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Abstract 
While most of traditional Earth-atmosphere satellite remote sensing relies on radiative transfer in the 

plane parallel geometry, effects of sphericity are important at high sun and view zenith angles. Broad 

understanding of these effects is limited and, contrary to the plane-parallel case, finding accurate 

numerical results to test spherical RT codes is not easy. This paper aims to partially fill in this gap.    

Using the full-spherical RT code MYSTIC (Monte Carlo), and the plane-parallel RT code VLIDORT (discrete 

ordinates) corrected for atmospheric sphericity in the single and multiple scattering, we reproduced 

with better accuracy and extended the benchmark results by Adams & Kattawar [1978].  

Introduction 
Radiative Transfer (RT) codes are key components in the satellite remote sensing retrieval algorithms 

[e.g., Lyapustin, 2018; Dubovik, 2019; Sinyuk, 2020]. In general, an RT model is a suite of scientific 

software for the numerical simulation of light scattering in the Earth’s atmosphere-surface environment. 

The testing of any RT code against reliable (accurate and reproducible) benchmarks is an essential step 

in software development and lifetime maintenance. Benchmark data must be reported numerically with 

sufficient accuracy. This paper deals with benchmark results for RT codes that simulate multiple 

scattering of monochromatic solar light over black surface in a spherical atmosphere of the Earth. We 

deal only with Rayleigh scattering in the absence of any trace gas absorption, and we ignore the effects 

of polarization and solar rays bending due to atmospheric refraction. 

In many retrieval applications, RT modeling has been done using a plane-parallel model [Lenoble, 1985; 

Stamnes, 2017]; this is feasible because the Earth radius, ~6370km, is much larger than a typical height 

for low Earth orbit (LEO) satellite platforms, for example ~700km for the NASA A-Train constellation. The 

plane-parallel approximation is usually assumed to be valid for the solar (SZA) and/or view (VZA) zenith 

angles not exceeding 75o [McCartney, 1976: p.105, Sec. 2.5.4 “Equivalent Paths: Spherical Earth”; 

Lenoble, 1993: p.235, Sec.15.2.3.1 “Ground-based measurements”], although the level of accuracy is 

unclear from these references. However, modern Earth observation systems often go beyond these 

constraints, including the EPIC instrument on the Deep Space Climate Observatory (DSCOVR) 

platform located at the Sun-Earth Lagrange L-1 point at 1.5M km orbit,  operational meteorological 

geostationary satellites (at ~36K km orbit) including GOES-R, HIMAWARI , KOMPSAT and others. The 

consideration of Earth sphericity is important even for the low Earth orbit observations, e.g., from 

MODIS and VIIRS near Polar regions where the SZA is high, for the limb observations, e.g. from 

SCIAMACHY and OMPS Limb Profiler, as well as for the ground-based atmospheric remote sensing 

during early morning and late evening hours [Holben, 1998; Tzortziou, 2008]. In these situations, the 

differences in optical paths and the solar-view geometries between spherical and plane-parallel 

atmospheres can no longer be ignored (Fig.1). To remain accurate in these cases, RT codes must account 

for the curvature of the Earth’s atmosphere (hereafter, sphericity, - hence “spherical model” as opposed 

to “plane-parallel model”). 

In addition to changes in the optical path, the zenith angles take different values at the top (TOA) and 

bottom (BOA) of atmosphere (Fig.2). For the MODIS maximum scan angle of 55o, VZATOA=63o and 

VZABOA=65o, which follows from 
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The right panel in Fig.2 shows the VZA to the scan angle ratio at TOA and BOA according to Eq.(1). For a 

plane-parallel atmosphere, all VZAs would be 55o for the MODIS maximum scan angle. 

 

Fig.1: The difference in the optical path 
between plane-parallel (dashed line) and 
spherical (solid line) atmospheres increases 
with larger VZA (segment AB for satellite 
position S1 and segment CD for position S2). 
The same effect applies to the solar beam 
(segment EF).  

 

In Eq.(1) and in the sequel, θ stands for the VZA, RE = 6371 (km) is the mean Earth radius, and h (km) is 

an arbitrary height above the ground. Eq.(1) shows that BOA TOA   . At some critical angle VZATOA given 

by 
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the line-of-sight (LOS) hits the ground at 90o. For any value of VZATOA exceeding this critical angle, the 

line of sight goes horizontally through a tangent height in the atmosphere, something which is not 

possible in a plane-parallel medium. When the Earth is observed from a height h = 100km, the critical 

angle is o79.9Critical

TOA   . 

  

Fig.2: In spherical geometry, the VZA for a point in atmosphere depends on the height (left image). For the NASA 
A-Train orbit at ~700km, a scan angle of 55o between the satellite nadir SO and the view direction SB 
corresponds to VZA=63o on TOA (point T) and VZA=65o on BOA (point B). The right panel shows the ratio of the 
VZA to the scan angle at TOA and BOA. For a plane-parallel atmosphere, all VZAs would be 55o. 
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The exigencies of spherical geometry lead to the violation of several fundamental results in RT theory 

which are valid for plane-parallel media. For example, the principle of reciprocity 

0 0 0( , , ) ( , , )I I    =     ,  (3) 

where I is the intensity, µ, µ0, and ϕ are the cosines of VZA, SZA, and azimuth, respectively, is no longer 

valid in a spherical medium. Adams & Kattawar [1978: p.151] note that for single scattering alone, the 

right hand side of Eq.(3) is up to 3 times higher than the left for Rayleigh scattering. Another example 

that is not valid for spherical media is the natural azimuth independence of the intensity for isotropically 

scattering plane-parallel atmospheres. In a spherical atmosphere, the scattered intensity always 

depends on the relative azimuth, except for the overhead sun configuration. The azimuthal asymmetry 

comes from the dependence of the direct solar beam attenuation factor on relative azimuth [Herman, 

1995a: p.380]. 

The plane-parallel atmosphere is, by definition, horizontally infinite. It cannot deal with twilight, 

refraction, and the existence of the day/night line (terminator). These fundamental issues make it 

difficult to find a simple yet general sphericity correction factor, which can be applied to a plane-parallel 

RT model in order to generate radiation fields that are sufficiently close to spherical RT equivalents, in a 

wide range of applications. In this paper, we turn our attention to two RT codes that can simulate, 

precisely or approximately, multiple scattering of light in a spherical atmosphere. We leave aside 

detailed performance considerations (accuracy and runtime) of full-spherical and approximate plane-

parallel RT codes, as well as the combing single and/or double scattering in spherical geometry with 

higher-order scattering from the plane-parallel RT model.  

RT codes require validation against reliable numerical data published in the open literature. A complete 

literature review is almost impossible. However, our analysis of about 90 references published from the  

1960’s to the present day shows that there is a lack of accurate (numbers, not figures), reliable (easy to 

reproduce, with known accuracy), and general (different solar-view geometries and atmosphere-surface 

properties) benchmark results for spherical geometry. This paper aims to partially fill the gap by: 1) 

reproducing, with better accuracy, the existing benchmark results generated by Adams & Kattawar 

[1978: p.143, Table I], these being the most closely related to modern requirements for satellite remote 

sensing applications, and 2) extending their results beyond the principal plane using two state-of-the-art 

RT codes, a true-spherical Monte Carlo code MYSTIC from the libRadtran2 package [Mayer & Kylling, 

2005; Mayer, 2009; Emde, 2016] and the discrete ordinate VLIDORT code [Spurr & Christi, 2019] 

corrected for atmospheric sphericity. Both codes have been in existence for some time and are widely 

used in the remote sensing community. In this paper, we refer to the work by Adams & Kattawar [1978] 

as A&K. 

The paper is structured as follows. First, in the “References overview”, we highlight the need for 

publication of accurate benchmark results to test spherical RT codes. In the next section on 

“Methodology”, we briefly describe the spherical RT implementation in MYSTIC (which is the baseline 

code in our research), and the discrete-ordinate treatment in VLIDORT. In the following section, we 

discuss the accuracy of the existing and new benchmarks (“Numerical results and discussion”). Aspects 

of spherical geometry as applied to RT are discussed in the Appendices. We conclude the paper with a 

Summary. 

 
2 www.libradtran.org (accessed June 12, 2020) 

http://www.libradtran.org/
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References Overview 
Nowadays, the theory of light scattering in a spherical atmosphere has been well developed. Numerous 

papers contain mathematical formalisms, e.g. Lenoble [1961], Bellman [1969], Smokty [1969], to name 

just a few of the earliest. Rozenberg [1966: p.125, Chapter III “Principles of the twilight theory”] 

describes in detail the computation of optical paths in a spherical atmosphere but does not treat 

multiple scattering of light. The entire monograph by Sen & Wilson [1990] deals with RT in curved 

media, including Chapter VII “Numerical methods for transfer problems in spherical geometry” (p.321), 

which, despite that name, has no reported numerical results. Sobolev [1975: p.213, Chapter 11 

“Spherical atmospheres”] calculates the brightness of a planet close to the terminator for the isotropic 

scattering case (p.229: Table 11.2), using an approximate numerical solution. His results agree 

qualitatively with observations of Venus, but the numerical accuracy is unclear. In Chapter 4 “Monte 

Carlo methods for solving direct and inverse problems of the theory of radiative transfer in a spherical 

atmosphere” of Marchuk [1980], there are extensive numerical results compared against 

measurements. In that work, realistic atmospheric models (gas absorption profiles, aerosol, surface 

reflectance, 14 wavelengths, etc.) were assumed. These “too realistic” scenarios are hard to reproduce 

with confidence. Also, the authors report ~10% simulation error (p.104), which is not acceptable for our 

goals in this paper. However, throughout the chapter, Marchuk and co-authors do present numbers for 

intensities as a function of the atmospheric and surface optical properties, location of the observer in 

the atmosphere, the role of polarization, and for single scattering. The work by Kalkofen [1984: p.235] 

contains a section on “Spherical radiative transfer” (Chapter II), but this book is hard to find and, as of 

now, we have not been able to check for the availability of numerical data. In Part II of Lenoble [1985: 

p.247], there is Chapter 3 “Spherical planetary atmospheres illuminated by the solar beam”, again with 

no numerical results. The same can be said for Section 10.11 “Numerical Results” in Natsuyama’s [1998] 

Chapter 10 “Transfer of Radiation with Spherical Symmetry” -this contains only figures. In the book by 

Stamnes et al. [2017: Appendix M3] there is a discussion on the influence of Earth curvature on the 

optical path and the Chapman function formalism [Dahlback, 1991]. The RT code DISORT [Stamnes, 

1988] has used this technique for about three decades [Mayer, 1997; He, 2018], however we are not 

aware of published numerical data from the DISORT team [Laszlo, 2017]. 

Years of intensive theoretical studies coupled with the easy availability of computational resources have 

resulted in the development of several true- and pseudo-spherical RT codes. Most, if not all, plane-

parallel techniques have been extended to the spherical case. This includes the Monte Carlo method 

[Collins, 1972; Blättner, 1974; Adams, 1978; Ding, 1994; Oikarinen, 1999; Postylyakov, 2004ab; Davis, 

2005; Spada, 2006; Emde, 2007, -16; Gratiy, 2010ab; Eriksson, 2011; Premuda, 2012; Buehler, 2018; 

Ramon, 2019; Zhuravleva, 2019; Ockenfuβ, 2019], discrete ordinates [Dahlback, 1991; Belikov, 2000; 

Rozanov V, 2002, 2014; Spurr, 2002, 2004, 2019; Emde, 2004; Rozanov A, 2005; Doicu, 2009ab] including 

low number of streams approximation [Wilson, 1980; Kylling, 1995; van Oss, 2002], two [Natraj, 2007] 

and successive orders of scattering [McLinden, 2002; Bourassa, 2008; Truitt Wiensz, 2012; Zawada, 2015; 

Dueck, 2017; Kocifaj, 2018], Gauss-Seidel iterations [Herman, 1994b; Loughman, 2015; Eluszkiewicz, 

2017], source integration for the first order of scattering [Walter, 2004, 2005, 2006; Doicu, 2009c], 

combined differential-integral approach [Rozanov A, 2000, 2001, 2002], finite-difference and adding-

doubling [Griffioen, 2000], invariant imbedding [Bellman, 1967], Eddington [Unno, 1976], Picard 

iteration [Doicu, 2009d], small-angle modification [Efremenko, 2013], and Markov chain [Xu, 2013]. Only 
 

3 www.cambridge.org/stamnes or www.rtatmocn.com (accessed June 12, 2020) 

http://www.cambridge.org/stamnes
http://www.rtatmocn.com/
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Monte Carlo models can simulate multiple scattering in true spherical geometry, while the other models 

can only offer corrections to the plane-parallel approach (pseudo-sphericity). The pseudo-spherical 

approach aims to deploy the numerical efficiency of plane-parallel codes to provide practical results of 

sufficient accuracy. 

Some of these codes have been deployed in spherical RT model intercomparisons [Herman, 1995; 

Caudill, 1997; Ivezić, 1997; Petropavlovskikh, 2000; Postylayakov, 2003; Loughman, 2004]. Contrary to 

situation with plane-parallel models, for which accurate benchmark data are available for a variety of 

scenarios [Emde, 2015; Chowdhary, 2020; see also Korkin, 2017: p.306, Table 1, for earlier references], 

these papers on spherical-model intercomparisons do not report numbers. 

In addition to the field of Earth science, other disciplines have seen active publishing of numerical 

solutions to the transport equation in spherical geometry. Examples include astrophysics [Ivezić, 1997], 

planetary science [Xu, 2013], and neutron transport [Davison, 1958: p.146, Chapter XI “The spherical 

harmonics method for spherical geometries”]. In the latter field, accurate numerical data [Garcia, 2020] 

is available but usually for isotropic scattering from an internal source. This is similar to the thermal RT 

regime in a spherical Earth atmosphere, which is outside the scope of the present paper. 

In rare cases, numerical benchmark data are in fact available. The A&K [1978: p.143, Table I] paper 

reports intensity reflected from a spherical Rayleigh atmosphere, but results are limited to the principal 

plane. Soon after the initial A&K publication, Kattawar & Adams [1978: p.440, Table I] and Kattawar 

[1979: p.63, Table II] published results for aerosols with the Henyey-Greenstein phase functions (2 

different asymmetry parameters g = 0.5 and 0.7, principal plane only) and with Mie scattering optical 

inputs (ratio of single to multiple scattering and brightness temperature), respectively. Blättner [1974: 

p.543, Table III] also reported ratios of results using second-order scattering and multiple scattering to 

first-order scattering values. Wilson & Sen [1980: p.409, Table I] report approximate numerical results 

for a spherical atmosphere over a Lambertian surface, with comparisons to those obtained by Sobolev 

[1975: p.231]. Ding & Gordon [1994] confirmed the hypothesis of Adams & Kattawar [1978] that the 

multiple-to-single scattering ratio remains “sufficiently close” for the plane-parallel and spherical 

atmospheres in the principal plane. They also found that their numerical simulations agree with those in 

Adams & Kattawar [1978] within 0.3% (p.7098). Spurr [2002: p.155, Table 1] reports results for relative 

azimuth 60o. However, his test case input depends on the LOWTRAN atmospheric parameters, and 

cannot be easily reproduced [Spurr, 2002: p.156, Section 6.1]. The results of Postylaykov [2004: p.310, 

Table 1] suffer from similar problem. Zhuravleva [2019: p.7, Table 2] report fluxes, which is not helpful 

for validation of solar-view dependency in backscatter intensity. 

It is clear that our literature analysis confirms the need for additional publication of numerical 

benchmark results for spherical atmospheres. The next section explains the methodology for obtaining 

our benchmarks and provides estimations of their accuracy. 

Methodology 

Spherical Atmosphere in MYSTIC and VLIDORT 
The libRadtran’s Monte Carlo RT solver MYSTIC simulates various radiative quantities, e.g., radiances 

and irradiances, monochromatic or spectrally integrated. The observer position can be on a satellite, on 

the ground or in the atmosphere, e.g. on an airplane. Per default, all scattering orders are simulated. For 
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theoretical studies it is also possible to simulate individual scattering orders. The variance reduction 

technique [Buras, 2011] was turned on in all our simulations. Following Emde et al. [2015: p.12], we 

used 100M photons in the reported results. We configured other input parameters using the manual 

available from the libRadtran website. Emde & Mayer [2007: p.2261] and Ockenfuβ et al. [2019: p.4] 

briefly discuss the MYSTIC spherical geometry, in which a photon is traced “backward” from the 

detector to the source. In those papers, MYSTIC was tested against measurements taken during solar 

eclipses in the years 2006 and 2017. MYSTIC also allows to define a 3D spherical atmosphere. This 

option has been used to interpret the Very Large Telescope (ESO VLT) polarimetric earthshine 

observations in 2011 [Emde, 2017].  

For reflectance, A&K [1978] and MYSTIC define the solar-view geometry at TOA which is different from 

that of VLIDORT. This difference must be accounted for in the comparisons. We refer the reader to 

Appendix 1 for details of the TOA-BOA transformation of the solar-view geometry in the principal plane, 

and Appendix 2 in a general case. In addition, Appendix 3 describes an algorithm for computation of the 

relative azimuths located on the sunlit side of the Earth. This effect is included naturally in the full-

spherical code. In addition to the Appendices, Table 1 contains numerical values of  solar-view 

geometries used in this work: Table 1(a) – BOA VZA as a function of the TOA; Table 1(b) – same as (a) 

but for SZA and relative azimuth in the principal plane; Table 1(c) – same as (b) but away from the 

principal plane. 

Note that a pseudo-spherical solver based on the RT code DISORT [Dahlback, 1991] is also available in 

libRadtran. We do not include it in our benchmarks, due to relatively high reported error, ~5%-20%, 

depending on the solar-view geometry [Herman, 1994: Abstract; Caudill, 1995: Abstract]. 

  

  
Fig.3: Convergence of the single-scattering (SS) solution for different solar-view geometries (as indicated in panel 
titles) and optical thickness (OT) plotted against the number of layer elements. The scenario and the solar-view 
geometrical configuration are defined in A&K [1978: Table 1]. The SS subroutine was developed to account for 
the effect of sphericity in the plane-parallel RT code IPOL [Korkin, 2019]. 
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To increase accuracy of sphericity corrections within the framework of the multiple-scatter plane-

parallel model, we adopt the following approach implemented in the new VLIDORT version 2.8.2. The 

single scattering (SS) radiation field is computed accurately in a spherical atmosphere using enough 

(~100) vertical layers (Fig. 3) to ensure a smooth variation of the solar and view angles along the LOS. 

For calculating multiple scattering (MS) radiation fields, the incident solar beam attenuation is calculated 

in a curved atmosphere as in the standard pseudo-spherical approximation. To allow for changes of 

geometry along the LOS, we run the MS computations twice: once for the TOA solar/view geometry 

configuration, and a second time with the BOA geometry. These two multiple scattering intensities 

(recall, we ignore polarization in this study) and a SS intensity, which is accurately known for a curved 

atmosphere, are used to build the upwelling intensity field in the atmosphere by source function 

integration, starting with the upwelling intensity at BOA. We now summarize this process. 

At BOA, the VLIDORT calculation of upwelling intensity surfI  at the ground comprises two terms – the 

direct-bounce field DBI  from the accurate spherical SS code, and the diffuse-field multiple-scatter 

contribution MBI : 

surf DB MBI I I= +  .  (4) 

Referring to the sketch in Fig. 1, when the LOS path traverses layer 𝑛 in our curved atmosphere, the 

intensity 1nI −  at the top of the layer is determined through source-function integration: 

1n n n n nI T I S M− = + +  . (5) 

Here, the radiation field at layer bottom is nI  and nT  is the LOS transmittance. Terms nS  and nM are the 

integrated SS and MS layer source terms respectively. Equation (5) is applied recursively along the LOS, 

starting with the BOA value surfI , Eq.(4), at BOA and ending with the TOA radiation field 0I  at TOA.  

The SS calculation based on the BOA geometrical configuration will deliver both the SS source term as 

well as the LOS transmittances 𝑇𝑛 and nS , along with the direct-bounce intensity at the surface DBI ; as 

noted already, this calculation is accurate for spherical geometry. The total recursively developed TOA 

field is then given by 

0 1 0 0

1 1

( ) ( ) , , 1
nN

DB MB N n n n n k

n k

I I I C S M C C T C− 

= =

= + + + = =  . (6) 

The cumulative LOS transmittances are  , 0, 1, ...nC n N= .   Here, N is the total number of layers. 

The terms {Mn}, n= 1, …N are obtained as follows. The modified VLIDORT call will now  supply MBI  (for 

the BOA-geometry configuration) and two sets  ( )BOA

nM  and  ( )TOA

nM  of multiple-scatter layer source 

terms from the two calculations with BOA and TOA geometries respectively. Next, these two sets of MS 

source terms are linearly interpolated against µ = cos(VZA) to find the changing value of nM  for each 

layer on the way from BOA to TOA. Although it is also possible to do this interpolation against µ0 = 

cos(SZA) the interpolation against µ is free from ambiguities. 
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It should be noted that the diffuse-scattering surface intensity MBI  and the two sets of layer multiple-

scattering source terms used in the source function integration are final values, after application of the 

cosine-azimuth summation of Fourier components of the intensity field. 

We call this VLIDORT modification a “2-point sphericity correction”. This correction is more accurate 

compared to the previous pseudo spherical corrections that have been considered in LIDORT and 

VLIDORT [Spurr, 2002; 2004; 2019]. The accuracy of the MS source term determination can be improved 

further by calling VLIDORT with 3 geometries, at BOA, TOA and one other pre-specified point along the 

LOS - this would be a “3-point sphericity correction”. An even better accuracy could be obtained by 

calling VLIDORT with a whole series of geometrical configurations at every boundary level between BOA 

and TOA (i.e., “multipoint sphericity correction”). Obviously the 2-point correction is the fastest to 

implement.   Here we confine our attention to Rayleigh atmosphere, and consider only the 2-point 

corrections for VLIDORT in our comparisons with MYSTIC. 

Accuracy of the results 
MYSTIC is used in this paper as a baseline for our benchmarks. We have checked its convergence using 

the 3σ-rule (99.7% confidence) that estimates the relative accuracy of the Monte Carlo code as 

3MC MCI I=   , (7) 

where the mean intensity, 
MCI , and the standard deviation, σ, are outputs from MYSTIC. We define the 

relative accuracy of the MC simulations according to 

3
100%MC

MCI


 = . (8) 

Following the recommendations in Emde [2015: p.12], we used 100M photons for the computations. 

Table 2 gives the maximum and average errors over all solar-view geometries for two optical depths, 

separately for single and multiple scattering, and according to the abovementioned criteria. The table 

shows with confidence that MYSTIC converges within a 0.1% error. 

Table 2: Monte Carlo convergence rate, in %, for single (SS) and multiple (MS) scattering modes, Eq.(8) 

τ Scattering max average 

0.25 SS 0.06 0.04 

0.25 MS 0.08 0.05 

1.0 SS 0.06 0.03 

1.0 MS 0.06 0.03 

 

The accuracy of VLIDORT depends on three conditions: (1) a convergence criterion for the number of 

azimuthal (Fourier) expansion moments needed to compute the solution to a certain level accuracy; (2) 

the number of polar discrete ordinates (quadrature streams) used to solve the plane-parallel integro-

differential RT equations in each layer; and (3) for a spherical atmosphere, the number of layers needed 

to account for smooth change of the solar-view geometry along the LOS (Fig.3). For the pure Rayleigh 

scattering case, there are no Fourier convergence or discrete ordinates issues – the 3 azimuthal (Fourier) 

components were computed using 8 discrete ordinates in each polar hemisphere (16 streams in total). 
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To ensure a smooth change of the solar-view geometry along the LOS, we executed VLIDORT with 100 

layers and used control run with only 50 layers to ensure that the numerical uncertainty of this 

parameterization did not exceed 0.1%. 

A&K do not provide explicit values of the standard deviation in their tabulated Monte Carlo results. 

However, they estimate the accuracy of their simulations for the plane-parallel case as follows (p.151). 

In SS the reciprocity principle, Eq.(3), is obeyed to within 3 significant digits; in MS – within 3%. For 

spherical atmospheres, they also provide SS numbers to 3 digits, which yields up to 0.3% (0.1% on 

average) and 0.5% (0.2% on average) for tau = 0.25 and 1.0, respectively, assuming that the round-off 

error dominates. For spherical geometry, A&K provide the SS/MS ratios using only 2 digits. Based on 

their accuracy estimations in the plane-parallel case, we set their relative accuracy for MS in spherical 

geometry to be 3%. It is worth noting that Ding & Gordon [1994: p.7098] agreed with A&K to within 

0.3%. 

Finally, before running the spherical examples, we checked VLIDORT and MYSTIC for consistency in 

inputs and accuracy in output through use of the A&K plane-parallel scenario. In all the plane-parallel 

cases, VLIDORT and MYSTIC results agreed with those from A&K at ~2% or better, and between each 

other at 0.1% or better. Both these deviations are close to what we expect, given the accuracy of the 

A&K tables, the MYSTIC standard deviation, and the VLIDORT number of streams. In the next section, we 

report on numerical results suitable for benchmarking spherical RT codes. 

Numerical Results and Discussion 
Following A&K, we consider the diffuse upwelling reflectance from a spherical conservative Rayleigh 

scattering atmosphere of optical thicknesses τ=0.25 and 1 over a black surface. Polarization and ray 

bending due to refraction are ignored. For SS, A&K report results to 3 significant digits, which is accurate 

enough for practical needs, but insufficiently precise for numerical tests aiming at an error level of 0.1%. 

For MS their results are less accurate: only 2 digits for the SS/MS scattering ratios. Therefore, we have 

reproduced their results with higher accuracy to provide a) 5 digits for both SS and MS, of which the 

latter suffers from round-off error; and b) absolute values for MS, instead of ratios. 

Our results are grouped in Tables 3 and 4 for optical thickness 0.25 and 1.0. In each table, sections (a) 

and (b) correspond to SS and MS, respectively. We keep the appearance of our tables close to that for 

original tables by A&K. In Table 3a (τ=0.25, SS) the columns from left to right show: VZA at TOA, original 

results by A&K (except in exponential format), MYSTIC results, VLIDORT results, relative deviation of the 

A&K results vs. MYSTIC, relative deviation of VLIDORT results vs. MYSTIC. Tables 1(a) & (b) contain the 

solar-view geometry at BOA as input for VLIDORT. The VLIDORT’s VZA at TOA is limited by the critical 

angle 79.9o (see the note in the Introduction). The solar (SZA) and azimuth (ϕ) angles at TOA go from top 

to bottom in grey fields in the sequence defined by A&K. For SS at OT=0.25, the maximum and average 

deviations of the A&K results from MYSTIC turned out to be 0.32% and 0.11%, respectively (indicated in 

color at the bottom of the table). The same quantities for VLIDORT are 0.05% and 0.02%. 

The TOA solar-view geometry in Table 3b (OT=0.25, MS) is organized as in Table 3a, but the sequence of 

columns is slightly different: VZA at TOA (left-most entry), SS by A&K,  SS/MS ratio from A&K. This ratio 

is followed by absolute values of the MS not indicated in the original tables. The four columns on the 

right are the same as those in Table 3(a). For MS at τ=0.25, the maximum and average deviations of the 
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A&K results from MYSTIC turned out to be 4.7% and 1.2%, respectively. The same quantities for 

VLIDORT are 0.5% and 0.3%. 

Tables 4 (a)(b) are identical to Tables 3 (a)(b), respectively, but shows results for OT = 1. For SS (Table 

4a) the maximum and average deviations of the A&K results from MYSTIC were 0.72% and 0.17%, 

respectively. The same quantities for VLIDORT were 0.07% and 0.02%. For multiple scattering (Table 4b) 

those numbers are 5.6% and 1.4% (A&K), and 0.37% and 0.11% (VLIDORT). 

Tables 5 (OT=0.25) and 6 (OT=1) contain new results for configurations away from the principal plane 

for SS (a) and MS (b) scattering modes. The sequence of relative azimuths is ϕ = 45o, 90o, 135o. In all the 

tables, the columns from left to right indicate the TOA VZA, followed by MYSTIC, VLIDORT, and 

percentile deviations of the two model results. At the bottom of each table, we record the maximum 

and average deviations computed over all solar-view geometries for a given OT and scattering mode.  

Table 7 combines all the deviations together; this table should be read alongside Table 2 (accuracy of 

MYSTIC). 

Table 7: Maximum and average deviations for MYSTIC and VLIDORT, in %, for single (SS) and multiple (MS) 

scattering modes computed over all solar-view geometries off the principal plane (new benchmark results). 

Scattering mode: Single scattering Multiple scattering 

τ maximum average maximum average 

0.25 0.05 0.02 0.69 0.39 

1.0 0.09 0.02 0.29 0.12 

 

Summary 
The need for accurate spherical RT (O-RT) codes, e.g., for remote sensing of the Earth’s atmosphere 

from a geostationary orbit at dusk and dawn or Lagrange L1 orbit or remote sensing of Polar regions, has 

been growing fast, along with the requirement for comprehensive accurate benchmarks. In this paper, 

we have reproduced and extended results from Adams & Kattawar [1978] (A&K) for monochromatic 

solar light reflected from the top of the Earth’s spherical atmosphere. In contrast to graphical figures 

frequently published in the literature, our numerical results are suitable for accurate benchmarking of 

the O-RT codes. 

Our Tables 3-6 report numerical results for unpolarized light reflected from the top of a Rayleigh 

scattering atmosphere over a black surface, for two optical thicknesses (0.25 and 1.0), for both single 

and multiple scattering, in and out of the principal plane using two state-of-the art RT codes: 

libRadtran’s MYSTIC (Monte Carlo) and VLIDORT (discrete ordinates). The two codes agreed perfectly 

(within 0.1%) for single scattering and within 0.7% (0.4% on average) for multiple scattering (Table 7). 

However, this paper only partially fills the gap in O-RT benchmarking. Benchmark results for 

polarization, transmitted radiation, limb observations, reflecting surface, aerosol and absorption 

profiles, high cirrus clouds, and refraction among other effects are yet to be generated and tested. 
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Appendix 1: Transformation of the Solar-View Geometry from TOA to 

BOA in the Principal Plane 
Here we derive the solar-view geometry at BOA from the one at TOA in the principal plane. VLIDORT 

uses the BOA geometry as the baseline, while A&K and MYSTIC use the TOA configuration. 

Fig.4 shows several solar beam directions for a given LOS (view direction). The relative TOA azimuth, 

ϕTOA
 = 0, corresponds to forward scattering. 

  
Fig.4(a): Different solar-view geometries in the 
principal plane 0-180. The outgoing view direction 
(black) is given, the solar direction varies (green, red - 

critical, blue). This image corresponds to 0TOA =  

Fig.4(b): Same as Fig.4(a), except for 180TOA = . 

There is no critical (red) solar beam direction in this 
case. 

 

The TOA-to-BOA computation of the VZA at BOA uses the sine-rule relation, Eq.(1) We get the solar 

zenith angle at BOA depending on the TOA input as described below. We assume BOA TOA =   if the BOA 

azimuth is undefined. 

Case 1 ( Fig.4(a) ): 0TOA = . The “red” solar beam is a limiting case for the “green” one: 
0, 0BOA = , 

BOA  

is not defined 0,

Critical

TOA BOA TOA =  −   is a critical value. For 0, 0,

Critical

TOA TOA   , the relative azimuths at TOA & 

BOA differ; otherwise, the azimuth is preserved. Both VZAs are known from the sine-rule relation, 

BOA TOA   . For the “green” solar beam: 0BOA = ; 
0, 0,TOA TOA BOA BOA +  =  +  . For the “blue” solar 

beam: 0, 0,

Critical

TOA TOA   , 180BOA = , 0, 0,TOA TOA BOA BOA +  =  −   - note the minus sign. 

0, 0TOA =  falls under the “blue” case; also, this is the smallest possible 
0, 0TOA = defines the largest 

possible 0, BOA  (in the 
BOA =   half-plane) for any given VZA on TOA. 

Case 2: 180TOA =  ( Fig.4(b) ). 

In this case, 180o

BOA =  for any sun position. The BOA SZA is computed as 

0, 0,BOA TOA BOA TOA =  +  −  . 
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However, there is a critical SZA at TOA for which the observed point is no longer irradiated by the Sun: 

 
0, 0, 0, 0,90 90BOA TOA BOA TOA TOA TOA TOA = =  +  −    = +  −  . 

The solar-view geometry at TOA and BOA used to reproduce the A&K results is listed in Table 1, with 2 

significant digits after the decimal point. Appendix 3 below discusses the case of the Earth shadow. 

Appendix 2: General Transformation of the Solar-View Geometry from 

BOA to TOA and vice versa 
From Eq.(2) and the procedure outlined in Appendix 1, we see that some solar-view geometries at TOA 

have no corresponding configurations at BOA, thanks to the line of sight not hitting hit the Earth and/or 

the point of observation is in the Earth shadow.  Therefore, in atmospheric and terrestrial applications, 

the solar-view geometry is often defined at BOA. In this Appendix 2 we provide equations to transform 

the solar-view geometry from BOA to TOA for arbitrary relative azimuth. After that, we “invert” the 

problem in order to compute input for VLIDORT (BOA) from the given TOA angles (input for A&K and 

MYSTIC). Fig.5 shows the geometry. 

 

Fig.5: The solar-view geometry, and TOA and 
BOA local normal vectors. Note, the scattering 
angle is the same at arbitrary point in 
atmosphere.  

 

From Eq.(2), one readily computes B T   . Further the angle, α, between the two local normal vectors 

at TOA and BOA is  

B T =  −  , (9) 

The coordinates of the TOA local normal in the earth-centered coordinate system are 

 sin cos sin sin cosT B B=     n  (10) 

and the solar beam direction is 

0 0, 0,sin 0 cosB B
 =  −  l  (11) 

with respect to the BOA normal pointing towards the space (hence, 0 0,cos 0Bz = −    ). The cosine of 

the solar angle at TOA comes from the dot product of Eqs. (10) and (11) 
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0, 0 0, 0, 0,cos(180 ) sin sin cos cos cos cosT T B B B T−  = =    −   = − l n  (12) 

Equality of the scattering angle, Θ, at TOA and BOA yields the TOA azimuth 

0, 0, 0, 0,cos cos cos sin sin cos cos cos sin sin cosB B B B B T T T T T = −   +    = −   +    , (13) 

except for the case of normal irradiance of the TOA, 
0,cos 0T = in Eq.(12), when the azimuth at BOA is 

undefined, and also for the exact nadir observation situation, sin sin 0T B =  = . 

There is an inevitable loss of accuracy due to multiple trigonometric function results in 0T   or 

180T   in the principal plane. If critical, the developer should consider the case of the observation in 

the principal plane separately (Appendix 1) or if-check 
T to be “sufficiently close” to 0o or 180o. 

If on the other hand the BOA geometry is to be computed from the TOA configuration, then one looks 

for 
0, B  and 

B  (recall, B comes from Eq. (1)) from this system of Eqs. (12)-(13) 

0, 0, 0,

0, 0,

sin sin cos cos cos cos

sin sin cos cos cos cos

B B B T

B B B B B

   −   = − 


   −   = 

 ,  (14) 

or in matrix form 

0, 0,

0,

sin cossin cos cos

cossin cos cos

B B T

BB B

 −        
=     −      

 ,  (15) 

where singular matrix cases (e.g. for exact nadir observation) must be treated separately. 

Appendix 3: Azimuthal Location of Points in the Earth Shadow 
In this Appendix we derive equations to find the TOA azimuths that correspond to sunlit points at the 

surface level. Figures 6 (a) and (b), for pure Rayleigh scattering and scattering with some aerosol loading, 

respectively, show sudden drops of intensity when plotted against the TOA azimuth. This effect is 

captured by a true-spherical code such as MYSTIC. Fig.6(c) explains the effect: points A and B are always 

visible, while points E, D, and C disappear into the Earth shadow in that order when the LOS rotates from 

the forward scattering, ϕTOA
 = 0, to the backscattering, ϕTOA

 = 180, geometry. 

From the right-angle triangle PEO, 2 2 2

EPE R OE= − ; from the right-angle triangle SEO, OE SO sin( )=  ; 

and the distance to the point of observation is 

2 2 2SP SE PE SO cos( ) SO sin ( )ER= − =  − −   

Using Heron’s rule for the area of SPO 

( )( )( )SPO Ep p R p SO p SP = − − − , 

where p is the semi-perimeter of SPO, we can derive the height of the SPO triangle: 

PA = 2 SOSPO . 
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From the  triangles PAO and TAO we find that 2 2PAEAO R= −  and 0TA= tan( )AO  , respectively. If 

TA < PA, the range of visible azimuths is defined from the right image of Fig.7 as 

max 180 180 arccos(TA / PA)o o = −  = − . 

Otherwise, all azimuths are visible from S and the given solar-view geometry. This includes the particular 

case of 
0 0o → .  

  

 

Fig.6 Reflected intensity (y-axis) as a function of the 
TOA azimuth (x-axis) and AOT (image (a) vs (b) ). The 
Earth shadow causes these systematic drops: points A 
& B are visible for any azimuth, while C, D, and E 
“disappear” into the Earth shadow in the 
backscattering directions as shown in image (c) 

 

Fig.7 shows the range of sunlit azimuths as 180o - φ, where φ values correspond to the TOA azimuths of 

those points in the Earth shadow. We suppose the satellite S, is located at a height SB above the ground 

and P is a point on the ground surface observed at scan angle α (µ is the cosine).  The solar beam 

direction and the satellite nadir span an angle θ0.  

( a ) ( b ) 

( c ) 
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Fig.7: Geometrical sketch to define 
the range of the “sunlit azimuths”; RE 
is the Earth radius. 

. 
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Tables 
 

Table 1(a): VZA at BOA as a function of VZA at TOA. 

θ_TOA θ_BOA 

0 0.00 

10 10.16 

20 20.33 

30 30.52 

40 40.76 

50 51.08 

60 61.60 

70 72.64 

 

Table 1(b): Same as Table 1(a) except for SZA and relative azimuth in the principal plane. 

# θ_TOA θo_BOA ϕ_BOA 

# θo_TOA = 0 ϕ_TOA 

0 0 180 

10 0.16 180 

20 0.33 180 

30 0.52 180 

40 0.76 180 

50 1.08 180 

60 1.6 180 

70 2.64 180 

# θo_TOA = 70.47 ϕ_TOA = 0 

0 70.47 0 

10 70.31 0 

20 70.14 0 

30 69.95 0 

40 69.71 0 

50 69.39 0 

60 68.87 0 

70 67.83 0 
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Table 1(b): Continued. 

# θ_TOA θo_BOA ϕ_BOA 

# θo_TOA = 84.26 ϕ_TOA = 0 

0 84.26 0 

10 84.1 0 

20 83.93 0 

30 83.74 0 

40 83.5 0 

50 83.18 0 

60 82.66 0 

70 81.62 0 

# θo_TOA = 70.47 ϕ_TOA = 180 

0 70.47 180 

10 70.63 180 

20 70.8 180 

30 70.99 180 

40 71.23 180 

50 71.55 180 

60 72.07 180 

70 73.11 180 

# θo_TOA = 84.26 ϕ_TOA = 180 

0 84.26 180 

10 84.42 180 

20 84.59 180 

30 84.78 180 

40 85.02 180 

50 85.34 180 

60 85.86 180 

70 86.9 180 

 

Table 1(c): Same as Table 1(b) but away from the principal plane. 

# θ_TOA θo_BOA ϕ_BOA 

# θo_TOA = 70.47 ϕ_TOA = 45 

0 70.47 45.00 

10 70.36 45.04 

20 70.24 45.08 

30 70.10 45.13 

40 69.93 45.19 

50 69.71 45.28 

60 69.35 45.41 

70 68.62 45.70 
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Table 1(c): Continued. 

# θ_TOA θo_BOA ϕ_BOA 

# θo_TOA = 84.26 ϕ_TOA = 45 

0 84.26 45.00 

10 84.15 45.01 

20 84.03 45.02 

30 83.89 45.04 

40 83.72 45.06 

50 83.49 45.08 

60 83.13 45.12 

70 82.40 45.22 

# θo_TOA = 70.47 ϕ_TOA = 90 

0 70.47 90.00 

10 70.47 90.06 

20 70.47 90.12 

30 70.47 90.18 

40 70.47 90.27 

50 70.47 90.38 

60 70.48 90.57 

70 70.49 90.94 

# θo_TOA = 84.26 ϕ_TOA = 90 

0 84.26 90.00 

10 84.26 90.02 

20 84.26 90.03 

30 84.26 90.05 

40 84.26 90.08 

50 84.26 90.11 

60 84.26 90.16 

70 84.27 90.27 

# θo_TOA = 70.47 ϕ_TOA = 135 

0 70.47 135.00 

10 70.58 135.04 

20 70.70 135.08 

30 70.84 135.13 

40 71.01 135.19 

50 71.24 135.27 

60 71.60 135.39 

70 72.35 135.62 
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Table 1(c): Continued. 

# θ_TOA θo_BOA ϕ_BOA 

# θo_TOA = 84.26 ϕ_TOA = 135 

0 84.26 135.00 

10 84.37 135.01 

20 84.49 135.02 

30 84.63 135.04 

40 84.80 135.05 

50 85.03 135.07 

60 85.39 135.10 

70 86.13 135.16 

 

 

Table 2: See in the text, page 9. 

 

Tables 3-6: See below. 
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Table 3(a): Reproduced results by A&K for SS and OT=0.25. Columns (left to right) show: TOA VZA, original results by A&K (except in exponential 

format), MYSTIC (MC) results, VLIDORT (VL) results, relative deviation of the A&K results vs MYSTIC, relative deviation of VLIDORT results vs 

MYSTIC. Maximum and average errors are indicated below, sign of errors ignored. 

# θ_TOA A&K MC VL |A&K vs MC| % |VL vs MC| % 

#   θo_TOA = 0 ϕ_TOA     

0 7.38E-02 7.3785E-02 7.3776E-02 0.02 0.01 

10 7.37E-02 7.3678E-02 7.3669E-02 0.03 0.01 

20 7.35E-02 7.3420E-02 7.3442E-02 0.11 0.03 

30 7.34E-02 7.3416E-02 7.3393E-02 0.02 0.03 

40 7.41E-02 7.4131E-02 7.4135E-02 0.04 0.01 

50 7.68E-02 7.6828E-02 7.6827E-02 0.04 0.00 

60 8.40E-02 8.3928E-02 8.3945E-02 0.09 0.02 

70 1.02E-01 1.0171E-01 1.0172E-01 0.29 0.01 

80 1.72E-01 1.7215E-01   0.09   

85 1.71E-01 1.7132E-01   0.19   

88 1.26E-01 1.2623E-01   0.18   

#   θo_TOA = 70.47 ϕ_TOA = 0     

0 3.33E-02 3.3331E-02 3.3331E-02 0.09 0.00 

10 3.13E-02 3.1281E-02 3.1274E-02 0.06 0.02 

20 3.18E-02 3.1804E-02 3.1804E-02 0.01 0.00 

30 3.54E-02 3.5403E-02 3.5404E-02 0.01 0.00 

40 4.30E-02 4.2963E-02 4.2979E-02 0.09 0.04 

50 5.63E-02 5.6271E-02 5.6261E-02 0.05 0.02 

60 7.92E-02 7.9092E-02 7.9117E-02 0.14 0.03 

70 1.22E-01 1.2190E-01 1.2191E-01 0.08 0.01 

80 2.54E-01 2.5377E-01   0.09   

85 2.94E-01 2.9408E-01   0.03   

88 2.33E-01 2.3252E-01   0.21   
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Table 3(a): Continued. 

# θ_TOA A&K MC VL |A&K vs MC| % |VL vs MC| % 

#   θo_TOA = 84.26 ϕ_TOA = 0     

0 1.93E-02 1.9258E-02 1.9261E-02 0.22 0.02 

10 1.96E-02 1.9562E-02 1.9561E-02 0.20 0.00 

20 2.17E-02 2.1662E-02 2.1674E-02 0.17 0.05 

30 2.59E-02 2.5905E-02 2.5904E-02 0.02 0.00 

40 3.29E-02 3.2888E-02 3.2892E-02 0.04 0.01 

50 4.40E-02 4.3926E-02 4.3904E-02 0.17 0.05 

60 6.21E-02 6.2019E-02 6.2043E-02 0.13 0.04 

70 9.62E-02 9.6035E-02 9.6061E-02 0.17 0.03 

80 2.10E-01 2.1001E-01   0.01   

85 2.79E-01 2.7884E-01   0.06   

88 2.39E-01 2.3945E-01   0.19   

#   θo_TOA = 70.47 ϕ_TOA = 180     

0 3.34E-02 3.3336E-02 3.3331E-02 0.19 0.01 

10 3.78E-02 3.7731E-02 3.7734E-02 0.18 0.01 

20 4.45E-02 4.4451E-02 4.4442E-02 0.11 0.02 

30 5.37E-02 5.3653E-02 5.3649E-02 0.09 0.01 

40 6.60E-02 6.5919E-02 6.5927E-02 0.12 0.01 

50 8.27E-02 8.2609E-02 8.2604E-02 0.11 0.01 

60 1.07E-01 1.0681E-01 1.0682E-01 0.18 0.01 

70 1.47E-01 1.4714E-01 1.4713E-01 0.09 0.00 

80 2.50E-01 2.5012E-01   0.05   

85 3.00E-01 2.9989E-01   0.04   

88 2.37E-01 2.3719E-01   0.08   
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Table 3(a): Continued. 

# θ_TOA A&K MC VL |A&K vs MC| % |VL vs MC| % 

#   θo_TOA = 84.26 ϕ_TOA = 180     

0 1.93E-02 1.9258E-02 1.9261E-02 0.22 0.02 

10 2.07E-02 2.0650E-02 2.0645E-02 0.24 0.02 

20 2.38E-02 2.3725E-02 2.3719E-02 0.32 0.02 

30 2.87E-02 2.8646E-02 2.8649E-02 0.19 0.01 

40 3.59E-02 3.5818E-02 3.5821E-02 0.23 0.01 

50 4.61E-02 4.6124E-02 4.6138E-02 0.05 0.03 

60 6.15E-02 6.1527E-02 6.1530E-02 0.04 0.01 

70 8.72E-02 8.7254E-02 8.7245E-02 0.06 0.01 

80 1.41E-01 1.4091E-01   0.07   

85 2.00E-01 1.9995E-01   0.03   

88 2.31E-01 2.3099E-01   0.00   

            

MAX %       0.32 0.05 

AVER %       0.11 0.02 
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Table 3(b): Similar to Table 3(a) except for MS. Columns (left to right) show: TOA VZA, SS from A&K,  SS/MS ratio from A&K, absolute values of 

the MS (not indicated in the original A&K tables). The four right-most columns are the same as those in Table 3(a). 

# θ_TOA A&K  SS A&K  SS/MS % A&K MS MC VL |A&K vs MC| % |VL vs MC| % 

#     θo_TOA = 0 ϕ_TOA       

0 7.38E-02 82 9.00E-02 9.0710E-02 9.0779E-02 0.78 0.08 

10 7.37E-02 81 9.10E-02 9.0930E-02 9.0985E-02 0.06 0.06 

20 7.35E-02 80 9.19E-02 9.1661E-02 9.1731E-02 0.23 0.08 

30 7.34E-02 80 9.18E-02 9.3326E-02 9.3439E-02 1.69 0.12 

40 7.41E-02 76 9.75E-02 9.6852E-02 9.6981E-02 0.67 0.13 

50 7.68E-02 74 1.04E-01 1.0391E-01 1.0404E-01 0.12 0.13 

60 8.40E-02 70 1.20E-01 1.1806E-01 1.1828E-01 1.64 0.19 

70 1.02E-01 67 1.52E-01 1.4869E-01 1.4912E-01 2.39 0.29 

80 1.72E-01 67 2.57E-01 2.5879E-01   0.80   

85 1.71E-01 67 2.55E-01 2.5168E-01   1.41   

88 1.26E-01 72 1.75E-01 1.7773E-01   1.54   

#     θo_TOA = 70.47 ϕ_TOA = 0       

0 3.33E-02 69 4.83E-02 4.8711E-02 4.8822E-02 0.92 0.23 

10 3.13E-02 68 4.60E-02 4.6932E-02 4.7052E-02 1.92 0.26 

20 3.18E-02 64 4.97E-02 4.8469E-02 4.8578E-02 2.52 0.23 

30 3.54E-02 64 5.53E-02 5.3883E-02 5.4008E-02 2.65 0.23 

40 4.30E-02 67 6.42E-02 6.4359E-02 6.4517E-02 0.28 0.24 

50 5.63E-02 70 8.04E-02 8.2185E-02 8.2371E-02 2.14 0.23 

60 7.92E-02 71 1.12E-01 1.1238E-01 1.1267E-01 0.74 0.26 

70 1.22E-01 73 1.67E-01 1.6855E-01 1.6912E-01 0.84 0.34 

80 2.54E-01 75 3.39E-01 3.4233E-01   1.07   

85 2.94E-01 78 3.77E-01 3.7844E-01   0.40   

88 2.33E-01 81 2.88E-01 2.8599E-01   0.58   
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Table 3(b): Continued. 

# θ_TOA A&K  SS A&K  SS/MS % A&K MS MC VL |A&K vs MC| % |VL vs MC| % 

#     θo_TOA = 84.26 ϕ_TOA = 0       

0 1.93E-02 68 2.84E-02 2.8873E-02 2.9016E-02 1.70 0.49 

10 1.96E-02 67 2.93E-02 2.9437E-02 2.9576E-02 0.62 0.47 

20 2.17E-02 67 3.24E-02 3.2263E-02 3.2412E-02 0.39 0.46 

30 2.59E-02 72 3.60E-02 3.7741E-02 3.7915E-02 4.69 0.46 

40 3.29E-02 70 4.70E-02 4.6720E-02 4.6928E-02 0.60 0.45 

50 4.40E-02 74 5.95E-02 6.0849E-02 6.1098E-02 2.28 0.41 

60 6.21E-02 74 8.39E-02 8.4091E-02 8.4469E-02 0.20 0.45 

70 9.62E-02 76 1.27E-01 1.2777E-01 1.2842E-01 0.93 0.51 

80 2.10E-01 77 2.73E-01 2.7563E-01   1.05   

85 2.79E-01 82 3.40E-01 3.4411E-01   1.12   

88 2.39E-01 86 2.78E-01 2.7977E-01   0.66   

#     θo_TOA = 70.47 ϕ_TOA = 180       

0 3.34E-02 67 4.99E-02 4.8722E-02 4.8823E-02 2.32 0.21 

10 3.78E-02 69 5.48E-02 5.3488E-02 5.3607E-02 2.42 0.22 

20 4.45E-02 75 5.93E-02 6.1268E-02 6.1394E-02 3.16 0.21 

30 5.37E-02 76 7.07E-02 7.2323E-02 7.2491E-02 2.30 0.23 

40 6.60E-02 76 8.68E-02 8.7534E-02 8.7713E-02 0.79 0.20 

50 8.27E-02 77 1.07E-01 1.0866E-01 1.0889E-01 1.16 0.21 

60 1.07E-01 76 1.41E-01 1.3996E-01 1.4027E-01 0.59 0.22 

70 1.47E-01 76 1.93E-01 1.9287E-01 1.9339E-01 0.29 0.27 

80 2.50E-01 76 3.29E-01 3.3037E-01   0.43   

85 3.00E-01 79 3.80E-01 3.7920E-01   0.14   

88 2.37E-01 82 2.89E-01 2.8907E-01   0.02   
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Table 3(b): Continued. 

# θ_TOA A&K  SS A&K  SS/MS % A&K MS MC VL |A&K vs MC| % |VL vs MC| % 

#     θo_TOA = 84.26 ϕ_TOA = 180       

0 1.93E-02 67 2.88E-02 2.8866E-02 2.9016E-02 0.21 0.52 

10 2.07E-02 67 3.09E-02 3.0413E-02 3.0566E-02 1.59 0.50 

20 2.38E-02 70 3.40E-02 3.4066E-02 3.4243E-02 0.19 0.52 

30 2.87E-02 73 3.93E-02 4.0087E-02 4.0276E-02 1.92 0.47 

40 3.59E-02 74 4.85E-02 4.8934E-02 4.9177E-02 0.86 0.50 

50 4.61E-02 75 6.15E-02 6.1830E-02 6.2124E-02 0.59 0.48 

60 6.15E-02 76 8.09E-02 8.1259E-02 8.1587E-02 0.42 0.40 

70 8.72E-02 78 1.12E-01 1.1378E-01 1.1407E-01 1.74 0.26 

80 1.41E-01 77 1.83E-01 1.8016E-01   1.64   

85 2.00E-01 85 2.35E-01 2.4165E-01   2.63   

88 2.31E-01 88 2.63E-01 2.6380E-01   0.49   

#               

MAX %           4.69 0.52 

AVER %           1.19 0.31 

 

  



33 
 

Table 4(a): Same as Table 3(a), except for OT=1.0. 

# θ_TOA A&K MC VL |A&K vs MC| % |VL vs MC| % 

#   θo_TOA = 0 ϕ_TOA     

0 1.62E-01 1.6211E-01 1.6213E-01 0.07 0.01 

10 1.61E-01 1.6130E-01 1.6131E-01 0.18 0.01 

20 1.59E-01 1.5900E-01 1.5900E-01 0.00 0.00 

30 1.56E-01 1.5562E-01 1.5564E-01 0.24 0.01 

40 1.52E-01 1.5204E-01 1.5203E-01 0.03 0.01 

50 1.49E-01 1.4939E-01 1.4938E-01 0.26 0.00 

60 1.50E-01 1.4951E-01 1.4951E-01 0.33 0.00 

70 1.55E-01 1.5464E-01 1.5464E-01 0.24 0.00 

80 1.67E-01 1.6643E-01   0.34   

85 1.76E-01 1.7613E-01   0.07   

88 1.82E-01 1.8197E-01   0.02   

#   θo_TOA = 70.47 ϕ_TOA = 0     

0 5.22E-02 5.2141E-02 5.2148E-02 0.11 0.01 

10 4.90E-02 4.8866E-02 4.8866E-02 0.28 0.00 

20 4.95E-02 4.9411E-02 4.9404E-02 0.18 0.01 

30 5.45E-02 5.4367E-02 5.4369E-02 0.25 0.00 

40 6.49E-02 6.4761E-02 6.4758E-02 0.21 0.01 

50 8.24E-02 8.2199E-02 8.2181E-02 0.25 0.02 

60 1.10E-01 1.0969E-01 1.0970E-01 0.29 0.01 

70 1.53E-01 1.5321E-01 1.5322E-01 0.14 0.00 

80 2.27E-01 2.2629E-01   0.31   

85 2.84E-01 2.8409E-01   0.03   

88 3.27E-01 3.2691E-01   0.03   
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Table 4(a): Continued. 

# θ_TOA A&K MC VL |A&K vs MC| % |VL vs MC| % 

#   θo_TOA = 84.26 ϕ_TOA = 0     

0 1.94E-02 1.9304E-02 1.9302E-02 0.50 0.01 

10 1.97E-02 1.9559E-02 1.9569E-02 0.72 0.05 

20 2.17E-02 2.1609E-02 2.1620E-02 0.42 0.05 

30 2.59E-02 2.5726E-02 2.5718E-02 0.68 0.03 

40 3.26E-02 3.2440E-02 3.2433E-02 0.49 0.02 

50 4.30E-02 4.2827E-02 4.2802E-02 0.41 0.06 

60 5.96E-02 5.9317E-02 5.9353E-02 0.48 0.06 

70 8.85E-02 8.8201E-02 8.8227E-02 0.34 0.03 

80 1.52E-01 1.5203E-01   0.02   

85 2.27E-01 2.2708E-01   0.01   

88 3.12E-01 3.1239E-01   0.00   

#   θo_TOA = 70.47 ϕ_TOA = 180     

0 5.21E-02 5.2142E-02 5.2149E-02 0.08 0.01 

10 5.89E-02 5.8868E-02 5.8862E-02 0.05 0.01 

20 6.88E-02 6.8801E-02 6.8809E-02 0.00 0.01 

30 8.20E-02 8.1990E-02 8.1999E-02 0.01 0.01 

40 9.87E-02 9.8735E-02 9.8722E-02 0.04 0.01 

50 1.20E-01 1.1984E-01 1.1983E-01 0.14 0.00 

60 1.47E-01 1.4717E-01 1.4717E-01 0.12 0.00 

70 1.85E-01 1.8501E-01 1.8502E-01 0.01 0.00 

80 2.45E-01 2.4468E-01   0.13   

85 2.94E-01 2.9359E-01   0.14   

88 3.32E-01 3.3231E-01   0.09   
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Table 4(a): Continued. 

# θ_TOA A&K MC VL |A&K vs MC| % |VL vs MC| % 

#   θo_TOA = 84.26 ϕ_TOA = 180     

0 1.93E-02 1.9299E-02 1.9302E-02 0.00 0.01 

10 2.07E-02 2.0702E-02 2.0704E-02 0.01 0.01 

20 2.38E-02 2.3789E-02 2.3785E-02 0.05 0.02 

30 2.87E-02 2.8704E-02 2.8708E-02 0.01 0.01 

40 3.58E-02 3.5825E-02 3.5821E-02 0.07 0.01 

50 4.60E-02 4.5964E-02 4.5996E-02 0.08 0.07 

60 6.10E-02 6.1032E-02 6.0999E-02 0.05 0.05 

70 8.58E-02 8.5844E-02 8.5833E-02 0.05 0.01 

80 1.38E-01 1.3812E-01   0.08   

85 2.00E-01 2.0053E-01   0.26   

88 2.92E-01 2.9182E-01   0.06   

            

MAX %       0.72 0.07 

AVER %       0.17 0.02 
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Table 4(b): Same as Table 3(b), except for OT=1.0 

# θ_TOA A&K  SS A&K  SS/MS % A&K MS MC VL |A&K vs MC| % |VL vs MC| % 

#     θo_TOA = 0 ϕ_TOA       

0 1.62E-01 53 3.06E-01 3.0752E-01 3.0754E-01 0.60 0.01 

10 1.61E-01 54 2.98E-01 3.0836E-01 3.0839E-01 3.31 0.01 

20 1.59E-01 51 3.12E-01 3.1111E-01 3.1120E-01 0.21 0.03 

30 1.56E-01 49 3.18E-01 3.1659E-01 3.1663E-01 0.56 0.01 

40 1.52E-01 47 3.23E-01 3.2585E-01 3.2592E-01 0.75 0.02 

50 1.49E-01 43 3.47E-01 3.4055E-01 3.4070E-01 1.75 0.05 

60 1.50E-01 40 3.75E-01 3.6243E-01 3.6273E-01 3.47 0.08 

70 1.55E-01 39 3.97E-01 3.8991E-01 3.9110E-01 1.93 0.31 

80 1.67E-01 42 3.98E-01 4.0614E-01   2.10   

85 1.76E-01 44 4.00E-01 3.9747E-01   0.64   

88 1.82E-01 49 3.71E-01 3.7759E-01   1.63   

#     θo_TOA = 70.47 ϕ_TOA = 0       

0 5.22E-02 38 1.37E-01 1.3215E-01 1.3212E-01 3.95 0.03 

10 4.90E-02 37 1.32E-01 1.2997E-01 1.2993E-01 1.89 0.04 

20 4.95E-02 38 1.30E-01 1.3393E-01 1.3388E-01 2.74 0.04 

30 5.45E-02 38 1.43E-01 1.4493E-01 1.4482E-01 1.04 0.07 

40 6.49E-02 39 1.66E-01 1.6422E-01 1.6417E-01 1.33 0.03 

50 8.24E-02 42 1.96E-01 1.9412E-01 1.9407E-01 1.06 0.03 

60 1.10E-01 47 2.34E-01 2.3816E-01 2.3830E-01 1.73 0.06 

70 1.53E-01 51 3.00E-01 3.0167E-01 3.0250E-01 0.55 0.28 

80 2.27E-01 57 3.98E-01 3.8969E-01   2.20   

85 2.84E-01 65 4.37E-01 4.4304E-01   1.38   

88 3.27E-01 71 4.61E-01 4.6949E-01   1.90   
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Table 4(b): Continued. 

# θ_TOA A&K  SS A&K  SS/MS % A&K MS MC VL |A&K vs MC| % |VL vs MC| % 

#     θo_TOA = 84.26 ϕ_TOA = 0       

0 1.94E-02 41 4.73E-02 4.6182E-02 4.6084E-02 2.46 0.21 

10 1.97E-02 42 4.69E-02 4.7059E-02 4.6982E-02 0.33 0.16 

20 2.17E-02 44 4.93E-02 5.0595E-02 5.0525E-02 2.52 0.14 

30 2.59E-02 48 5.40E-02 5.7169E-02 5.7091E-02 5.62 0.14 

40 3.26E-02 49 6.65E-02 6.7576E-02 6.7527E-02 1.55 0.07 

50 4.30E-02 51 8.43E-02 8.3321E-02 8.3204E-02 1.19 0.14 

60 5.96E-02 56 1.06E-01 1.0736E-01 1.0746E-01 0.87 0.09 

70 8.85E-02 60 1.48E-01 1.4695E-01 1.4749E-01 0.38 0.37 

80 1.52E-01 68 2.24E-01 2.2435E-01   0.37   

85 2.27E-01 75 3.03E-01 3.0495E-01   0.70   

88 3.12E-01 82 3.81E-01 3.8657E-01   1.45   

#     θo_TOA = 70.47 ϕ_TOA = 180       

0 5.21E-02 40 1.30E-01 1.3217E-01 1.3212E-01 1.45 0.04 

10 5.89E-02 43 1.37E-01 1.4004E-01 1.3997E-01 2.19 0.05 

20 6.88E-02 45 1.53E-01 1.5335E-01 1.5329E-01 0.30 0.03 

30 8.20E-02 48 1.71E-01 1.7226E-01 1.7226E-01 0.83 0.00 

40 9.87E-02 50 1.97E-01 1.9741E-01 1.9740E-01 0.01 0.01 

50 1.20E-01 52 2.31E-01 2.2996E-01 2.2997E-01 0.35 0.01 

60 1.47E-01 53 2.77E-01 2.7201E-01 2.7204E-01 1.97 0.01 

70 1.85E-01 56 3.30E-01 3.2695E-01 3.2715E-01 1.04 0.06 

80 2.45E-01 62 3.95E-01 3.9881E-01   0.91   

85 2.94E-01 66 4.45E-01 4.4428E-01   0.26   

88 3.32E-01 71 4.68E-01 4.6891E-01   0.28   
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Table 4(b): Continued. 

# θ_TOA A&K  SS A&K  SS/MS % A&K MS MC VL |A&K vs MC| % |VL vs MC| % 

#     θo_TOA = 84.26 ϕ_TOA = 180       

0 1.93E-02 43 4.49E-02 4.6179E-02 4.6085E-02 2.80 0.20 

10 2.07E-02 44 4.70E-02 4.7774E-02 4.7656E-02 1.53 0.25 

20 2.38E-02 46 5.17E-02 5.1865E-02 5.1701E-02 0.24 0.32 

30 2.87E-02 49 5.86E-02 5.8587E-02 5.8442E-02 0.03 0.25 

40 3.58E-02 53 6.75E-02 6.8463E-02 6.8293E-02 1.34 0.25 

50 4.60E-02 55 8.36E-02 8.2494E-02 8.2354E-02 1.38 0.17 

60 6.10E-02 59 1.03E-01 1.0276E-01 1.0251E-01 0.61 0.25 

70 8.58E-02 63 1.36E-01 1.3436E-01 1.3397E-01 1.36 0.29 

80 1.38E-01 71 1.94E-01 1.9475E-01   0.20   

85 2.00E-01 77 2.60E-01 2.6124E-01   0.58   

88 2.92E-01 83 3.52E-01 3.5258E-01   0.22   

#               

MAX %           5.62 0.37 

AVER %           1.35 0.11 
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Table 5(a): New results for SS away from the principal plane, OT=0.25. Columns (left to right) show: TOA 

VZA, followed by MYSTIC (MC), VLIDORT (VL), and relative deviations of the two. The sequence of TOA 

relative azimuths (top to bottom) is ϕ = 45o, 90o, 135o. 

# θ_TOA MC VL |VL vs MC| % 

# θo_TOA = 70.47 ϕ_TOA = 45   

0 3.3338E-02 3.3331E-02 0.02 

10 3.1814E-02 3.1813E-02 0.00 

20 3.2010E-02 3.2011E-02 0.00 

30 3.4297E-02 3.4297E-02 0.00 

40 3.9359E-02 3.9365E-02 0.02 

50 4.8555E-02 4.8547E-02 0.02 

60 6.4791E-02 6.4804E-02 0.02 

70 9.5982E-02 9.5984E-02 0.00 

80 1.9370E-01     

85 2.2488E-01     

88 1.7797E-01     

# θo_TOA = 84.26 ϕ_TOA = 45   

0 1.9262E-02 1.9261E-02 0.01 

10 1.9432E-02 1.9427E-02 0.02 

20 2.0795E-02 2.0798E-02 0.01 

30 2.3598E-02 2.3600E-02 0.01 

40 2.8277E-02 2.8291E-02 0.05 

50 3.5815E-02 3.5820E-02 0.01 

60 4.8371E-02 4.8396E-02 0.05 

70 7.2312E-02 7.2307E-02 0.01 

80 1.5171E-01     

85 2.0564E-01     

88 1.7939E-01     

# θo_TOA = 70.47 ϕ_TOA = 90   

0 3.3332E-02 3.3331E-02 0.00 

10 3.3695E-02 3.3695E-02 0.00 

20 3.4854E-02 3.4846E-02 0.02 

30 3.7000E-02 3.6989E-02 0.03 

40 4.0571E-02 4.0563E-02 0.02 

50 4.6440E-02 4.6433E-02 0.01 

60 5.6542E-02 5.6544E-02 0.00 

70 7.6066E-02 7.6066E-02 0.00 

80 1.3795E-01     

85 1.5866E-01     

88 1.2451E-01     
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Table 5(a): Continued. 

# θ_TOA MC VL |VL vs MC| % 

# θ_TOA = 84.26 ϕ_TOA = 90   

0 1.9264E-02 1.9261E-02 0.01 

10 1.9528E-02 1.9530E-02 0.01 

20 2.0368E-02 2.0374E-02 0.03 

30 2.1924E-02 2.1927E-02 0.01 

40 2.4470E-02 2.4476E-02 0.03 

50 2.8604E-02 2.8600E-02 0.01 

60 3.5621E-02 3.5628E-02 0.02 

70 4.9174E-02 4.9162E-02 0.02 

80 9.0296E-02     

85 1.2919E-01     

88 1.1919E-01     

# θo_TOA = 70.47 ϕ_TOA = 135   

0 3.3340E-02 3.3331E-02 0.03 

10 3.6389E-02 3.6386E-02 0.01 

20 4.0953E-02 4.0959E-02 0.01 

30 4.7221E-02 4.7218E-02 0.01 

40 5.5640E-02 5.5650E-02 0.02 

50 6.7307E-02 6.7314E-02 0.01 

60 8.4707E-02 8.4725E-02 0.02 

70 1.1465E-01 1.1462E-01 0.03 

80 1.9707E-01     

85 2.3109E-01     

88 1.8140E-01     

# θ_TOA = 84.26 ϕ_TOA = 135   

0 1.9268E-02 1.9261E-02 0.03 

10 2.0205E-02 2.0206E-02 0.00 

20 2.2271E-02 2.2274E-02 0.01 

30 2.5606E-02 2.5603E-02 0.01 

40 3.0547E-02 3.0539E-02 0.03 

50 3.7810E-02 3.7798E-02 0.03 

60 4.9031E-02 4.9035E-02 0.01 

70 6.8546E-02 6.8549E-02 0.00 

80 1.1351E-01     

85 1.6542E-01     

88 1.7560E-01     

#       

MAX  %     0.05 

AVER %     0.02 
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Table 5(b): Same as Table 5(a), except for MS. 

# θ_TOA MC VL |VL vs MC| % 

# θo_TOA = 70.47 ϕ_TOA = 45   

0 4.8720E-02 4.8822E-02 0.21 

10 4.7458E-02 4.7587E-02 0.27 

20 4.8618E-02 4.8741E-02 0.25 

30 5.2649E-02 5.2776E-02 0.24 

40 6.0484E-02 6.0644E-02 0.26 

50 7.3983E-02 7.4194E-02 0.28 

60 9.7304E-02 9.7571E-02 0.27 

70 1.4129E-01 1.4184E-01 0.39 

80 2.7906E-01     

85 3.0631E-01     

88 2.2969E-01     

# θo_TOA = 84.26 ϕ_TOA = 45   

0 2.8871E-02 2.9016E-02 0.50 

10 2.9270E-02 2.9415E-02 0.49 

20 3.1302E-02 3.1454E-02 0.48 

30 3.5272E-02 3.5447E-02 0.49 

40 4.1790E-02 4.2027E-02 0.56 

50 5.2253E-02 5.2511E-02 0.49 

60 6.9587E-02 6.9956E-02 0.53 

70 1.0250E-01 1.0308E-01 0.57 

80 2.1262E-01     

85 2.6667E-01     

88 2.1752E-01     

# θo_TOA = 70.47 ϕ_TOA = 90   

0 4.8725E-02 4.8823E-02 0.20 

10 4.9369E-02 4.9486E-02 0.24 

20 5.1457E-02 5.1570E-02 0.22 

30 5.5235E-02 5.5392E-02 0.28 

40 6.1462E-02 6.1636E-02 0.28 

50 7.1460E-02 7.1661E-02 0.28 

60 8.8268E-02 8.8524E-02 0.29 

70 1.1988E-01 1.2042E-01 0.45 

80 2.1880E-01     

85 2.3630E-01     

88 1.7418E-01     
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Table 5(b): Continued. 

# θ_TOA MC VL |VL vs MC| 

# θ_TOA = 84.26 ϕ_TOA = 90   

0 2.8867E-02 2.9016E-02 0.51 

10 2.9323E-02 2.9474E-02 0.51 

20 3.0763E-02 3.0910E-02 0.47 

30 3.3346E-02 3.3529E-02 0.55 

40 3.7572E-02 3.7774E-02 0.53 

50 4.4283E-02 4.4541E-02 0.58 

60 5.5520E-02 5.5880E-02 0.64 

70 7.6798E-02 7.7330E-02 0.69 

80 1.4128E-01     

85 1.8190E-01     

88 1.5386E-01     

# θo_TOA = 70.47 ϕ_TOA = 135   

0 4.8701E-02 4.8823E-02 0.25 

10 5.2132E-02 5.2229E-02 0.19 

20 5.7678E-02 5.7816E-02 0.24 

30 6.5726E-02 6.5865E-02 0.21 

40 7.6942E-02 7.7106E-02 0.21 

50 9.2890E-02 9.3090E-02 0.22 

60 1.1713E-01 1.1744E-01 0.27 

70 1.5936E-01 1.5984E-01 0.30 

80 2.7701E-01     

85 3.0915E-01     

88 2.3206E-01     

# θo_TOA = 84.26 ϕ_TOA = 135   

0 2.8869E-02 2.9016E-02 0.50 

10 2.9955E-02 3.0131E-02 0.58 

20 3.2613E-02 3.2785E-02 0.52 

30 3.6990E-02 3.7177E-02 0.50 

40 4.3575E-02 4.3797E-02 0.51 

50 5.3395E-02 5.3639E-02 0.45 

60 6.8633E-02 6.8969E-02 0.49 

70 9.5135E-02 9.5542E-02 0.43 

80 1.5549E-01     

85 2.1035E-01     

88 2.0870E-01     

#       

MAX %     0.69 

AVER %     0.39 
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Table 6(a): Same as Table 5(a), except for OT=1.0. 

# θ_TOA MC VL |VL vs MC| % 

# θo_TOA = 70.47 ϕ_TOA = 45   

0 5.2144E-02 5.2148E-02 0.01 

10 4.9700E-02 4.9693E-02 0.01 

20 4.9697E-02 4.9699E-02 0.01 

30 5.2638E-02 5.2635E-02 0.01 

40 5.9255E-02 5.9260E-02 0.01 

50 7.0845E-02 7.0835E-02 0.01 

60 8.9741E-02 8.9747E-02 0.01 

70 1.2059E-01 1.2059E-01 0.00 

80 1.7400E-01     

85 2.1737E-01     

88 2.5008E-01     

# θo_TOA = 84.26 ϕ_TOA = 45   

0 1.9299E-02 1.9302E-02 0.01 

10 1.9445E-02 1.9438E-02 0.04 

20 2.0759E-02 2.0756E-02 0.02 

30 2.3440E-02 2.3461E-02 0.09 

40 2.7940E-02 2.7947E-02 0.03 

50 3.5009E-02 3.5023E-02 0.04 

60 4.6449E-02 4.6470E-02 0.05 

70 6.6867E-02 6.6852E-02 0.02 

80 1.1277E-01     

85 1.6791E-01     

88 2.3311E-01     

# θo_TOA = 70.47 ϕ_TOA = 90   

0 5.2143E-02 5.2148E-02 0.01 

10 5.2606E-02 5.2605E-02 0.00 

20 5.4040E-02 5.4041E-02 0.00 

30 5.6674E-02 5.6669E-02 0.01 

40 6.0920E-02 6.0926E-02 0.01 

50 6.7579E-02 6.7586E-02 0.01 

60 7.8124E-02 7.8125E-02 0.00 

70 9.5537E-02 9.5544E-02 0.01 

80 1.2692E-01     

85 1.5378E-01     

88 1.7472E-01     
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Table 6(a): Continued. 

# θ_TOA MC VL |VL vs MC| % 

# θ_TOA = 84.26 ϕ_TOA = 90   

0 1.9298E-02 1.9302E-02 0.02 

10 1.9563E-02 1.9561E-02 0.01 

20 2.0376E-02 2.0374E-02 0.01 

30 2.1868E-02 2.1863E-02 0.02 

40 2.4278E-02 2.4286E-02 0.03 

50 2.8156E-02 2.8155E-02 0.00 

60 3.4591E-02 3.4598E-02 0.02 

70 4.6448E-02 4.6422E-02 0.06 

80 7.3936E-02     

85 1.0824E-01     

88 1.5321E-01     

# θo_TOA = 70.47 ϕ_TOA = 135   

0 5.2145E-02 5.2148E-02 0.01 

10 5.6768E-02 5.6777E-02 0.02 

20 6.3459E-02 6.3451E-02 0.01 

30 7.2223E-02 7.2216E-02 0.01 

40 8.3399E-02 8.3404E-02 0.01 

50 9.7734E-02 9.7737E-02 0.00 

60 1.1681E-01 1.1683E-01 0.01 

70 1.4406E-01 1.4405E-01 0.00 

80 1.8845E-01     

85 2.2532E-01     

88 2.5428E-01     

# θ_TOA = 84.26 ϕ_TOA = 135   

0 1.9302E-02 1.9302E-02 0.00 

10 2.0247E-02 2.0260E-02 0.06 

20 2.2316E-02 2.2322E-02 0.03 

30 2.5619E-02 2.5613E-02 0.02 

40 3.0470E-02 3.0460E-02 0.03 

50 3.7539E-02 3.7519E-02 0.05 

60 4.8275E-02 4.8293E-02 0.04 

70 6.6561E-02 6.6553E-02 0.01 

80 1.0617E-01     

85 1.5427E-01     

88 2.2294E-01     

#       

MAX  %     0.09 

AVER  %     0.02 
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Table 6(b): Same as Table 5(b), except for OT=1.0. 

# θ_TOA MC VL |VL vs MC| % 

# θo_TOA = 70.47 ϕ_TOA = 45   

0 1.3213E-01 1.3212E-01 0.01 

10 1.3077E-01 1.3071E-01 0.05 

20 1.3408E-01 1.3399E-01 0.06 

30 1.4270E-01 1.4267E-01 0.02 

40 1.5786E-01 1.5787E-01 0.00 

50 1.8141E-01 1.8134E-01 0.04 

60 2.1605E-01 2.1614E-01 0.04 

70 2.6581E-01 2.6657E-01 0.28 

80 3.3318E-01     

85 3.7201E-01     

88 3.8894E-01     

# θo_TOA = 84.26 ϕ_TOA = 45   

0 4.6195E-02 4.6084E-02 0.24 

10 4.6864E-02 4.6752E-02 0.24 

20 4.9525E-02 4.9430E-02 0.19 

30 5.4521E-02 5.4443E-02 0.14 

40 6.2441E-02 6.2374E-02 0.11 

50 7.4442E-02 7.4386E-02 0.08 

60 9.2827E-02 9.2855E-02 0.03 

70 1.2300E-01 1.2334E-01 0.27 

80 1.8117E-01     

85 2.4139E-01     

88 3.0347E-01     

# θo_TOA = 70.47 ϕ_TOA = 90   

0 1.3213E-01 1.3212E-01 0.01 

10 1.3365E-01 1.3360E-01 0.04 

20 1.3821E-01 1.3817E-01 0.03 

30 1.4627E-01 1.4624E-01 0.03 

40 1.5858E-01 1.5857E-01 0.01 

50 1.7638E-01 1.7639E-01 0.01 

60 2.0152E-01 2.0164E-01 0.06 

70 2.3631E-01 2.3689E-01 0.25 

80 2.8002E-01     

85 3.0258E-01     

88 3.0867E-01     
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Table 6(b): Continued. 

# θ_TOA MC VL |VL vs MC| % 

# θ_TOA = 84.26 ϕ_TOA = 90   

0 4.6193E-02 4.6084E-02 0.24 

10 4.6799E-02 4.6709E-02 0.19 

20 4.8750E-02 4.8643E-02 0.22 

30 5.2198E-02 5.2095E-02 0.20 

40 5.7598E-02 5.7486E-02 0.19 

50 6.5700E-02 6.5592E-02 0.16 

60 7.8053E-02 7.7971E-02 0.11 

70 9.7934E-02 9.7932E-02 0.00 

80 1.3531E-01     

85 1.7406E-01     

88 2.1719E-01     

# θo_TOA = 70.47 ϕ_TOA = 135   

0 1.3214E-01 1.3212E-01 0.02 

10 1.3788E-01 1.3784E-01 0.03 

20 1.4778E-01 1.4777E-01 0.00 

30 1.6215E-01 1.6211E-01 0.03 

40 1.8154E-01 1.8148E-01 0.03 

50 2.0703E-01 2.0701E-01 0.01 

60 2.4061E-01 2.4069E-01 0.03 

70 2.8480E-01 2.8507E-01 0.10 

80 3.4116E-01     

85 3.7422E-01     

88 3.8895E-01     

# θ_TOA = 84.26 ϕ_TOA = 135   

0 4.6197E-02 4.6085E-02 0.24 

10 4.7364E-02 4.7276E-02 0.18 

20 5.0424E-02 5.0328E-02 0.19 

30 5.5579E-02 5.5418E-02 0.29 

40 6.3197E-02 6.3017E-02 0.28 

50 7.4178E-02 7.3973E-02 0.28 

60 9.0271E-02 9.0085E-02 0.21 

70 1.1555E-01 1.1528E-01 0.24 

80 1.6362E-01     

85 2.1586E-01     

88 2.8408E-01     

#       

MAX  %     0.29 

AVER  %     0.12 

Table 7: See in the text, page 11. 


