCAN 180 0.130 0.032 0.020 0.000 0.086
Desert Center SCAN 58 0.180 0.036 −0.032 0.001 0.137
Dexter SCAN 83 0.496 0.021 0.015 0.000 0.290
Enterprise SCAN 185 0.455 0.017 −0.009 0.000 0.093
Essex SCAN 110 0.137 0.040 −0.027 0.000 0.075
Ford Dry Lake SCAN 52 0.201 0.026 −0.017 0.001 0.154
Fort Assiniboine #1 SCAN 174 0.556 0.024 0.005 0.000 0.068
Grouse Creek SCAN 82 0.512 0.031 −0.022 0.000 0.092
Hals Canyon SCAN 69 0.263 0.025 −0.020 0.000 0.146
Holden SCAN 159 0.263 0.031 −0.029 0.000 0.078
Knox City SCAN 118 0.478 0.017 −0.017 0.000 0.148
Levelland SCAN 83 0.316 0.009 −0.008 0.000 0.241
Lind #1 SCAN 169 0.683 0.017 −0.006 0.000 0.064
Los Lunas Pmc SCAN 154 0.094 0.040 0.029 0.000 0.126
Lovelock Nnr SCAN 139 0.370 0.023 −0.016 0.000 0.109
Mammoth Cave SCAN 98 0.504 0.030 −0.013 0.000 0.124
Marble Creek SCAN 150 0.104 0.032 −0.023 0.000 0.105
Mason #1 SCAN 83 0.485 0.106 −0.106 0.000 0.221
Mcalister Farm SCAN 81 0.781 0.036 −0.002 0.000 0.066
North Issaquena SCAN 67 0.155 0.020 0.015 0.001 0.392
Price SCAN 126 0.052 0.265 −0.051 0.000 0.143
Sand Hollow SCAN 129 0.042 0.192 −0.041 0.000 0.134
Scott SCAN 68 0.024 0.395 0.022 0.000 0.247
Sevilleta SCAN 88 0.028 0.326 0.006 0.000 0.113
Spooky SCAN 138 0.216 0.032 −0.031 0.000 0.186
Torrington #1 SCAN 112 0.467 0.027 −0.026 0.000 0.156
UAPB Point Remove SCAN 118 0.408 0.012 −0.009 0.000 0.172
Vermillion SCAN 197 0.107 0.035 −0.026 0.000 0.099
Walnut Gulch #1 SCAN 104 0.614 0.020 0.006 0.000 0.072
node1019 SOILSCAPE 45 0.841 0.019 0.018 0.000 0.124

(continued on next page)

B. Fang, et al. Journal of Hydrology 588 (2020) 125043

11



the difference between the 1 km/9 km SM from June 18, 21, and 23,
2018, as well as the accumulated GPM precipitation between June 16 –
17. Please note that it was the only rainfall event that occurred before
or during the time period June 18–23 over the San Pedro watershed. A
linearly shaped wet area in the middle of the watershed from north to
south that is shown in all three 1 km maps which represents the San
Pedro River. Furthermore, there are some wet areas (outlined in pink
boxes) near the edge of the watershed boundaries that are only cap-
tured in the 1 km maps. The difference maps between the 1 km and the
9 km SM also confirm that more spatial variability is present in the
downscaled SM product. In addition, the difference maps show that the
1 km SM estimates are lower than the original 9 km product along the
edges of the watershed. The corresponding areas that received more
precipitation exhibit a slower SM dry down trend. If we draw a transect
line vertically across the center of the watershed to compare the 1 km
downscaled SM with 9 km SM (Fig. 8), it appears that the 1 km SM line
shows greater variability than the 9 km line. Additionally, two SM dry

downs can be noted in the line plot, which are located in the north
central of the watershed (shown in the pink boxes) from 1 km SM map,
while they are completely missing in the 9 km map.

4.3. Validation

The validation metrics, R2, unbiased RMSE, bias for the 1 km
downscaled and the 9 km SMAP SM validations using the ISMN in situ
measurements are shown in Table 3.

The SoilSCAPE is a soil moisture network with high-density nodes,
and the SM sensors are clustered in groups within a relatively small area
(1 km2). (Moghaddam et al., 2010). The network uses Decagon EC‐5
capacitance probes to estimate SM at different depths from the series of
stations within the Tonzi, California, in northern California (Ford and
Quiring, 2019). On the other hand, the COSMOS SM measurements are
recorded by cosmic-ray probes from the wireless sensor network
(SoilNET) and the best overall accuracy is within 0.013m3/m3 at

Table 3 (continued)

Site Name Network Number R2 ubRMSE bias p-value Confidence interval

node1023 SOILSCAPE 46 0.757 0.030 0.023 0.000 0.092
node1403 SOILSCAPE 11 0.312 0.025 0.022 0.004 0.400
node1500 SOILSCAPE 35 0.649 0.020 0.017 0.000 0.186
node1506 SOILSCAPE 17 0.775 0.017 −0.012 0.000 0.141
node401 SOILSCAPE 113 0.696 0.046 0.038 0.000 0.055
node402 SOILSCAPE 108 0.693 0.026 −0.024 0.000 0.123
node404 SOILSCAPE 60 0.762 0.026 −0.026 0.000 0.097
node405 SOILSCAPE 113 0.635 0.022 0.000 0.000 0.069
node406 SOILSCAPE 112 0.679 0.040 0.017 0.000 0.048
node408 SOILSCAPE 113 0.747 0.034 −0.008 0.000 0.044
node410 SOILSCAPE 54 0.723 0.025 −0.018 0.000 0.096
node412 SOILSCAPE 113 0.689 0.041 0.034 0.000 0.061
node413 SOILSCAPE 107 0.752 0.027 0.017 0.000 0.058
node414 SOILSCAPE 52 0.777 0.029 −0.011 0.000 0.071
node415 SOILSCAPE 111 0.689 0.031 0.015 0.000 0.057
node416 SOILSCAPE 106 0.699 0.033 0.011 0.000 0.053
node502 SOILSCAPE 50 0.772 0.054 0.050 0.000 0.085
node504 SOILSCAPE 117 0.662 0.024 −0.020 0.000 0.075
node508 SOILSCAPE 33 0.679 0.033 −0.031 0.000 0.142
node513 SOILSCAPE 118 0.650 0.061 0.051 0.000 0.055
node517 SOILSCAPE 40 0.597 0.063 0.057 0.000 0.088
node710 SOILSCAPE 40 0.525 0.013 −0.004 0.000 0.116
node900 SOILSCAPE 47 0.590 0.052 0.036 0.000 0.115
node901 SOILSCAPE 83 0.697 0.038 0.034 0.000 0.092
node902 SOILSCAPE 42 0.694 0.055 0.053 0.000 0.146
node905 SOILSCAPE 82 0.640 0.063 0.052 0.000 0.075
node906 SOILSCAPE 82 0.678 0.038 0.026 0.000 0.078
node909 SOILSCAPE 83 0.766 0.045 0.039 0.000 0.072
node910 SOILSCAPE 20 0.754 0.041 0.037 0.000 0.160
node911 SOILSCAPE 83 0.641 0.049 0.040 0.000 0.084
node912 SOILSCAPE 82 0.684 0.077 0.073 0.000 0.082
node913 SOILSCAPE 83 0.772 0.066 0.061 0.000 0.066
node914 SOILSCAPE 40 0.533 0.045 0.037 0.000 0.140
node916 SOILSCAPE 55 0.547 0.062 0.050 0.000 0.112
Baker 5W USCRN 153 0.488 0.039 −0.038 0.000 0.107
Bowling Green 21 NNE USCRN 90 0.507 0.025 0.024 0.000 0.169
Bronte 11 NNE USCRN 144 0.682 0.039 −0.038 0.000 0.129
Corvallis 10 SSW USCRN 170 0.831 0.019 −0.009 0.000 0.054
Elgin 5 S USCRN 111 0.506 0.019 −0.014 0.000 0.120
Fallbrook 5 NE USCRN 124 0.144 0.012 0.000 0.000 0.199
John Day 35 WNW USCRN 163 0.476 0.048 −0.046 0.000 0.099
Medora 7 E USCRN 123 0.489 0.015 −0.008 0.000 0.134
Mercury 3 SSW USCRN 101 0.136 0.023 −0.020 0.000 0.171
Monahans 6 ENE USCRN 152 0.302 0.019 −0.019 0.000 0.173
Nunn 7 NNE USCRN 113 0.568 0.050 −0.050 0.000 0.150
Panther Junction 2N USCRN 98 0.486 0.021 −0.001 0.000 0.086
Riley 10 WSW USCRN 112 0.504 0.020 0.012 0.000 0.121
Sandstone 6W USCRN 114 0.305 0.043 −0.043 0.000 0.224
Socorro 20N USCRN 121 0.110 0.027 0.017 0.000 0.131
Stillwater 5 WNW USCRN 122 0.760 0.014 −0.006 0.000 0.080
Stovepipe Wells 1 SW USCRN 103 0.268 0.043 −0.043 0.000 0.173
Tucson 11W USCRN 177 0.507 0.030 −0.028 0.000 0.082
Whitman 5 ENE USCRN 149 0.502 0.009 −0.009 0.000 0.161
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Fig. 9. Validation scatterplots of 1 km/9 km SMAP L2 SM of descending overpass between 2015 and 2018 at 32 ISMN stations. The SMAP SM were validated by ISMN
in situ measurements from 4 SM networks including (a) COSMOS, (b) SCAN, (c) SoilSCAPE and (d) USCRN.
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regions with low soil water content (Zreda et al., 2012; Bogena et al.,
2013; Han et al., 2014; Jakobi et al., 2018). The USCRN uses three sets
of probes for soil and climate measurements for minimizing the mea-
surement errors and soil effects. It has an average error of

approximately 0.012m3/m3 by the triple collocation validation
method. However, the largest error was noted at shallower depths
(Diamond et al., 2013; Bell et al., 2013a,b; Coopersmith et al., 2016).
Lastly, the SCAN uses Stevens Hydraprobe dielectric reflectometers at

Fig. 9. (continued)
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different depths and has hourly intervals (Cosh et al., 2004; Schaefer
et al., 2007). Previous studies reported that overall high errors were
greater than 0.015m3/m3 at the stations in the eastern CONUS region
and Utah agricultural valleys and lowlands (Dirmeyer et al., 2016; Ford
and Quiring, 2019).

For the R2 of 1 km SM, the SoilSCAPE network has the highest
average value (0.728) compared to the other networks. The average R2

values for COSMOS, SCAN and USCRN are 0.568, 0.399 and 0.470,
respectively. The average ubRMSE for all 4 networks range between
0.02 and 0.022m3/m3 and they do not show much difference. For the
average bias, the COSMOS has the best result (0.003m3/m3), while the
other three networks SCAN, SoilSCAPE and USCRN have −0.005,
−0.004 and −0.009m3/m3, respectively. The relatively higher bias at
the USCRN is most likely due to the fact that some stations are located
in farmland and forest, and the SM measurements are influenced by
vegetation cover and undulating terrain, which may cause uncertainties
in the 1 km / 9 km SM estimates. Comparing the validation metrics of
the 1 km SM to the 9 km, on average, the R2 increases by 0.045, the
ubRMSE decreases by 0.018m3/m3, and the bias decreases by
0.001m3/m3, for the 4 SM networks. Given these results, we can con-
clude that the downscaling algorithm performs better over areas with
lower soil moisture content and less complex vegetation conditions. For
the p-values of the regression analysis output for each ISMN station,
both 1 km/9 km SM validations are much less than 0.05 at the sig-
nificance level α =0.05, which indicates the significance of the re-
gression fitting. For the 95% confidence interval of the regression, on
average, the 1 km SMAP SM is 0.17, while the 9 km SMAP SM is 0.139.
The values are relatively narrow and can also prove the accuracy of the
regression fitting estimates.

From Table 3, we may also note the improvement in ubRMSE and
bias at 1 km validations over 9 km validations for a few stations but
have no improvement of R2. For example, the stations include Fort
Peck, Kendall from COSMOS; Bragg Farm, Cave Valley from SCAN;
node901, node906 from SoilSCAPE; and Baker 5W, Bronte 11 NNE
from USCRN. This is due to the bias-variance tradeoff issue occurred in
9 km validation, which implies high bias and low variance of the data
pairs in the validation plots. This fact especially could be observed in
the plots of Fort Peck, node-901, Bronte 11 NNE in Fig. 9a, c and d. The
1 km points are relatively more scattered, but the fit lines are closer to
the 1–1 diagonal lines. Moreover, from Fig. 9a-d, it can be observed that
the fit lines of 1 km data pairs are generally closer to the diagonal lines
than the fit lines of 9 km data pairs for all scatter plots, which indicates
the improved accuracy of the 1 km downscaled SM. Additionally, it is
observed that the underestimation occurred for 9 km SMAP SM for most
of the stations from COSMOS, SCAN, and SoilSCAPE, while the over-
estimation occurred in USCRN. We also can find that the under-
estimation trend of SM occurred in some stations from the western U.S.,
including such as Walnut Gulch #1, Tonzi Ranch and Reynolds Creek
(Fig. 9a, b), while the overestimation trend occurred in stations from
Eastern U.S., including Bronte 11 NNE and SMAP-OK (Fig. 9a, d). The
overestimation/underestimation trends of 9 km data pairs are clearly
reduced in 1 km data pairs, especially in the stations SMAP-OK
(Fig. 9a), Mason #1 (Fig. 9b), and node901 (Fig. 9c).

Table 4 shows the average daily spatial standard deviation σ and

average SM values of the 3 data sets: 1 km, 9 km SMAP SM and ISMN
SM from the 4 sites between 2015 and 2018. The σ refers to the spatial
variability of SM. It can be summarized that, on average, the σ of 1 km
SM is 0.026m3/m3, while 9 km SM is 0.022m3/m3 for all 4 sites. The
difference of σ between 1 km and ISMN is 0.005m3/m3 on average. It is
clearly less than the difference of σ between 9 km and ISMN, which is
0.01m3/m3 on average. This indicates that the 1 km downscaled SM
can better estimate the spatial variability than the 9 km SM. For the
average SM, the 1 km is 0.113m3/m3 on average and has an average
difference of 0.005m3/m3 with the ISMN, while the 9 km is 0.119m3/
m3 and has an average difference of 0.012m3/m3 with the ISMN. It is
also summarized that the 1 km SM average is overall closer to the ISMN
SM.

From the time series plots between the averaged 1 km, 9 km, ISMN
SM data and GPM precipitation at the 4 SM networks between 2015 and
2018 shown in Fig. 10a-d, we may note that the 1 km/9 km SM esti-
mates had a good agreement with ISMN data during the days without
rain. On the days with precipitation, we observe greater SM temporal
variability and difference between estimated SM and ISMN SM, which
agreed with our conclusion made in the above paragraph that the
precipitation could affect the accuracy of estimated SM. For example,
the difference between ISMN and 1 km/9 km SMAP SM during rainy
days can be observed in the following stations: ARM-1 and Fort peck in
2016, SMAP-OK in 2017 (Fig. 10a); Mason #1 (Fig. 10b), Sandstone
6W and Stillwater 5 WNW (Fig. 10d) in all 4 years. The 1 km down-
scaled SM estimates of some days with precipitation were missing,
which was due to the cloud cover in MODIS images. On the other hand,
it is found that the 1 km SMAP SM generally better agreed to ISMN SM
than 9 km SM for all sites, especially during the rainy days. Table 5
shows the time-series autocorrelation R (lag=1) of the 1 km, 9 km
SMAP SM and the corresponding ISMN SMmeasurements of descending
overpass between 2015 and 2018 from 100 ISMN validations stations of
4 SM networks. If the stations are grouped by the networks, it can be
summarized that, on average, the R for ISMN SM is 0.888, comparing
with R=0.791 for 1 km SM and R=0.741 for 9 km SM. The results
prove that both 1 km and 9 km SM have strong autocorrelation of 1-day
lag. From Fig. 11a-c, the time-series autocorrelations for all three sta-
tions show descending trends as the lag increases. On the other hand,
the R of ISMN data decreases more slowly than either 1 km or 9 km
SMAP SM as the lag increases. If observed the shaded area which re-
presents the confident interval, the 1 km and 9 km SM both have good
autocorrelations when lag < 4 for the Tonzi Ranch station, while the
other two stations show good autocorrelations when lag < 2.

5. Conclusions and discussion

In this paper, we modified and implemented a 1 km SM downscaling
algorithm, which was based on the thermal inertia relationship between
surface temperature difference and SM under different vegetation
conditions. The approach was used to downscale the SMAP enhanced
L2 radiometer only half-orbit 9 km daily SM retrievals over the CONUS
during the growing season between April and September from 2015 to
2018. The downscaling algorithm was developed and implemented
using remote sensing and LSM derived variables, which were readily

Table 4
The average and spatial standard deviation σ from the ISMN in situ SM measurements, 1 km downscaled and 9 km SMAP SM between 2015 and 2018 from the 4 sites:
Tonzi Ranch, San Pedro River Basin, Oklahoma, and Colorado River Basin.

SM Network Average Spatial standard deviation

ISMN (Dsc.) 1 km SMAP (Dsc.) 9 km SMAP (Dsc.) ISMN (Dsc.) 1 km SMAP (Dsc.) 9 km SMAP (Dsc.)

Tonzi Ranch 0.111 0.118 0.096 0.025 0.016 0.011
San Pedro River Basin 0.061 0.062 0.078 0.022 0.017 0.014
Oklahoma 0.180 0.176 0.195 0.035 0.032 0.028
Colorado River Basin 0.078 0.094 0.108 0.044 0.040 0.035
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Fig. 10. Time-series plots of the averaged 1 km/9 km SMAP SM estimates and corresponding ISMN in situ SM measurements of descending overpass of 64 stations
from 4 SM networks, including (a) COSMOS, (b) SCAN, (c) SoilSCAPE and (d) USCRN. The blue bars represent 10 km daily GPM-IMERG L3 precipitation corre-
sponding to each site. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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available every 2∼ 3 days. A major revision to the original algorithm
involved downscaling the 9 km SMAP SM by applying the −θ TΔ s
model output SM at the native SMAP TB domain of 33 km. This step
could effectively reduce the sharp edge issue that occurred in the
downscaled SM product which was most likely caused by the errors
from the model building and implementation data from NLDAS and
MODIS. The algorithm performance and accuracy of the downscaled

product were assessed using the ISMN in situ SM observations. The
performance of the −θ TΔ s model varied in different seasons when
analyzing the averaged R2 from the linear regression best fit of the

−θ TΔ s at San Pedro watershed. Warm months (May to July) had
higher R2. The sites from ISMN representing different moisture or ve-
getation cover conditions were selected for studying and validating the
spatial and temporal SM characteristics at 1 km downscaled and 9 km

Fig. 10. (continued)
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resolution. From the validation statistics, it was found that the 1 km
downscaled SM showed an improvement compared to the 9 km SM,
with the overall improvements of 0.045 for R2, 0.018m3/m3 for
ubRMSE and 0.001m3/m3 for bias, respectively. Overall, the p-values
in the regression analyses indicated that both the 1 km and 9 km SMAP
SM had statistically significant correlations with ISMN SM.
Additionally, the difference of spatial standard deviation σ between the
1 km downscaled and ISMN SM was 0.005m3/m3 on average, which
was less than the difference of σ between the 9 km and ISMN SM. The
validation results, R2, ubRMSE and bias between ISMN and 1 km/9 km
SM did not show much difference in different SM networks. The algo-
rithm produced reliable downscaling SM on the days with no rain and
over regions with less vegetation coverage. On the other hand, the time-
series autocorrelation coefficient of the 1 km downscaled SM ranged
0.791 at lag= 1, which indicated the strong correlation between ad-
jacent days. The validation results on the 1 km downscaled SMAP SM
showed the potential to extend this data to a global scale.

Our review of some other passive microwave SM downscaling al-
gorithms of recent years that are based on the relationships between
SM, LST, and vegetation is in Table 6. These algorithms were applied on
AMSR-E, SMOS, ESA and SMAP SM products and the statistical results
shown that the R2 ranged 0.057 – 0.72 and RMSE/RMSD (root mean
square difference) ranged 0.027 – 0.1m3/m3. Comparing with similar
types of studies, the validation results of our downscaling product, of
which average R2= 0.541 and average ubRMSE=0.02m3/m3, show
fairly good accuracy.
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SMAP-OK COSMOS 0.839 0.917 0.845
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Santa Rita Mesquite COSMOS 0.794 0.855 0.753
Soaproot COSMOS 0.708 0.751 0.817
Tonzi Ranch COSMOS 0.847 0.937 0.898
Abrams SCAN 0.833 0.995 0.783
Bragg Farm SCAN 0.853 0.967 0.797
Cave Valley SCAN 0.855 0.695 0.765
Deep Springs SCAN 0.938 0.753 0.613
Desert Center SCAN 0.808 0.618 0.496
Dexter SCAN 0.868 0.990 0.836
Enterprise SCAN 0.878 0.681 0.771
Essex SCAN 0.645 0.156 0.476
Ford Dry Lake SCAN 0.781 – –
Fort Assiniboine #1 SCAN 0.890 0.937 0.837
Grouse Creek SCAN 0.972 0.702 0.878
Hals Canyon SCAN 0.836 0.534 0.788
Holden SCAN 0.872 0.893 0.805
Knox City SCAN 0.870 0.942 0.711
Levelland SCAN 0.945 0.432 0.741
Lind #1 SCAN 0.969 0.907 0.805
Los Lunas Pmc SCAN 0.883 0.766 0.445
Lovelock Nnr SCAN 0.964 0.985 0.892
Mammoth Cave SCAN 0.917 0.833 0.561
Marble Creek SCAN 0.921 0.770 0.735
Mason #1 SCAN 0.791 0.999 0.731
Mcalister Farm SCAN 0.848 1.000 0.825
North Issaquena SCAN 0.897 1.000 0.956
Price SCAN 0.830 0.145 0.574
Sand Hollow SCAN 0.793 0.604 0.399
Scott SCAN 0.919 – –
Sevilleta SCAN 0.779 0.283 0.508
Spooky SCAN 0.908 0.728 0.369
Torrington #1 SCAN 0.924 0.813 0.726
UAPB Point Remove SCAN 0.774 0.927 0.870
Vermillion SCAN 0.913 0.698 0.640
Walnut Gulch #1 SCAN 0.789 – –
node1019 SOILSCAPE 0.999 0.895 0.750
node1023 SOILSCAPE 0.996 0.895 0.750
node1403 SOILSCAPE 0.651 – –
node1500 SOILSCAPE 0.905 – –
node1506 SOILSCAPE 0.608 – –
node401 SOILSCAPE 0.989 0.937 0.898
node402 SOILSCAPE 0.960 0.937 0.898
node404 SOILSCAPE 0.948 0.937 0.898
node405 SOILSCAPE 0.981 0.960 0.898
node406 SOILSCAPE 0.984 0.937 0.898
node408 SOILSCAPE 0.984 0.937 0.898
node410 SOILSCAPE 0.996 0.937 0.898
node412 SOILSCAPE 0.985 0.937 0.898
node413 SOILSCAPE 0.987 0.937 0.898
node414 SOILSCAPE 0.957 0.937 0.898
node415 SOILSCAPE 0.971 0.937 0.898
node416 SOILSCAPE 0.984 0.937 0.898
node502 SOILSCAPE 0.939 0.835 0.882
node504 SOILSCAPE 0.951 0.835 0.882
node508 SOILSCAPE 0.907 0.835 0.882
node513 SOILSCAPE 0.968 0.835 0.882
node517 SOILSCAPE 0.926 0.720 0.882
node710 SOILSCAPE 0.993 0.968 0.882
node900 SOILSCAPE 0.963 0.895 0.729
node901 SOILSCAPE 0.969 0.895 0.729

Table 5 (continued)

Site Name Network ISMN 1 km 9 km

node902 SOILSCAPE 0.983 0.895 0.729
node905 SOILSCAPE 0.994 0.895 0.729
node906 SOILSCAPE 0.972 0.895 0.729
node909 SOILSCAPE 0.988 0.895 0.729
node910 SOILSCAPE 0.999 0.895 0.729
node911 SOILSCAPE 0.966 0.895 0.729
node912 SOILSCAPE 0.983 0.895 0.729
node913 SOILSCAPE 0.978 0.895 0.729
node914 SOILSCAPE 0.988 0.895 0.729
node916 SOILSCAPE 0.995 0.895 0.729
Baker 5W USCRN 0.931 0.546 0.796
Bowling Green 21 NNE USCRN 0.818 0.974 0.556
Bronte 11 NNE USCRN 0.859 0.815 0.755
Corvallis 10 SSW USCRN 0.989 0.902 0.975
Elgin 5 S USCRN 0.900 0.284 0.597
Fallbrook 5 NE USCRN 0.953 0.826 0.669
John Day 35 WNW USCRN 0.960 0.942 0.883
Medora 7 E USCRN 0.909 0.775 0.721
Mercury 3 SSW USCRN 0.852 0.677 0.598
Monahans 6 ENE USCRN 0.701 0.420 0.390
Nunn 7 NNE USCRN 0.971 0.324 0.860
Panther Junction 2N USCRN 0.837 – –
Riley 10 WSW USCRN 0.983 0.908 0.808
Sandstone 6W USCRN 0.686 0.810 0.616
Socorro 20N USCRN 0.869 0.560 0.158
Stillwater 5 WNW USCRN 0.874 0.984 0.848
Stovepipe Wells 1 SW USCRN 0.844 – –
Tucson 11W USCRN 0.796 0.628 0.586
Whitman 5 ENE USCRN 0.837 0.933 0.718
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Fig. 11. Time-series autocorrelation plots of the 1 km/9 km SMAP SM estimates and corresponding ISMN in situ SM data of descending overpass between 2015 and
2018, at three stations: SMAP-OK, Tonzi Ranch and Bronte 11 NNE. The range of the lag for the autocorrelation function is set between 0 and 10. The shaded area
stands for the confidence interval at different lags.
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