
Quantum-accelerated global constraint filtering

Kyle E. C. Booth1,2, Bryan O’Gorman1,3, Jeffrey Marshall1,2, Stuart
Hadfield1,2, and Eleanor Rieffel1

1 Quantum AI Laboratory (QuAIL), NASA Ames Research Center, Moffett Field,
CA 94035, USA {kyle.booth, jeffrey.s.marshall, bryan.ogorman,

stuart.hadfield, eleanor.rieffel}@nasa.gov
2 USRA Research Institute for Advanced Computer Science (RIACS), Mountain

View, CA 94043, USA
3 University of California, Berkeley, CA 94720, USA

Abstract. Motivated by recent advances in quantum algorithms and
gate-model quantum computation, we introduce quantum-accelerated fil-
tering algorithms for global constraints in constraint programming. We
adapt recent work in quantum algorithms for graph problems and iden-
tify quantum subroutines that accelerate the main domain consistency al-
gorithms for the alldifferent constraint and the global cardinality con-
straint (gcc). The subroutines are based on quantum algorithms for find-
ing maximum matchings and strongly connected components in graphs,
and provide speedups over the best classical algorithms. We detail both
complete and bounded-probability frameworks for quantum-accelerated
global constraint filtering algorithms within backtracking search.

Keywords: quantum computing · constraint programming · backtrack-
ing search · logical inference · global constraints.

1 Introduction

Quantum computers are designed to leverage quantum-mechanical phenomena
to outperform classical computers for certain tasks. While early quantum devices,
such as quantum annealers, were limited to the implementation of specialized
algorithms, the past decade has seen the advent of general-purpose gate-model
quantum computers, capable of implementing any algorithm that can be ex-
pressed as a series of quantum logic gates. In this model, quantum gates are
applied to qubits, the basic memory unit of quantum processors, reminiscent
of classical computation where logic gates are applied to bits. While the cur-
rent gate-model processors remain small, in the noisy intermediate-scale quan-
tum (NISQ) regime, they have already enabled exciting developments, such as
the availability of quantum computers accessible in the cloud [10,13], and the
achievement of quantum supremacy in the context of sampling random quantum
circuits [3]. Additionally, a well-developed theory of quantum error correction
and quantum fault tolerance provides the underpinnings of extensive engineer-
ing efforts to realize fault-tolerant, scalable quantum computers [33].

2 Booth et al.

Concurrent work in advancing quantum algorithms is critical to extend the
known applications of quantum computing independent of processor design. Re-
cent efforts indicate speedups for a number of problems in graph theory [14],
mathematical programming [35], constraint satisfaction [9], and search [25,26].

Building on these results, we investigate quantum subroutines to accelerate
filtering algorithms for global constraints. We argue that the search paradigm in
constraint programming (CP) represents an attractive framework for deployment
of quantum subroutines that accelerate inference algorithms at each node of a
search tree. Encapsulation of combinatorial substructure in global constraints
provides an elegant mechanism for carving off portions of complex problems
into subproblems that can be solved by a quantum co-processor. These smaller
subproblems require fewer qubits, making them promising candidates for early
fault-tolerant quantum chips. While CP has been used recently to efficiently
compile quantum circuits [6], the use of quantum algorithms to accelerate global
constraint filtering in CP, has, to the authors’ knowledge, not been investigated.

The primary contributions of this paper are as follows:

i. A quantum-accelerated O(|X|
√
(|X|+ |V |)|V | log2 |V |)-time bounded-error

algorithm for domain consistency of the alldifferent constraint, where |X|
is the number of variables and |V | is the number of unique domain values.
Our approach follows the main classical algorithm, accelerating the basic
subroutines performed at each iteration with quantum analogs. The com-
plexity is dominated by that for finding maximum matchings in bipartite
graphs. The best deterministic and randomized classical algorithms known
take O(|X|

√
|X||V |) and O(|X|ω−1|V |) time, respectively, where ω corre-

sponds to the asymptotic cost of classical matrix multiplication; the best
upper bound known on ω is 2.373.4 Our approach improves over these time-
complexity upper bounds by factors on the order of

√
|X||V |/(|X|+ |V |) and√

|X|2ω−4|V |/(|X|+ |V |), respectively, and up to polylogarithmic terms.
ii. A quantum-accelerated O(|X|

√
(|X|+ |V |)|V | log2 |V |)-time bounded-error

algorithm for domain consistency of the global cardinality constraint (gcc),
providing speedups over the best classical approach known.

iii. We discuss complete and bounded-probability frameworks for using
quantum-accelerated global constraint filtering in backtracking tree search.

2 Background

Quantum computers work in a fundamentally different way than classical com-
puters: they process quantum information, a generalization of classical infor-
mation, and can use uniquely quantum operations to carry out computations.
At an abstract level there are similarities between the two paradigms: quantum
computers have quantum registers that hold quantum states, and a quantum

4 We note that the instance size at which the asymptotic scaling becomes relevant is
so large that, in practice, matrix multiplication takes cubic time.

Quantum-accelerated global constraint filtering 3

computation acts on these states by quantum gates. Some of these gates are di-
rectly analogous to classical gates such as not and cnot, but others are uniquely
quantum. The fundamental unit of information on which quantum computers
act is a qubit, a generalization of the classical bit. At the end of a quantum
computation, during which quantum gates are applied to qubits in the quantum
registers, quantum measurements are made to the qubits to extract classical in-
formation, such that a string of bits is returned. The interested reader is referred
to a number of sources for a more thorough review of the subject [33,38].

We adopt Dirac’s “ket” notation [11], universally used in quantum mechanics
and quantum computing, in which a column vector is represented by a “ket” such
as |x〉, where x is a label, equivalent to −→x . Generally, there will be some preferred
basis of the vector space referred to as the “computational basis”. For example,
a 3-dimensional vector space can be spanned by |0〉, |1〉, and |2〉, corresponding
to the unit vectors (1, 0, 0)

T , (0, 1, 0)T , and (0, 0, 1)
T , respectively. Finally, the

notation |x〉 |y〉 is shorthand for the tensor product |x〉 ⊗ |y〉.

Definition 1 (Qubit). A qubit is a quantum system whose state is represented
by a two-dimensional complex vector. The computational basis consists of two or-
thonormal vectors denoted |0〉 and |1〉. Unlike a classical bit, which must be either
0 or 1, a qubit can in general be in a superposition of these states a |0〉+ b |1〉,
subject to the normalization condition |a|2 + |b|2 = 1, where a and b are complex
numbers referred to as “amplitudes”.

Definition 2 (Quantum register). An n-qubit quantum register holds the
state of n qubits, represented as a vector in a 2n-dimensional complex vector
space. The computational basis {|x〉 : x ∈ {0, 1}n} consists of 2n orthonormal
vectors, labeled by the 2n classical n-bit strings {0, 1}n or the corresponding inte-
gers {0, 1, . . . , 2n−1}. Any n-qubit state can be written as a superposition (linear
combination) of the form |φ〉 =

∑
x∈{0,1}n ax |x〉, subject to

∑
x |ax|

2
= 1.

Definition 3 (Quantum measurement). A measurement of a quantum reg-
ister in the computational basis returns classical information. Specifically, it will
return each bit string with probability proportional to the amplitude squared. For
example, measuring a qubit in state a|0〉+ b|1〉 returns state |0〉 with probability
|a|2 and state |1〉 with probability |b|2. The qubits of a multi-qubit register may
be measured independently, and in general the outcomes will be correlated.

Quantum information processing is an interesting mix of quantum states,
which can take on a continuum of values, and quantum measurement, which
enforces discrete outcomes. The design of quantum algorithms, the topic of this
paper, involves transforming quantum systems. These transformations can be
represented as unitary matrices, and each of these can be decomposed into a
sequence of one- and two-qubit transformations called quantum gates.

Definition 4 (Quantum gate and quantum circuit). A quantum state
transformation (i.e., a unitary operator) acting on a quantum register is called
a quantum gate. A quantum circuit is a sequence of quantum gates.

4 Booth et al.

In gate-model quantum computation, the resources by which algorithms are
compared include the number of qubits used (the space complexity) and the
number of primitive gates used (the gate complexity or time complexity).

2.1 Grover’s algorithm and quantum search

In this section, we introduce Grover’s algorithm for unstructured search [18], a
well-known quantum algorithm, and essential for the speedups in this work.

Definition 5 (Unstructured search problem). Given an N element un-
structured list and blackbox access to predicate P : {0, . . . , N−1} → {0, 1}, find a
solution, x ∈ {0, 1, . . . , N−1}, such that P (x) = 1, with the fewest queries to P .

For a predicate P withm solutions, Grover’s algorithm finds a solution to the
unstructured search problem with constant success probability using O(

√
N/m)

queries to P , even when m is unknown. Classical (including randomized) algo-
rithms require Ω(N/m) queries, and so Grover’s algorithm provides a quadratic
speedup in the oracle model. In the quantum case, the predicate is instantiated
as an operator UP : |x〉 |0〉 7→ |x〉 |P (x)〉 that computes P (x) in the |0〉 register.
This speedup is due to quantum computing’s ability to evaluate P on a super-
position of states according to UP

∑
x ax |x〉 |0〉 =

∑
x ax |x〉 |P (x)〉. By linearity,

the operator UP computes P (x) over all x in superposition. Grover’s algorithm
is optimal in the sense that any quantum algorithm for the unstructured search
problem must have query complexity Ω(

√
N/m). With a modification, all m

solutions can be retrieved using O(
√
mN) queries.

For the unstructured search problem, it is evident that Grover’s algorithm
quadratically improves over the best possible classical algorithm. For more
complicated problems, however, this is not always the case, as unconditional
complexity lower bounds are difficult to obtain. As such, throughout the paper,
we claim a speedup for a quantum algorithm when an improvement in time
complexity, for a given problem, is shown over the best classical algorithm known.

A sketch of Grover’s algorithm. Leveraging the ability of quantum com-
puting to compute on quantum superposition states, Grover’s algorithm ex-
ploits quantum interference to concentrate amplitude on the target states. We
use Fig. 1 to provide a pictorial representation of the algorithm [33]. In this
example it suffices to consider real-valued amplitudes only.

Initialization. The algorithm starts with a uniform superposition state,
|ψ〉 = 1√

N

∑
x |x〉, of all N values of the search space. In Fig. 1a, this uni-

form superposition corresponds to a uniform amplitude histogram (top), where
each bar in the histogram represents the amplitude associated with an element
in the search, and is represented by a red vector (bottom) at some angle away
from the target state (y-axis). In these diagrams, the red vector represents some
superposition state of the N values.

Amplitude amplification. This process seeks to amplify the amplitude asso-
ciated with the target state, while diminishing the amplitudes associated with

Quantum-accelerated global constraint filtering 5

(a) (b) (c) (d) (e)

Fig. 1: Grover’s algorithm for unstructured search [18], illustrating initialization
and two rotations. Top: concentration of amplitude on search states (vertical
lines) with each iteration, where the dotted horizontal line represents the average
amplitude. Bottom: the changing superposition state (red vector) as reflection
operations are applied, moving towards the target y-axis [33].

all the other states. It is accomplished with O(
√
N/m) applications of two op-

erations which, using a geometrical interpretation, can be seen as reflections of
the superposition state vector about axes. The first operation reflects the su-
perposition state about the x-axis, representing a state orthogonal to the target
states, through the application of the oracle UP . As in Fig. 1b, this reflection
yields a new superposition state (red vector), a negative amplitude for the target
states, and a lowering of the average amplitude. The second operation reflects
the superposition state about the uniform superposition state, |ψ〉. As shown
in Fig. 1c, this results in a positive, more concentrated amplitude associated
with the target states and a superposition state (red vector) closer to the y-axis.

Each iteration of Grover’s algorithm rotates the initial state, |ψ〉, towards
the target states (y-axis). A straightforward calculation shows that quantum
interference effects facilitate transfer of probability amplitude from non-target
states to targets states. (Figs. 1d and 1e provide one more iteration.) At the
end of the algorithm, a measurement yields one of the solutions with probability
proportional to the amplitude squared. We note that Grover’s algorithm can be
expressed as a quantum circuit consisting of logical gates and queries to UP .

A few comments are in order. The rotation perspective correctly suggests that
choosing the number of iterations is critical; otherwise over-rotation may occur,
resulting in less amplitude in the target states. The number of iterations depends
only onm, the number of target states, not on which states these are. Specifically,
the optimal number of rotations is π

4

√
N
m [7]. If m is not known, it can be

estimated using a quantum counting algorithm, or by running the algorithms
a number of times, with an increasing number of iterations until discovery of a
marked state. Both preserve the overall query complexity of O(

√
N/m) [7]. The

algorithm is a bounded-probability algorithm, meaning that it can fail to find a
solution element even if one exists, an important aspect discussed in Section 5.
To ensure the failure probability of each Grover search is polynomially small in

6 Booth et al.

N , we repeat the algorithm O(logN) times, contributing only to the logarithmic
terms noted in many of the complexity results.

2.2 Related work

The use of quantum search to realize speedups for various problems has seen a
surge of activity in recent years. Previous work provides lower and upper bounds
for the bounded-error query complexity of various graph problems, including
connectivity, minimum spanning tree, and single-source shortest path [5,14]. Re-
lated work, leveraged heavily in these papers, investigated the query complexity
for various matching problems [2,12]. More recently, quantum search has been
applied to problems within mathematical programming, such as semidefinite pro-
gramming [8,35] and the acceleration of the simplex method [28]. The latter, in
a similar fashion to this work, uses quantum search to accelerate the subroutines
of the simplex method, such as variable pricing. There also exist recent efforts
to use algorithms based on quantum search to speed up tree search methods,
including backtracking search [25], and branch-and-bound [26].

3 Quantum subroutines for alldifferent

A constraint satisfaction problem (CSP) consists of a set of decision vari-
ables X = {x1, . . . , xn}, with domains D = {D1, . . . , Dn}, and constraints
C = {C1, . . . , C`}. The domain of a variable is the set of values the variable
can be assigned. Each constraint C ∈ C acts on a subset of X. A solution is an
assignment to the variables of values that satisfies the constraints.

Definition 6 (alldifferent constraint). alldifferent(x1, . . . , xk) is a con-
straint that requires that all of the variables in its scope take on different values
(i.e., in a solution to the constraint, xi 6= xj ,∀i 6= j ∈ {1, . . . , k}).

The alldifferent global constraint is widely used in CP, and arises nat-
urally in many problems. The main domain consistency filtering algorithm for
alldifferent was proposed by Régin (see Algorithm 1) and consists of two
primary subroutines, FindMaximumMatching and RemoveEdges, leverag-
ing existing graph algorithms [32]. Our approach uses a classical processor that
follows Régin’s high-level algorithm, accelerating each subroutine using quantum
graph algorithms. While recent work has investigated practical optimizations for
Régin’s algorithm, these do not improve upon its worst-case complexity [16,39].

The algorithm, as in Algorithm 1, begins by constructing a bipartite vari-
able/value graph G = (X,V,D), with vertices X ∪V and edges D. Such a graph
has n = |X|+ |V | vertices and m = |D| =

∑|X|
i=1 |Di| edges, where m ≤ |X||V |.

FindMaximumMatching finds a matching of maximum size in G and Re-
moveEdges finds edges in G that can never participate in a maximum match-
ing. If FindMaximumMatching returns a matchingM whose number of edges
|M | < |X|, then the constraint cannot be satisfied and the algorithm terminates.

Quantum-accelerated global constraint filtering 7

Algorithm 1: The alldifferent filtering algorithm of Régin [32]
Result: False if no solution, otherwise filtered domains D∗

1 Build G = (X,V,D);
2 M ← FindMaximumMatching(G);
3 if |M | < |X| then
4 return False;
5 end
6 D∗ ← D \RemoveEdges(G,M);
7 return D∗;

If a matching exists with |M | = |X|, the algorithm prunes domains based on the
output of RemoveEdges.

The FindMaximumMatching subroutine bears the brunt of the compu-
tational complexity [36]. The best deterministic classical algorithms known for
finding maximum matchings run in O(m

√
n) time; the algorithm of Hopcroft and

Karp (HK) is for bipartite graphs [19], while the algorithm of Micali and Vazirani
(MV) applies to general graphs [24,37]. Alt et al. proposed an O(n3/2

√
m/log n)

algorithm [1], however, it only improves upon the aforementioned algorithms for
dense graphs. There is also a randomized O(nω)-time algorithm [27,20], where
ω corresponds to the classical asymptotic cost of matrix multiplication; the best
upper bound known on ω is approximately 2.373 [22].

In order to remove edges which participate in no maximum matching, and
thus cannot satisfy the constraint, RemoveEdges finds strongly connected com-
ponents (SCCs) in a directed transformation of G using Tarjan’s O(n +m) al-
gorithm [34]. While this subroutine evidently does not bear the computational
brunt of alldifferent filtering, its acceleration can still be valuable in practice.

In this section, we introduce the quantum query model and definitions needed
to describe our approaches. We then detail quantum algorithms for the Find-
MaximumMatching and RemoveEdges subroutines to accelerate the filtering
of the alldifferent constraint. For the former, we detail a quantum algorithm
proposed by Dörn for finding maximum matchings in general graphs [12]. For
the latter, we combine a number of quantum graph algorithms, including an
extension of work that identified strong connectivity in graphs [14].

3.1 Input models, accounting, and definitions

Many quantum algorithms are posed in the “oracle model”, in which black box
access is given to the quantum operation Uf : |w〉 |0〉 7→ |w〉 |f(w)〉 in unit time,
where f : W → Y is a classical function encoding the input. (Uf generalizes
the operator UP from Section 2.1 for a non-Boolean function f .) The query
complexity of such algorithms is the number of calls to the oracle Uf . The time
complexity is always at least the query complexity. Because the calls to the
oracle are often the most significant part of the computation, the two are often
the same (up to polylogarithmic factors), but this isn’t always the case.

In this work, we aim to provide a practical speedup, and so must account
for the cost of implementing any quantum queries used by our algorithms. We

8 Booth et al.

address this by using quantum random access memory (QRAM) [17], a data
structure with which oracle queries and updates (including initialization of the
QRAM) to the quantum data structure can be made in time polylogarithmic
in the size of the database. There are proposals for special-purpose hardware
QRAM, with small-scale experiments demonstrating a proof of principle [21],
as well as several ways of implementing QRAM directly in the standard circuit
model [23]. These circuit implementations assume the same availability of fault-
tolerant, gate-model quantum computers as the algorithms that call the QRAM.

The main template employed here takes an algorithm posed in the oracle
model, and uses QRAM to implement the queries with logarithmic overhead,
taking care to account for the cost of QRAM initialization. Henceforth, by “time
complexity”, we mean number of logical gates and queries or updates to QRAM.
With a circuit implementation of QRAM, this time complexity upper bounds
the overall circuit depth, assuming that the QRAM circuits are parallelized.
Parallelization of the logical (non-QRAM) parts of the circuit, which we do not
attempt here, can only improve this overall depth.

For our quantum algorithms, we store and access the graph in the “list” (or
“array”) model. For each vertex v ∈ {X ∪ V }, we query the oracle:

UNv : |i〉 |j〉 7→ |i〉 |j +Nv(i) mod dv〉 (1)

where dv is the degree of v, i ∈ {1, . . . , dv}, j ∈ {1, . . . , n}, and Nv(i) is the ith
neighbor of vertex v. Using QRAM, the quantum data structure in Eq. (1) can
be initialized in time O(dv log dv) and quantum queries made in time O(log dv).
When the graph is directed, UNv queries only the outgoing neighbors. There
are other ways of formulating quantum access to a graph, but in this paper we
use only the list model.

Definitions. Given a graph G and a matching M , a vertex is exposed if no
edge in the matching M is incident to it. A path (resp., cycle), consisting of a
sequence of vertices, is alternating if its edges are alternately in the matching
M and not in M . The length of the path (resp., cycle) is the number of edges
in the path (resp., cycle). A path is augmenting if it is alternating and the first
and last vertices in the path are exposed.

3.2 Subroutine: FindMaximumMatching

The essence for a quantum filtering algorithm is simple: use a quantum algo-
rithm to solve the maximum matching problem. Recent work proposed a series
of algorithms for finding maximum matchings in terms of calls to a quantum ora-
cle [2,12]; however, to the authors’ knowledge, this work has never been linked to
accelerating global constraint filtering in CP. In the list model, an initially pro-
posed algorithm is capable of finding maximum matchings in O(n

√
m+ n log2 n)

time [2], while the second, improved algorithm runs in O(n
√
m log2 n) time [12].

The latter improves over both existing deterministic and randomized algorithms
for the majority of parameter values, and follows the classical MV algorithm for

Quantum-accelerated global constraint filtering 9

finding maximum matchings in general graphs [24], but accelerates its primary
subroutines with quantum search. We give an overview of this algorithm by trac-
ing the classical algorithm in the context of a simple example, and comment on
the processes that are sped-up with quantum algorithms.

Example 1. Consider a CSP with variables X = {x1, x2}; domains D1 =
{v1, v2}, D2 = {v1}; and the constraint alldifferent(x1, x2). A trace of the
classical MV algorithm for finding a maximum matching is shown in Fig. 2.

We follow the exposition of the MV algorithm of Peterson and Loui [29].
The input to the algorithm is a graph, such as the bipartite variable/value
graph G shown in Fig. 2a. Initialization starts with an empty matching, M = ∅.
In phases, the algorithm looks for a set of minimum-length, vertex-disjoint
augmenting paths to iteratively extend the current matching until a maximum
matching is found. Each phase is performed in O(m) time, and the number
of phases is bounded by O(

√
n) [19], resulting in an O(m

√
n)-time classical

algorithm [24,37]. Each phase of the classical algorithm begins with a matching
and conducts three subroutines: Search, BlossAug, and FindPath [24]. As a
property of their structure, bipartite graphs do not contain blossoms, precluding
the need to cover the algorithmic details associated with dealing with them
and, as a consequence, the need for the FindPath subroutine [24]. As such, our
FindMaximumMatching subroutine needs only the Search and BlossAug
lower-level subroutines and their quantum implementations.

Search. This subroutine performs a simultaneous breadth-first search (BFS)
from each exposed vertex. (E.g., in Fig. 2b all vertices are exposed sinceM = ∅.)
The subroutine labels each vertex with a value pair, (EvenLevel, OddLevel),
where EvenLevel (resp., OddLevel) is the length of the minimum even- (resp.,
odd-) length alternating path from an exposed vertex to the current vertex,
if any, and ∞ otherwise. Exposed vertices have EvenLevel = 0 (and infinite
OddLevel), resulting in the labeling at the top of Fig. 2b. The subroutine then
searches for bridges, edges whose vertices both have finite EvenLevel or both
have finite OddLevel values. In Phase 1 of the example (Fig. 2b), all edges are
bridges. In Phase 2 of the example (Fig. 2c), only edge (x1, v1) is a bridge. The
Search subroutine passes each discovered bridge to the BlossAug subroutine.

Quantum algorithm. The quantum acceleration of the Search subrou-
tine, instead of a classical BFS, uses a quantum BFS search [12] from each
exposed vertex, using query access to a list-model representation of the
graph, and a stack bookkeeping the discovered vertices, both implemented
with QRAM. From a given vertex v, one needs to obtain all nv neighbors
not yet discovered. If the degree of v is dv, the quantum time complexity
to find all neighbors is O(

√
nvdv log dv), as discussed in Section 2.1. Because

O(n) searches are run, each is repeated O(log n) times to get the aggregate
error down to constant. Noting that each vertex is discovered once only (i.e.,∑
v nv = O(n)) and that

∑
v dv = O(m), the full quantum time complexity is

O(
∑
v

√
dvnv log dv log n) = O(

√
nm log2 n), by the Cauchy-Schwarz inequality.

10 Booth et al.

X = {x1, x2},
D1 = {v1, v2},
D2 = {v1},

alldiff(x1, x2)

x2

x1 v1

v2

(a) Initialization.

x2

x1 v1

v2

(0,∞)

(0,∞) (0,∞)

(0,∞)

(b) Phase 1.

x2

x1 v1

v2

(0,∞)

(∞, 1) (∞, 1)

(0,∞)

(c) Phase 2.

Fig. 2: Finding maximum matchings in bipartite graphs [24]. Bold, black arcs:
edges in matching. Shaded, gray arcs: minimum-length augmenting paths.

BlossAug. This subroutine takes a bridge and performs a simultaneous dou-
ble depth-first search (DDFS) from each vertex in the bridge until it finds two
different exposed vertices. The subroutine ensures that a given vertex can only
take part in at most one of the two DFSs. In Phase 1 of the example (Fig. 2b),
BlossAug(x1, v1) would find exposed vertices x1 and v1. In Phase 2 of the ex-
ample (Fig. 2c), BlossAug(x1, v1) would find vertex v2 in the DFS from x1, and
x2 in the DFS from v1. Since we are concerned only with bipartite graphs, which
do not contain blossoms [24], the results of the DFSs are then concatenated to
generate an augmenting path (e.g., augmenting path (x1, v1) for Phase 1 of the
example, and augmenting path (v2, x1, v1, x2) for Phase 2).

Quantum algorithm. To accelerate BlossAug, Dörn use quantum search to
speedup the DDFS [12]. Each DFS has a time complexity of O(

√
nm log2 n).

The derivation is similar to that for the BFS complexity of Search above.

For each augmenting path found by BlossAug, the algorithm extends the
matching along the augmenting path (i.e., an edge in M is removed from M
and an edge not in M is added to it) and marks the vertices in the path as
‘visited’ in the current phase. The marking of vertices ensures the augmenting
paths found during a phase are disjoint (i.e., do not share a vertex). Once the
set of bridges is empty, the phase is over and the next phase begins. Fig. 2
provides a trace of the algorithm, starting with matching M = ∅, extending this
toM = {(x1, v1)} in the first phase via bridge (x1, v1), and then to the maximum
matching M = {(x1, v2), (v1, x2)} in the second phase via bridge (x1, v1).

In the interest of space, the details pertaining to the vertex deletion sub-
routine in the algorithm of Dörn are not included here; however, the time com-
plexity of the subroutine is the same as for Search and BlossAug. The time
complexity of each phase is O(

√
nm log2 n), because that is the aggregate time

complexity of each subroutine (e.g., Search and BlossAug). Since the num-
ber of phases required is at most O(

√
|X|) = O(

√
n) [19], the complexity of

the overall algorithm is O(n
√
m log2 n) or, in terms of our graph properties,

O(|X|
√
(|X|+ |V |)|V | log2 |V |), for a constant Ω(1) success probability [12]. The

Quantum-accelerated global constraint filtering 11

Algorithm 2: RemoveEdges(G, M)

Data: Bipartite graph G = (X,V,D) and matching M
Result: Set of edges to prune

1 GM ← DirectGraph(G,M);
2 Dused ← FindSimplePaths(GM) ; /* Set of ‘used’ edges */
3 S ← FindSCC(GM); /* SCC for each vertex */
4 return IdentifyEdges(G,M,Dused,S);

classical O(m
√
n)-time algorithm of MV, in terms of our graph properties, has

time complexity of O(|X|
√
|X||V |), indicating an improvement by a factor of√

|X||V |/(|X|+ |V |), up to polylogarithmic terms.

3.3 Subroutine: RemoveEdges

If a maximum matching is found such that |M | = |X|, Algorithm 1 proceeds to
initiate the RemoveEdges subroutine with graph G and matching M as input
(Fig. 3a). The steps of the subroutine are detailed in Algorithm 2.

From Berge [4], an edge belongs to some maximum matching if and only if,
for an arbitrary given maximum matching, it belongs to either an even-length
alternating path which begins at an exposed vertex, or to an even-length alter-
nating cycle. If an edge does not satisfy Berge’s property, it should be pruned.
Instead of applying Berge’s conditions directly, the problem has been previously
translated into a search for edges in directed simple paths and strongly connected
components (SCC) in a directed transformation of the graph [32,36].

The input to the RemoveEdges subroutine is the variable/value graph G
and a matching M (found with FindMaximumMatching). In DirectGraph
the edges in G are directed depending upon whether or not they are in matching
M , producing directed graph GM . Edges in the matching are directed from
variables to values (‘right-facing’) and the remaining edges from values to
variables (‘left-facing’). For the running example, this is illustrated in Fig. 3b.
The output of the subroutine is the set of edges to prune. The RemoveEdges
subroutine has classical time complexity O(m) stemming from three lower-level
subroutines: FindSimplePaths, FindSCC, and IdentifyEdges. We provide
an overview of these subroutines and comment on their quantum analogs.

FindSimplePaths. To satisfy the first condition of Berge’s property, it suf-
fices to find all edges present in at least one directed simple path starting at an
exposed vertex. This is achieved by a BFS starting collectively at the exposed
vertices, marking each edge considered as ‘used’. This will output a set of edges
Dused with the label ‘used’. The number of edges processed during this subrou-
tine is O(|Dused|), therefore giving overall complexity O(|Dused|), which is on the
order of m in the worst case. When there are only a few edges to mark as used,
the run time of this step can of course be significantly less than O(m). In Fig. 3b,
there are in fact no exposed vertices in GM , and no BFS is even initiated.

12 Booth et al.

x2

x1 v1

v2

(a) Input.

x2

x1 v1

v2

(b) Directed graph.

x2

x1 v1

v2

(c) Edges to remove.

Fig. 3: Removing edges. Bold, black arcs: edges in matching. Shaded, red arcs:
edges removed.

Quantum algorithm. Since the classical algorithm strictly takes time lin-
ear in the output size, O(|Dused|), there is no possible asymptotic speedup
(quantum or otherwise). This step is therefore implemented with a classical BFS.

FindSCC. To satisfy the second condition of Berge’s property, we compute the
SCC in GM . A directed graph is strongly connected if there is a path between
all pairs of vertices in the graph. A strongly connected component (SCC) of a
directed graph is a maximal strongly connected subgraph. Classically, the SCCs
can be computed in time O(n+m) with Tarjan’s algorithm [34].

Tarjan’s algorithm is a modified DFS. When a node is discovered in the DFS,
it is put on a stack, and obtains index and low-link values, which are initially
equal to infinity and updated during the search. On the backtrack, low-link
values can be updated: of all forward neighbors on the stack, update the current
low-link value to the minimum index value. After this completes, the low-link
value of a vertex is the SCC to which it belongs.

This can be achieved by looping over all neighbors at a vertex v where there
are two possible outcomes: i) if the neighbor w has not been discovered, advance
the DFS to w, ii) if w is on the stack (i.e., already discovered), update the current
low-link value of v to the minimum of v’s low-link value, and w’s index value.
Upon looping over all neighbors, if v’s low-link is equal to its index value, then
this value is the SCC to which it belongs. Moreover, all nodes with this low-link
value make up the SCC, and these can be removed from the stack.

FindSCC labels the SCC to which each vertex belongs. The directed graph
GM illustrated in Fig. 3b contains four trivial SCCs.

Quantum algorithm. Existing work has produced quantum algorithms for
determining if a graph is strongly connected [14], noting that an adaptation
of the approach can yield the identification of SCCs. Here, we describe such
an adaptation based directly on Tarjan’s algorithm, observing that it conducts
essentially two searches at each step. In particular, from a vertex one needs to:
i) find an undiscovered neighbor, and ii) find the minimum index value over the
neighbors. While backtracking through the DFS, one can perform a search over
the index values of all forward neighbours. The complexity of implementing
quantum searches is the same as quantum DFS, plus the cost to perform a
quantum minimum finding at each node which is O(

√
dv log dv) [15]. Overall the

quantum time complexity is therefore O(
√
nm log2 n), with each search repeated

O(log n) times. In addition to the graph and stack QRAM data structures to
perform the DFS, one also needs to maintain a QRAM data structure for the

Quantum-accelerated global constraint filtering 13

index values of each vertex, which is used in the quantum minimum finding.

IdentifyEdges. The output of FindSimplePaths and FindSCC is, respec-
tively, a set of edges Dused ⊆ D marked as ‘used’, and the SCC to which each
vertex belongs. IdentifyEdges identifies the set of edges to be removed, sat-
isfying three conditions: i) the edge is not in Dused, ii) the edge is not between
vertices in the same SCC, and iii) the edge is not in the current matching M .
The set R of edges to remove is easy to construct by iterating over all edges
and checking condition i-iii), giving a complexity of O(m). In the context of our
example, since Dused = ∅, and all SCCs are trivial, the subroutine returns G\M ,
namely the edge (x1, v1) as illustrated in Fig. 3c.

Quantum algorithm. A quantum search can be used to find the edges R that
need to be removed. From each variable vertex x ∈ X, a quantum search over
the dx incident edges (of the original, undirected graph) can determine which
need to be removed, subject to the three criteria as in the classical version of
IdentifyEdges. If there are rx edges to be removed, where

∑
x rx = |R|, the

quantum time complexity is O(
√
rxdx log dx) for each x, resulting in a total

of O(log n
∑
x

√
rxdx log dx) = O(

√
m|R| log2 n), with each search repeated

O(log n) times. To perform such a quantum search, QRAM access to the graph
is required, as is QRAM access to the classical data: M,Dused, and the SCCs.
Each of these can be set up prior to and maintained during the execution of the
above subroutines without changing the overall complexity of RemoveEdges.

Up to logarithmic factors and for constant error probability, the time com-
plexity of quantum RemoveEdges is O(|Dused| +

√
mn +

√
m|R|), reflecting

the three lower-level subroutines. In the worst case this is O(m), occurring when
|Dused| = O(m) and/or |R| = O(m), and equivalent to the classical runtime. In
cases where |R| = O(n) (or lower), and |Dused| = O(

√
mn) (or lower), the full

complexity isO(
√
mn). This upper bound on the quantum runtime improves over

the O(m) classical runtime by a factor of up to
√
m/n, or

√
|X||V |/(|X|+ |V |).

4 Extensions to the global cardinality constraint

The global cardinality constraint (gcc) is an extension of the alldifferent con-
straint, commonly used in scheduling, rostering, and timetabling problems [31].

Definition 7 (gcc constraint). Given a set of variables X = {x1, . . . , xn}, a
set of values V = {v1, . . . , vm}, and a set of cardinality bounds ∆ = {δ1, . . . , δm},
where each δi ∈ ∆ is defined by [`i, ui], the constraint gcc(X,V,∆) requires that
value vi take place in the solution between `i and ui times, inclusively.

State-of-the-art classical gcc filtering employs a O(|X|
√
|X||V |)-time al-

gorithm for achieving domain consistency [31], leveraging previous work for
alldifferent [32]. The first stage of the algorithm enforces the domain con-
sistency of gcc when all cardinality intervals are fixed to ui, while the second

14 Booth et al.

stage enforces domain consistency when the cardinality is fixed to `i, following
a previous result that this is sufficient for the domain consistency of gcc [30].

For each stage, the classical filtering algorithm constructs a bipartite vari-
able/value graph, G = (X,V,D). Then, a capacity, cap(xi) = 1, is associated
with each variable node, and cap(vi) ≥ 0, with each value node. A matching in
this graph is a subset of edges such that no more than the capacity of a given
node is adjacent to that node. The algorithm then finds matchings of maximum
cardinality for cap(vi) = ui (first stage) and for cap(vi) = `i (second stage). To
do this, the algorithm of HK [19] can be used on an augmented graph, G′, where
value nodes are duplicated cap(vi) times, and the capacity of each node in G′ is
set to one; however, the complexity with this naive implementation will scale with
the number of edges in the augmented graph. Instead, Quimper et al. describe an
alteration of HK that runs on G by ensuring that in the DFS each free vertex v
is visited at most c(v)− dM (v) times, where in each phase, dM (v) is the number
of edges in the current matching M adjacent to node v [31]. This ensures the
complexity is bounded by the number of edges in G, yielding an O(|X|

√
|X||V |)

algorithm. Pruning the domains using Tarjan’s algorithm [34], with the match-
ings at each stage, is sufficient to prune the domains for the domain consistency
of gcc [30]. Given that Tarjan’s algorithm is less computationally expensive than
the maximum matching algorithm, the best-known overall classical complexity
for achieving domain consistency for gcc is O(|X|

√
|X||V |).

Quantum algorithm. The filtering algorithm for gcc utilizes the same subrou-
tines used in alldifferent, indicating that the detailed quantum subroutines
can also be used to accelerate gcc filtering. For each of the two stages in the
filtering algorithm, we can use the quantum-accelerated version of FindMaxi-
mumMatching. For this, the algorithm of Dörn [12] is modified, following the
modification Quimper et al. made to HK, to ensure that, in each stage, free
vertices can be visited c(v)−dM (v) times. This is done by associating an integer
counter with each vertex, in QRAM. The quantum-accelerated RemoveEdges
subroutine can then be applied to the maximum matchings found at both stages.
The time complexity of the overall gcc filtering algorithm follows that of finding
maximum matchings, which is O(|X|

√
(|X|+ |V |)|V | log2 |V |).

5 Integration in backtracking search

As noted, the quantum search algorithms we employ have some probability of
failure. For the purposes of the discussion here, the quantum FindMaximum-
Matching subroutine is extended such that the output is a valid matching with
|M | = |X| (as verified with a classical check) or False; the quantum subroutine
is said to fail if such a matching exists but is not found. If we let ε be the failure
probability of a given quantum subroutine, the acceptable value of ε depends on
how the quantum subroutine is used in the search.

Exact method. When the quantum subroutine has perfect soundness (e.g.,
quantum FindMaximumMatching), then one approach is to require perfect

Quantum-accelerated global constraint filtering 15

completeness.5 This can be achieved by running the classical subroutine when-
ever the quantum one does not return a satisfying item (e.g., a valid matching
of sufficient size). Let t(n) = poly(n) be the runtime of the classical subrou-
tine. By repeating the quantum subroutine O(log(n)) times, ε can be brought to
o(1/t(n)), so that when a satisfying item exists, the expected cost of running the
classical subroutine because the quantum one fails to find it is o(1); therefore, at
all nodes with a satisfying item, we get a quantum speedup on average. If no such
item exists, the quantum subroutine will not return one. At nodes without a sat-
isfying item, we run the classical algorithm, yielding no speedup for those nodes.

Bounded-error and heuristic methods. Alternatively, suppose we want the
overall tree search to fail (i.e., not find a solution if one exists) with at most a
constant probability O(1) (which can be made arbitrarily small without changing
the asymptotic runtimes). Let TQ be the number of tree search nodes at which
the quantum subroutine is run. It suffices then to repeat the quantum subroutine
O(log TQ) times to get ε = O(1/TQ). However, if TQ is exponential in n, this can
overwhelm the quantum speedup. To preserve the speedup, we could restrict
the tree search to calling the quantum subroutine only TQ = poly(n) times.
In practice, tree search algorithms often only explore a polynomial number of
nodes, either due to limited resources, or because that is sufficient for the problem
instance at hand. In cases that the tree search explores more than a polynomial
number of nodes, the quantum filtering can be disabled; in this case, quantum
search benefits a large number of nodes early in the tree. The search algorithm
can also be run in “heuristic mode”, using the quantum subroutine at every node.
In this case, the effect of subroutine failures on the overall tree search is strongly
dependent on the tree search algorithm used and in general cannot be bounded.

6 Conclusions

We introduce quantum-accelerated filtering algorithms for global constraints,
with subroutines for the alldifferent constraint and the global cardinality
constraint (gcc). This work is intended to be a first step towards a larger
effort of using quantum algorithms to accelerate constraint programming. In
the long-term, quantum computing is a promising technology for approaching
hard computational problems, and we demonstrate here that the constraint
programming community is well-positioned to benefit from this progress.

Acknowledgements. K.B., J.M., and S.H. were supported by NASA
Academic Mission Services (NAMS), contract number NNA16BD14C. K.B. was
also supported by the NASA Advanced Exploration Systems (AES) program.
B.O. was supported by a NASA Space Technology Research Fellowship. We
thank the anonymous reviewers and Prof. J. Christopher Beck whose valuable
feedback helped improve the final version of the manuscript.
5 For an algorithm intended to find an item with a certain property, we say that the
algorithm has perfect completeness if it always finds such an item, if one exists, and
the algorithm has perfect soundness if it never returns an item without the property.

16 Booth et al.

References

1. Alt, H., Blum, N., Mehlhorn, K., Paul, M.: Computing a maximum cardinality
matching in a bipartite graph in time O(n1.5m logn). Information Processing Let-
ters 37(4), 237–240 (1991)

2. Ambainis, A., Špalek, R.: Quantum algorithms for matching and network flows.
In: Annual Symposium on Theoretical Aspects of Computer Science. pp. 172–183.
Springer (2006)

3. Arute, F., Arya, K., Babbush, R., Bacon, D., Bardin, J.C., Barends, R., Biswas,
R., Boixo, S., Brandao, F.G., Buell, D.A., et al.: Quantum supremacy using a
programmable superconducting processor. Nature 574(7779), 505–510 (2019)

4. Berge, C.: Graphs and hypergraphs. North-Holland (1973)
5. Berzina, A., Dubrovsky, A., Freivalds, R., Lace, L., Scegulnaja, O.: Quantum

query complexity for some graph problems. In: International Conference on Cur-
rent Trends in Theory and Practice of Computer Science. pp. 140–150. Springer
(2004)

6. Booth, K.E.C., Do, M., Beck, J.C., Rieffel, E., Venturelli, D., Frank, J.: Compar-
ing and integrating constraint programming and temporal planning for quantum
circuit compilation. In: Twenty-Eighth International Conference on Automated
Planning and Scheduling (ICAPS) (2018)

7. Boyer, M., Brassard, G., Høyer, P., Tapp, A.: Tight bounds on quantum searching.
Fortschritte der Physik: Progress of Physics 46(4-5), 493–505 (1998)

8. Brandao, F.G., Svore, K.M.: Quantum speed-ups for solving semidefinite programs.
In: 2017 IEEE 58th Annual Symposium on Foundations of Computer Science
(FOCS). pp. 415–426. IEEE (2017)

9. Campbell, E., Khurana, A., Montanaro, A.: Applying quantum algorithms to con-
straint satisfaction problems. Quantum 3, 167 (2019)

10. Devitt, S.J.: Performing quantum computing experiments in the cloud. Physical
Review A 94(3), 032329 (2016)

11. Dirac, P.A.M.: A new notation for quantum mechanics. In: Mathematical Pro-
ceedings of the Cambridge Philosophical Society. vol. 35, pp. 416–418. Cambridge
University Press (1939)

12. Dörn, S.: Quantum algorithms for matching problems. Theory of Computing Sys-
tems 45(3), 613–628 (2009)

13. Dumitrescu, E.F., McCaskey, A.J., Hagen, G., Jansen, G.R., Morris, T.D., Papen-
brock, T., Pooser, R.C., Dean, D.J., Lougovski, P.: Cloud quantum computing of
an atomic nucleus. Physical review letters 120(21), 210501 (2018)

14. Dürr, C., Heiligman, M., Høyer, P., Mhalla, M.: Quantum query complexity of
some graph problems. SIAM Journal on Computing 35(6), 1310–1328 (2006)

15. Dürr, C., Høyer, P.: A quantum algorithm for finding the minimum. arXiv preprint
quant-ph/9607014 (1996)

16. Gent, I.P., Miguel, I., Nightingale, P.: Generalised arc consistency for the alldif-
ferent constraint: An empirical survey. Artificial Intelligence 172(18), 1973–2000
(2008)

17. Giovannetti, V., Lloyd, S., Maccone, L.: Quantum random access memory. Physical
review letters 100(16), 160501 (2008)

18. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Pro-
ceedings of the twenty-eighth annual ACM symposium on Theory of computing.
pp. 212–219 (1996)

Quantum-accelerated global constraint filtering 17

19. Hopcroft, J.E., Karp, R.M.: An n5/2 algorithm for maximum matchings in bipartite
graphs. SIAM Journal on computing 2(4), 225–231 (1973)

20. Ibarra, O.H., Moran, S.: Deterministic and probabilistic algorithms for maximum
bipartite matching via fast matrix multiplication. Information Processing Letters
13(1), 12–15 (1981)

21. Jiang, N., Pu, Y.F., Chang, W., Li, C., Zhang, S., Duan, L.M.: Experimental re-
alization of 105-qubit random access quantum memory. npj Quantum Information
5(1), 1–6 (2019)

22. Le Gall, F.: Powers of tensors and fast matrix multiplication. In: Proceedings of the
39th international symposium on symbolic and algebraic computation. pp. 296–303
(2014)

23. Matteo, O.D., Gheorghiu, V., Mosca, M.: Fault-tolerant resource estimation of
quantum random-access memories. IEEE Transactions on Quantum Engineering
1, 1–13 (2020)

24. Micali, S., Vazirani, V.V.: An O(
√
|V ||E|) algorithm for finding maximum match-

ing in general graphs. In: 21st Annual Symposium on Foundations of Computer
Science (sfcs 1980). pp. 17–27. IEEE (1980)

25. Montanaro, A.: Quantum walk speedup of backtracking algorithms. arXiv preprint
arXiv:1509.02374 (2015)

26. Montanaro, A.: Quantum speedup of branch-and-bound algorithms. Physical Re-
view Research 2(1), 013056 (2020)

27. Mucha, M., Sankowski, P.: Maximum matchings via Gaussian elimination. In: 45th
Annual IEEE Symposium on Foundations of Computer Science. pp. 248–255. IEEE
(2004)

28. Nannicini, G.: Fast quantum subroutines for the simplex method. arXiv preprint
arXiv:1910.10649 (2019)

29. Peterson, P.A., Loui, M.C.: The general maximum matching algorithm of Micali
and Vazirani. Algorithmica 3(1-4), 511–533 (1988)

30. Quimper, C.G., Golynski, A., López-Ortiz, A., Van Beek, P.: An efficient bounds
consistency algorithm for the global cardinality constraint. Constraints 10(2), 115–
135 (2005)

31. Quimper, C.G., López-Ortiz, A., Van Beek, P., Golynski, A.: Improved algorithms
for the global cardinality constraint. In: International Conference on Principles and
Practice of Constraint Programming. pp. 542–556. Springer (2004)

32. Régin, J.C.: A filtering algorithm for constraints of difference in CSPs. In: AAAI.
vol. 94, pp. 362–367 (1994)

33. Rieffel, E.G., Polak, W.H.: Quantum computing: A gentle introduction. MIT Press
(2011)

34. Tarjan, R.: Depth-first search and linear graph algorithms. SIAM Journal on Com-
puting 1, 146–160 (1972)

35. Van Apeldoorn, J., Gilyén, A., Gribling, S., de Wolf, R.: Quantum SDP-solvers:
Better upper and lower bounds. Quantum 4, 230 (2020)

36. Van Hoeve, W.J.: The alldifferent constraint: A survey. arXiv preprint cs/0105015
(2001)

37. Vazirani, V.V.: A simplification of the MV matching algorithm and its proof. arXiv
preprint arXiv:1210.4594 (2012)

38. Yanofsky, N.S., Mannucci, M.A.: Quantum computing for computer scientists.
Cambridge University Press (2008)

39. Zhang, X., Li, Q., Zhang, W.: A fast algorithm for generalized arc consistency of
the alldifferent constraint. In: IJCAI. pp. 1398–1403 (2018)

