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Abstract 22 

A land data assimilation system is developed to merge satellite soil moisture retrievals into the Joint 23 

U.K. Land Environment Simulator (JULES) land surface model (LSM) using the Local Ensemble 24 

Transform Kalman Filter (LETKF). The system assimilates microwave soil moisture retrievals from 25 

the Soil Moisture Active Passive (SMAP) radiometer and the Advanced Scatterometer (ASCAT) after 26 

bias correction based on cumulative distribution function fitting. The soil moisture assimilation 27 

estimates are evaluated with ground-based soil moisture measurements over the continental U.S. for 28 

five consecutive warm seasons (May–September of 2015–2019). The result shows that both SMAP and 29 

ASCAT retrievals improve the accuracy of soil moisture estimates. Especially, the SMAP single-sensor 30 

assimilation experiment shows the best performance with the increase of temporal anomaly correlation 31 

by ΔR ~ 0.05 for surface soil moisture and ΔR ~ 0.03 for root-zone soil moisture compared with the 32 

LSM simulation without satellite data assimilation. SMAP assimilation is more skillful than ASCAT 33 

assimilation primarily because of the greater skill of the assimilated SMAP retrievals compared to the 34 

ASCAT retrievals. The skill improvement also depends significantly on the region; the higher skill 35 

improvement in the western U.S. compared to the eastern U.S. is explained by the Kalman gain in the 36 

two experiments. Additionally, the regional skill differences in the single-sensor assimilation 37 

experiments are attributed to the number of assimilated observations. Finally, the soil moisture 38 

assimilation estimates provide more realistic land surface information than model-only simulations for 39 

the 2015 and the 2016 western U.S. droughts, suggesting the advantage of using satellite soil moisture 40 

retrievals in the current drought monitoring system. 41 

 42 

Keywords: Soil moisture assimilation; LETKF; JULES LSM; SMAP; ASCAT 43 
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1. Introduction 45 

Land surface conditions play an important role in drought development, runoff generation, and 46 

many other processes related to the land-atmosphere exchange of energy and water (Bateni and 47 

Entekhabi 2012; Seneviratne et al., 2010; Seneviratne et al., 2006). In particular, soil moisture states 48 

have a memory operating at 1–2 month (i.e., subseasonal) time scales (Koster et al., 2011; Seo et al., 49 

2019; Seo et al., 2020). In future climate scenarios, the role of the land surface may increase with 50 

enhanced land-atmosphere coupling, and an expansion of the coupling area may increase the potential 51 

risk of severe droughts and heat waves (Dirmeyer et al., 2013). Soil moisture conditions are typically 52 

inferred from (1) ground-based observations, (2) remote-sensing retrievals from active and passive 53 

microwave satellite sensors, or (3) land surface model (LSM) simulations forced with surface 54 

meteorological data from observations or atmospheric analysis estimates. In situ measurements provide 55 

the most reliable land information of the surface and sub-subsurface layers at the measurement location 56 

but have limitations in terms of spatial and temporal resolution and coverage. Satellite remote sensing 57 

provides only surface soil moisture conditions due to the limitation in penetration depth. LSM 58 

simulations provide complete spatio-temporal coverage but contain potentially large uncertainties in 59 

the model physical parameterization and the surface meteorological forcing variables.  60 

Space-borne microwave instruments can be used to retrieve surface soil moisture by measuring 61 

soil dielectric properties. Past and current microwave instruments include the X-band (10.7 GHz) and 62 

C-band (6.9 GHz) channels of the passive Advanced Microwave Scanning Radiometer (AMSR-E; Owe 63 

et al., 2008; Owe et al., 2001) and its successor (AMSR2; Parinussa et al., 2015), the X-band (10.65 64 

GHz) passive Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI; Gao et al., 65 

2006), the C-band (6.63 GHz) passive Scanning Multichannel Microwave Radiometer (SMMR; De Jeu 66 

2003), the C-band (~5.4 GHz) multi-angular Sentinel-1 Synthetic Aperture Radar (SAR) data (Torres 67 

et al., 2012), and the C-band (5.3 GHz) active (radar) microwave Advanced Scatterometer (ASCAT; 68 

Wagner et al., 2013). The Soil Moisture and Ocean Salinity (SMOS; Kerr et al., 2010) and Soil Moisture 69 

Active Passive (SMAP; Entekhabi et al., 2010a) sensors measure passive microwaves at L-band (1.4 70 
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GHz) frequencies and are specifically designed to retrieve surface soil moisture. The typical soil 71 

penetration depth ranges from ~1-2 cm for X- and C-band retrievals to ~5 cm for L-band retrievals. The 72 

spatial (horizontal) resolution is ~20 km for X- and C-band retrievals and ~40 km for L-band retrievals.  73 

Land data assimilation can be used to combine the soil moisture information from diverse 74 

satellite observations with the advantages of LSMs (Reichle 2008). Most previous studies on land data 75 

assimilation adopted simplified or ensemble-based filtering methods such as the Extended Kalman 76 

Filter (EKF) or the Ensemble Kalman Filter (EnKF) rather than variational assimilation approaches, 77 

which require an adjoint of the land surface model that is difficult to derive (Lahoz and De Lannoy 78 

2014; Reichle et al., 2001). In ensemble-based methods, the background error covariance is diagnosed 79 

from the ensemble of (nonlinear) land model simulations. The NASA Goddard Earth Observing System 80 

(GEOS) land data assimilation system adopted the EnKF to constrain modeled land surface variables 81 

using satellite measurements such as soil moisture (Reichle et al., 2008; Reichle et al., 2002a; Reichle 82 

et al., 2002b), land surface temperature (Reichle et al., 2010), snow (De Lannoy et al., 2010), and 83 

terrestrial water storage (Forman et al., 2012). The European Centre for Medium-Range Weather 84 

Forecasts numerical weather prediction system relies on an EKF-based land surface data assimilation 85 

system that combines conventional near-surface observations (two-meter air temperature and relative 86 

humidity) with ASCAT surface soil moisture retrievals (Albergel et al., 2012; De Rosnay et al., 2013). 87 

Several previous studies perform soil moisture assimilation experiments and evaluate the 88 

resulting soil moisture estimates against in situ observations. For example, Liu et al., (2011) 89 

demonstrated that assimilating AMSR-E soil moisture retrievals increases soil moisture skill compared 90 

to an LSM simulation without data assimilation (often referred to as the “open loop”) and Albergel et 91 

al., (2012) showed a benefit of assimilating ASCAT satellite for improved soil moisture analysis. 92 

Assimilating ASCAT and AMSR-E soil moisture retrievals yields comparable skill improvements, and 93 

assimilating both data sets consistently matched or exceeded the best results from the single-sensor 94 

assimilation experiments (Draper et al., 2012). De Lannoy and Reichle (2016) found that the 95 

assimilation of SMOS soil moisture retrievals or brightness temperatures results in improved soil 96 



5 

 

moisture estimates over North America and Ridler et al., (2014) also addressed the improvement in 97 

Western Denmark. Moreover, Pan et al., (2016) suggested that SMAP provides significant added value 98 

for data assimilation. Similarly, Lievens et al., (2017) demonstrated soil moisture skill improvements 99 

through SMAP and Sentinel-1 data assimilation. Finally, the global SMAP Level-4 Surface and Root-100 

zone Soil Moisture (L4_SM) product, which has been produced operationally by assimilating SMAP 101 

L-band brightness temperature observations into the NASA Catchment LSM at 9-km resolution with 102 

~3-day latency since 2015 (Reichle et al., 2017a; Reichle et al., 2017b), has significantly higher skill 103 

than model-only soil moisture estimates (Reichle et al., 2019). 104 

Based on the aforementioned studies, SMAP satellite retrievals have a strong sensitivity to 105 

soil moisture in a slightly deeper surface layer and perform better in satellite data assimilation than other 106 

satellite soil moisture retrievals (Al-Yaari et al., 2019). On the other hand, ASCAT satellite retrievals 107 

have been available from the Meteorological Operational Satellite (METOP)-A launched in 2006, the 108 

METOP-B in 2012, and the most recently launched METOP-C in 2018, which provide the data with 109 

wide spatial coverage for global analysis as well as long-term data useful for climate reanalysis. Due to 110 

these advantages, SMAP and ASCAT have been widely used by many U.S. and European institutes in 111 

operation and research for the satellite soil moisture data assimilation. One of the motivations of this 112 

study is to evaluate the skill improvement of soil moisture estimates through the assimilation of these 113 

two widely-used satellite retrievals, which are produced by different remote sensing technologies in 114 

terms of radiation bands and active or passive sensors. A careful comparison of the data from the 115 

observation data sensitivity experiments using identical LSM and the data assimilation technique will 116 

help understand the relative advantages or disadvantages of the two satellite retrievals. Another 117 

motivation of this study is to apply several metrics that measure the skill improvement in the satellite 118 

soil moisture data assimilation in a quantitative manner. The skill improvement can be contributed by 119 

many factors, such as the quality of the assimilated satellite retrievals (relative to the open loop 120 

estimates), the number of remote-sensing data being assimilated, and the accuracy of the model 121 

background. Often these impacts are entangled in the data assimilation system output and hardly 122 

decomposed by conventional metrics. In this regard, there are insufficient studies in previous literature 123 
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that quantify the individual contribution of each factor to the skill increase. One goal of this study is to 124 

help identify the dominant factors. This information can eventually be utilized for planning future soil 125 

moisture remote sensing technologies.  126 

In this study, we carry out a series of soil moisture data assimilation experiments with active 127 

and passive microwave retrievals designed to investigate the impact based on the following objectives. 128 

The first objective is to investigate the skill improvement of surface and root-zone soil moisture through 129 

the assimilation of SMAP and ASCAT soil moisture retrievals into the Joint U.K. Land Environment 130 

Simulator (JULES) LSM using the Local Ensemble Transform Kalman Filter (LETKF), a variant of the 131 

EnKF. Key distinguishing features of the LETKF are its efficiency of parallel computation through 132 

separating the domain into independent local patches and that the LETKF enables to inflate the analysis 133 

error covariance. Skill improvement relative to model-only (open loop) estimates is assessed versus in 134 

situ soil moisture measurements. The second objective is to introduce assimilation metrics that break 135 

down the skill improvement into three quantitative components: (i) the skill of the assimilated soil 136 

moisture retrievals relative to open loop simulation, (ii) an approximation of the Kalman gain, and (iii) 137 

the number of assimilated observations. Finally, following previous studies that demonstrated the value 138 

of satellite soil moisture assimilation to enhance the drought monitoring (Mladenova et al., 2019; Xu et 139 

al., 2020), we assess the benefit of assimilating satellite soil moisture retrievals in the context of drought 140 

monitoring, specifically its potential for the U.S. drought monitoring system 141 

(https://droughtmonitor.unl.edu/).  142 

The paper is organized as follows. Section 2 introduces the model and datasets used in this 143 

study. Section 3 describes the assimilation methodology, our validation approach, and the assimilation 144 

metrics. Section 4 presents and discusses the results of this study. Finally, Section 5 summarizes the 145 

results and their implications for future studies. 146 

 147 

2. Model and Data 148 

https://droughtmonitor.unl.edu/
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2.1 JULES Land Surface Model 149 

This study uses the JULES community LSM (Best et al., 2011) developed by the U. K. Met 150 

Office. The soil moisture sub-model consists of 4 vertical layers of 0.1, 0.25, 0.65, and 2 meters in 151 

thickness. In this study, the model is set up with a 50 km spatial resolution. Land cover classes in JULES 152 

consist of five plant functional types (broadleaf trees, needleleaf trees, C3 temperate grass, C4 tropical 153 

grass, and shrubs) and four non-vegetation types (urban, inland water, bare soil, and land-ice). Surface 154 

parameters (e.g., albedo, roughness length) are specified for each land cover, and the model prognostic 155 

variables (e.g., soil moisture) are determined in response to atmospheric forcing variables, including 2-156 

m air temperature and humidity, precipitation, 10-m wind speed, radiative fluxes, and pressure at the 157 

surface. In this study, the surface meteorological forcing variables except precipitation are obtained 158 

from the 6-hourly, 55-year Japanese Reanalysis (JRA-55) with 0.56° spatial resolution (Kobayashi et 159 

al., 2015). The forcing dataset is linearly interpolated to the model spatial resolution. Precipitation 160 

forcing, which is the most critical input determining soil moisture accuracy in land surface modeling, 161 

uses the Global Satellite Mapping of Precipitation (GSMaP; Aonashi et al., 2009; Kubota et al., 2007; 162 

Ushio et al., 2003; Ushio et al., 2009). GSMaP originally provides an hourly, gauge-calibrated rain rate 163 

with a 10 km spatial resolution over a quasi-global domain (60°S–60°N). This study uses the GSMaP 164 

precipitation data within the 60°S–60°N latitude band and JRA-55 for the rest of the model domain. 165 

GSMaP has been processed to the 6-hourly averaged data to match the temporal resolution of the JRA-166 

55 reanalysis.  167 

Errors in the JULES model estimates are propagated through an ensemble approach. Following 168 

Reichle et al., (2008), selected surface meteorological forcing variables and model prognostic variables 169 

are perturbed with random numbers, specifically radiation, rainfall, and soil moisture. As displayed in 170 

Table 1, normally distributed, additive perturbations are used for the 0-10 cm (top) layer soil moisture 171 

prognostic variable and the longwave radiation forcing, while lognormally distributed multiplicative 172 

perturbation are used for the precipitation and shortwave radiation forcing. The ensemble mean of 173 

additive and multiplicative perturbations is 0 and 1, respectively. All random perturbations are subject 174 
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to a first-order autoregressive (AR1) process with correlation time scales of 1 day for forcing variables 175 

and 3 hours for soil moisture content. Moreover, perturbations are also correlated spatially with a 176 

correlation scale of 50 km following an isotropic exponential decay model. In addition, cross-177 

correlations, imposed on perturbations of the precipitation and radiation fields, ensure physical 178 

consistency between the meteorological forcing variables. For example, a positive perturbation of the 179 

downward shortwave radiation is (statistically) paired with a negative perturbation of the downward 180 

longwave radiation and precipitation. A detailed description of perturbing the surface meteorological 181 

forcing and model prognostic variables is provided in Reichle et al., (2008). 182 

 183 

Table 1 Parameters for perturbations to near-surface atmospheric boundary forcing variables and 184 

JULES soil moisture model prognostic variable at 0-10 cm (top) layer. A first-order auto-regressive 185 

(AR1) model is used for temporal correlations.  Spatial correlation lengths scales are isotropic.  186 

Perturbation 

variables 

Additive (A) / 

Multiplicative (M) 

Standard 

deviation 

AR1 correlation 

time scale 

Spatial 

correlation 

Precipitation M 0.5 1 day 50 km 

Downward 

shortwave (SW) 

M 0.3 1 day 50 km 

Downward 

longwave (LW) 

A 50 W m-2 1 day 50 km 

Soil moisture 

content 

A 0.002 m3 m-3 3 hours 50 km 

 187 

2.2 Data 188 

2.2.1 In situ soil moisture measurements 189 

For the validation, this study uses in situ soil moisture measurements from the U.S. Natural 190 
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Resources Conservation Service (NRCS) Soil Climate Analysis Network (SCAN; Schaefer et al., 2007), 191 

the U.S. Climate Reference Network (USCRN; Diamond et al., 2013; Bell et al., 2013), and the 192 

Snowpack Telemetry (SNOTEL) network. Data are provided as hourly measurements at 5, 10, and 20 193 

cm depths with flags for problematic observations in terms of data quality. Only datasets of “good” 194 

quality and simultaneously measured at three different depths are used. We further discard unrealistic 195 

values such as the data beyond the physically possible range and exclude measurements when the soil 196 

is frozen. After the quality control of the hourly data, we calculate daily mean soil moisture. 197 

Two additional screens are imposed before a measurement site is used in the validation of the 198 

assimilation estimates. First, sites must have the data available more than 50 % during the entire 199 

validation period. Second, sites with the particularly poor skill of either the SMAP or ASCAT satellite 200 

retrievals relative to the open loop estimates (𝑅𝑠𝑎𝑡 − 𝑅𝑜𝑝𝑒𝑛𝑙𝑜𝑜𝑝 < −0.2) are excluded. This criterion 201 

screens out 109 in situ measurement stations out of 244, and the remaining 135 stations are used for the 202 

validation. This second screen avoids validation at sites where the satellite data should not be 203 

assimilated in the first place, leaving the enhancement of the QC algorithm for future work. The network 204 

sites used in the validation of the data assimilation results are mapped in Figure 1. Finally, in situ 205 

“surface” soil moisture corresponds to measurements at 5 cm depth, and in situ “root-zone” soil 206 

moisture corresponds to a layer thickness-weighted average of the measurements at 5, 10, and 20 cm 207 

depths. 208 

Validation results are broken down by land cover type (Figure 1). Land cover is from the 209 

MODIS Collection 5 product (Friedl et al., 2010), which provides data at 500 m spatial resolution with 210 

17 International Geosphere-Biosphere Programme (IGBP) classifications (Loveland and Belward 1997): 211 

(1) evergreen needleleaf forests, (2) evergreen broadleaf forests, (3) deciduous broadleaf forests, (4) 212 

deciduous needleleaf forests, (5) mixed forests, (6) closed shrubland, (7) open shrublands, (8) woody 213 

savannas, (9) savannas, (10) grasslands, (11) permanent wetlands, (12) croplands, (13) urban and built-214 

up lands, (14) cropland/natural vegetation mosaics, (15) permanent snow and ice, (16) barren, and (17) 215 

water. For the analysis by land cover, we grouped IGBP classes 6-9 and 14 into a broader “mixed land 216 
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cover” class. The validation is performed at the point of in situ observations in which 0.5 deg modeled 217 

soil moisture estimates are interpolated. If the point of in situ sites is on a specified land cover, we 218 

define the result over there. 219 

 220 

 221 

Figure 1 Location of monitoring sites of the SCAN (circle), USCRN (triangle), and SNOTEL 222 

(square) networks over the continental U.S. Overlaid are the MODIS land cover classes with “forest” 223 

consisting of IGBP classes 1-5 and “mixed cover” consisting of IGBP classes 6-9 and 14.  224 

 225 

2.2.2 Assimilated satellite soil moisture retrievals  226 

This study assimilates near-surface soil moisture datasets provided by the L-band (1.4 GHz) 227 

passive (radiometer) microwave SMAP Level-2 product (O’Neill et al., 2019) and the C-band (5.3 GHz) 228 

active (radar) microwave ASCAT product 229 

(https://navigator.eumetsat.int/product/EO:EUM:DAT:METOP:SOMO25). The SMAP and ASCAT 230 

data are available from May 2015 and from October 2006 to the present, respectively. As mentioned 231 

above, the spatial resolution and soil penetration depth differ for the two datasets. Moreover, the SMAP 232 

retrievals, unlike the ASCAT retrievals, are subject to errors in their ancillary inputs of soil temperature 233 

https://navigator.eumetsat.int/product/EO:EUM:DAT:METOP:SOMO25
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and vegetation water content (Paloscia and Pampaloni 1988; Schmugge et al., 1986). In contrast, the 234 

ASCAT data are more sensitive to noise from multiple scattering, especially over topographically 235 

complex, wetland, and forest regimes (Dobson and Ulaby 1986). 236 

The observation error standard deviations in the data assimilation are set to 0.04 m3 m-3 for 237 

SMAP retrievals (Chan et al., 2016) and 10% (in relative saturation units) for ASCAT retrievals (Dorigo 238 

et al., 2010). In both cases, spatially and temporally constant values are used. Prior to assimilation, 239 

quality control for the satellite data is applied based on the data quality flags provided with each satellite 240 

dataset. Additionally, observations are discarded where MODIS land cover indicates forests (> 60% 241 

trees and woody vegetation) or grid cells with a wetland cover area fraction greater than 10% (indicated 242 

by ASCAT data). The ASCAT data are also discarded, where topographical complexity exceeds 10% 243 

(Draper et al., 2012). Finally, we exclude soil moisture retrievals from the assimilation whenever the 244 

modeled surface temperature is less than 274 K, precipitation exceeds 50 mm day-1, or the land is 245 

covered by snow in the model simulation. 246 

 247 

3. Methodology 248 

3.1 Data assimilation method 249 

The assimilation is performed using the LETKF (Hunt et al., 2007; Miyoshi and Yamane 2007).  250 

Similar to the EnKF used in the SMAP L4_SM algorithm (Reichle et al., 2017b), the LETKF scheme 251 

used here separates the domain into a number of independently processed local patches. When analyzing  252 

the model states at the center of each local patch, all nearby observations within the local patch are used, 253 

which allows for efficient parallel computations in a spatially distributed analysis. Unlike the EnKF of 254 

the L4_SM algorithm, the LETKF used here is a deterministic filter that does not perturb the assimilated 255 

observations, thereby avoiding the concomitant sampling noise.  256 

In the following, 𝑋 denotes the state vector within a specified local patch, and subscripts 𝑏 and 257 

𝑎 denote the prior (i.e., background) and the updated (i.e., analysis) states, respectively. The dimension 258 
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of 𝑋 is 𝐿 × 𝑁 composed of an 𝐿 dimensional local patch of 𝑁 ensemble members. Generally, the local 259 

patch could be 3-dimensional, characterized by horizontal and vertical grid extent. However, this study 260 

defines only a 2-dimensional, horizontal local patch (150 km ×150 km) because only top layer soil 261 

moisture is analyzed. Formally, the analyzed state vector 𝑋𝑎 is given by 262 

𝑋𝑎 = 𝑋̅𝑎 + 𝛿𝑋𝑎                                                                 (1) 263 

where 𝑋̅𝑎 is an 𝐿 × 1 matrix of analysis ensemble means and δ𝑋𝑎 denotes an 𝐿 × 𝑁 matrix of analysis 264 

perturbations. They are defined by 265 

𝑋̅𝑎 = 𝑥̅𝑏 + 𝛿𝑥̃𝑎                                                               (2) 266 

𝛿𝑥̃𝑎 = 𝛿𝑋𝑏𝑃̃𝑎(𝛿𝑌)
𝑇𝑅−1𝑑                                                      (3) 267 

In Eq. (2), 𝑥̅𝑏 indicates the background forecast mean and 𝛿𝑥̃𝑎 denotes the analysis increment. In Eq. 268 

(3), 𝛿𝑋𝑏 , 𝑃̃𝑎 , 𝛿𝑌, 𝑅, and 𝑑 are background forecast perturbation, analysis error covariance, forward 269 

operated forecast ensemble perturbations, observation error covariance, and observational innovation, 270 

respectively. The observational innovation vector 𝑑 is the difference between observations 𝑦0 and their 271 

background ensemble mean counterparts 𝐻(𝑋𝑏)̅̅ ̅̅ ̅̅ ̅̅ , where 𝐻 is possibly a nonlinear observation operator 272 

and is replaced with the linearized version. The observation operator projects the modeled soil moisture 273 

background to the locations of the satellite observations using bilinear interpolation. 274 

The forward-operated background forecast ensemble and the analysis error covariance in 275 

observation space are written as 276 

𝛿𝑌 = 𝐻(𝑋𝑏)                                                                  (4) 277 

𝑃̃𝑎 = [𝛿𝑌𝑇𝑅−1𝛿𝑌 + (𝑁 − 1)𝐼/𝜌]−1                                           (5) 278 

where 𝜌 is a covariance inflation parameter for the analysis error covariance. The parameter 𝜌 helps 279 

avoid the underestimation of the covariance which is a common problem of filter divergence caused by 280 

the assumption of spatially and temporally constant forcing and observation errors and the use of a 281 

limited number of ensemble members. In this study, we apply a multiplicative covariance inflation of 282 
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20 % of the spread (i.e., 𝜌 =1.2). After calculating analysis ensemble states for all independent local 283 

patches, we collect the analysis results from each local patch into analysis for the entire domain. 284 

Covariance localization is a useful method to moderate spurious sample error correlation 285 

estimates by applying a distance-dependent reduction of the sample error covariance estimates (Hamill 286 

et al., 2001; Houtekamer and Mitchell 2001). The LETKF scheme contains the weighting function of 287 

the localization by separation into local patches. The function weights 1 inside and 0 outside the local 288 

patch and by weighting the observational error covariance according to the distance from the local patch 289 

center (Hunt et al., 2007). The covariance localization via the weighting function within the local patch 290 

works by assigning larger errors to more distant observations (Miyoshi and Yamane 2007). The more 291 

closely the weighting function of the covariance localization is centered around the local patch center, 292 

the more the scheme resembles a 1-D filter. It can be realized by multiplying the observation error 293 

covariance by the inverse of the smooth weighting function within each local patch in which the range 294 

of weighting function is possibly 0 to 1. The weighting function 𝑤(𝑟𝑖) is based on a Gaussian function 295 

as 296 

𝑤(𝑟𝑖) = exp⁡(−𝑟𝑖
2/2𝜎2)                                                         (6) 297 

where 𝑟𝑖 denotes the distance of 𝑖-th observation within each local patch from the local patch center and 298 

𝜎  represents a localization scale parameter. In this experiment, we use a localization length scale 299 

parameter value of 30 km. That is, the LETKF is set up almost like a 1-D filter, with weights of just 300 

10-2~10-3 near the edge of the local patch. 301 

 302 

3.2 Bias correction 303 

There is often a large discrepancy between soil moisture contents from remote sensing 304 

retrievals and LSMs, owing to uncertainties in model physics and forcing data and differences in the 305 

associated layer depths. These discrepancies manifest in sometimes large biases in the mean, variance, 306 

and higher-moment statistics of soil moisture between the satellite retrievals and the model simulation. 307 
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One way to correct for such biases is to match the cumulative distribution functions (CDFs) between 308 

the satellite dataset and the model simulation (Reichle and Koster 2004). Such a CDF matching adjusts 309 

all moments and differs from a linear rescaling that matches only the mean values and standard 310 

deviations based on the assumption of a Gaussian distribution (Yilmaz and Crow 2013). CDF matching, 311 

which is used here, is thus more appropriate for representing skewed datasets and also avoids violating 312 

the variables’ physical bounds. Over North America, for instance, the CDFs of surface soil moisture 313 

from SMAP retrievals, ASCAT retrievals, and the LSM open loop simulation differ considerably (Fig. 314 

2). Prior to data assimilation, the raw SMAP and ASCAT soil moisture retrievals are rescaled to the 315 

LSM climatology based on the CDFs, which is done separately for each grid cell. The specified 316 

observation error standard deviation is also rescaled using the ratio of the standard deviation of the 317 

satellite to modeled soil moisture time series at each grid cell (Liu et al., 2011). 318 

 319 
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 320 

Figure 2 The cumulative distribution function of surface soil moisture content as a fraction of 321 

saturation from SMAP retrievals (April 2015–December 2019), ASCAT retrievals (January 2010–322 

December 2019), and the LSM open loop simulation (January 2010–December 2019) over North 323 

America (130°W–75°W, 30°N–50°N). 324 

 325 

3.3 Data assimilation experiments 326 

This study performs three data assimilation experiments by specifying different sets of soil 327 

moisture retrieval data to be assimilated into the JULES LSM, including two single-sensor experiments 328 

using SMAP and ASCAT satellite retrievals, respectively, and a combined SMAP plus ASCAT multi-329 

sensor experiment, hereafter referred to as DA(SMAP), DA(ASCAT), and DA(SMAP+ASCAT), 330 
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respectively. The specific description of the LSM configuration and data assimilation method was 331 

provided in Sections 2.1 and 3.1, respectively. The experiments use 12 ensemble member and a 3-hour 332 

assimilation cycle. They are conducted for May-September of 2015–2019. As a baseline, a 12-member, 333 

open loop ensemble experiment is also performed using the same ensemble perturbations but no data 334 

assimilation.  The open loop skill serves as a baseline for measuring the skill improvement from the 335 

satellite data assimilation. 336 

 337 

3.4 Validation strategy 338 

The assimilation and open loop estimates are validated against the in situ soil moisture 339 

measurements described in Section 2.2.1. This study primarily measures the skill in temporal variations 340 

using the Pearson correlation coefficient (R) applied to anomaly time series, calculated by removing 341 

monthly-mean values for each calendar month. This anomaly correlation is computed for daily averages 342 

of the surface and root-zone anomaly soil moisture. This study also measures the data assimilation 343 

performance based on the unbiased root-mean-square error (ubRMSE) of the raw soil moisture time 344 

series (Entekhabi et al., 2010b), which avoids some of the shortcomings of the RMSE metric in the 345 

presence of mean bias. Based on the Fisher Z transform, we compute approximate 95% confidence 346 

levels for the anomaly correlations at in situ sites. These confidence levels depend on the estimated R 347 

value and the number of degrees of freedom. The 95% confidence intervals are calculated by averaging 348 

the 95% confidence intervals across the in situ sites and subsequently dividing by the square root of the 349 

number of sites. The model surface soil moisture is validated against in situ measurements at 5 cm depth, 350 

and the model root-zone soil moisture is validated against the depth-weighted root-zone in situ 351 

measurements defined in Section 2.2.1. The skill improvement of the data assimilation with respect to 352 

the open loop is defined as the R value of the assimilated product minus that of the open loop model. 353 

 354 

3.5 Assimilation metrics 355 
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This study introduces quantitative assimilation metrics to decompose skill improvement from 356 

data assimilation. Three components determine the impact of the data assimilation on the model 357 

estimates: (1) the skill difference between the satellite retrievals and the open loop estimates (∆𝑅𝑠𝑎𝑡), 358 

(2) the approximate weighting of the assimilated observations in the analysis update (𝐾𝐺), and (3) the 359 

average number of assimilated observation samples (𝑁𝑠𝑎𝑡). Each metric is written as 360 

∆𝑅𝑠𝑎𝑡 = 𝑅𝑠𝑎𝑡 − 𝑅𝑜𝑝𝑒𝑛𝑙𝑜𝑜𝑝                                                       (7) 361 

𝐾𝐺 = ∑ [
𝐸𝑏(𝑡)

𝐸𝑏(𝑡)+𝐸𝑜(𝑡)
]

𝑁𝑑𝑎𝑦𝑠

𝑡=1 𝑁𝑑𝑎𝑦𝑠⁄                                                 (8) 362 

𝑁𝑠𝑎𝑡 = ∑ ∑ 𝑤(𝑟𝑖)𝑡
𝑛
𝑖=1

𝑁𝑑𝑎𝑦𝑠

𝑡=1 𝑁𝑑𝑎𝑦𝑠⁄                                              (9) 363 

In Eq. (7), 𝑅𝑠𝑎𝑡 is the temporal anomaly correlation (Section 3.4) between remotely sensed retrievals 364 

(𝑦0) and the in situ surface soil moisture observations. Similarly, 𝑅𝑜𝑝𝑒𝑛𝑙𝑜𝑜𝑝 is the temporal anomaly 365 

correlation between the open loop surface soil moisture and the in situ measurements. In Eq. (8), 𝐸𝑏(𝑡) 366 

and 𝐸𝑜(𝑡) are the error variances of the model background and the observation of surface soil moisture 367 

at each analysis time, respectively, and 𝑁𝑑𝑎𝑦𝑠 denotes the number of days over the entire assimilation 368 

period. By construction, the value of KG is bounded between 0 and 1. High values of KG imply that the 369 

analysis of soil moisture is closer to the observation than to the background. Note that KG is a rough 370 

approximation of the diagonal element of the Kalman gain matrix in the LETKF scheme. In Eq. (9), the 371 

number of assimilated observation samples is defined as the time average of the sum of the localization 372 

weights (i.e., Eq. (6)) within the local patch at each analysis time.  373 

 374 

3.6 Soil moisture condition index 375 

This study also applies the assimilated soil moisture information to drought monitoring using 376 

the soil moisture condition index (SMCI) introduced in Zhang and Jia (2013). This index uses weekly-377 

mean values and is designed to capture the development of short-term dryness. The index should be 378 
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comparable across regions, regardless of the background climatology, and does not reflect seasonality. 379 

It is written as 380 

𝑆𝑀𝐶𝐼 =
𝑆𝑀−𝑆𝑀𝑚𝑖𝑛

𝑆𝑀𝑚𝑎𝑥−𝑆𝑀𝑚𝑖𝑛
                                                             (10) 381 

where 𝑆𝑀  represents a weekly-averaged surface soil moisture, and the subscripts 𝑚𝑎𝑥  and 𝑚𝑖𝑛 382 

indicate the maximum and the minimum values for each corresponding week at each grid cell from the 383 

71 years (1948–2018) long-term JULES offline simulation. The first 62 years (1948–2009) of the LSM 384 

offline simulation are forced with surface meteorological data from Sheffield et al., (2006), and the rest 385 

of the period (2010–2018) is from the LSM run driven by the JRA-55 reanalysis corrected with the 6-386 

hourly GSMaP rainfall. The index is bounded between 0 to 1. At a given grid cell, the closer the drought 387 

index is to zero, the more severe the drought. 388 

 389 

4. Results  390 

4.1 Skill of satellite and open loop soil moisture estimates 391 

Before we investigate the results of the soil moisture assimilation, we examine the skill of the 392 

satellite and open loop estimates. Figure 3 shows the anomaly correlation coefficient for the open loop 393 

(Fig. 3a), the SMAP retrievals (Fig. 3b), and the ASCAT retrievals (Fig. 3c) against in situ 394 

measurements in the continental U.S. The average R values of the open loop, SMAP retrievals, and 395 

ASCAT retrievals are 0.53, 0.59, and 0.45, respectively. The skill of SMAP is best overall and clearly 396 

better than that of ASCAT (ΔR~0.13) over the entire U.S. without any obvious regional pattern (Fig. 397 

3d). 398 

 399 
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 400 

Figure 3 Surface soil moisture skill measured as the anomaly correlation coefficient R with the in 401 

situ measurements from (a) the open loop model, (b) SMAP retrievals, and (c) ASCAT retrievals. (d) 402 

shows the skill difference between SMAP and ASCAT retrievals, with red (blue) colors indicating that 403 

SMAP retrievals have higher (lower) skill than ASCAT retrievals. 404 

 405 

4.2 Skill of soil moisture estimates from data assimilation experiments 406 

Figure 4 compares the average skill of surface and root-zone soil moisture estimates from the open 407 

loop with the three experiments that assimilate (i) SMAP retrievals only, (ii) ASCAT retrievals only, 408 

and (iii) both SMAP and ASCAT retrievals. The average anomaly correlation skill of surface soil 409 

moisture (Fig. 4a) is increased in the assimilation experiments by 0.05 (DA(SMAP)), 0.01 410 

(DA(ASCAT)), and 0.04 (DA(SMAP+ASCAT)), respectively, compared to the open loop (R=0.53), 411 

which represents a statistically significant improvement (at the 5% significance level) when SMAP data 412 
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are included in the assimilation. The relative performance is similar when measured with the ubRMSE, 413 

although the ubRMSE reductions are not statistically significant (Fig. 4c). The skill improvement is 414 

greater for grasslands than for the other land cover classes, which will be discussed further in the next 415 

sub-section. The result implies that the satellite retrievals provide added value through data assimilation. 416 

Even though ASCAT observations are additionally assimilated in DA(SMAP+ASCAT) compared to 417 

DA(SMAP), the skill of DA(SMAP+ASCAT) is slightly worse than that of DA(SMAP), which suggests 418 

that the assimilation system is less optimal for DA(SMAP+ASCAT) than for DA(SMAP). Some sub-419 

optimality is unavoidable because the satellite observations are assimilated into a non-linear model 420 

(here, JULES LSM) and the errors are never entirely Gaussian and uncorrelated. This suggests that 421 

there is little added benefit from assimilating the ASCAT retrievals, which have relatively poor skill 422 

compared to the SMAP retrievals and the open loop run (Fig. 3).  423 

Although only surface soil moisture observations are assimilated, there is also an indirect positive 424 

impact on sub-surface (root-zone) soil moisture (Fig. 4b). The anomaly correlation of root-zone soil 425 

moisture is increased in the assimilation experiments by 0.04 (DA(SMAP) and DA(SMAP+ASCAT)), 426 

compared to the open loop (R=0.53), but the skill improvements in the root-zone are not as large as 427 

those in the surface. In particular, the assimilation of SMAP retrievals results in a significant 428 

improvement of the root-zone soil moisture skill (except for crops), while the impact of the ASCAT 429 

assimilation on the root-zone skill is neutral on average. The neutral impact of the ASCAT assimilation 430 

on the root-zone soil moisture skill is expected because only the surface soil moisture states are updated 431 

directly in our analysis and the skill improvement in the surface soil moisture in DA(ASCAT) is 432 

marginal (Fig. 4a). The relative performance is again similar when measured with the ubRMSE, 433 

although the ubRMSE reductions are again not statistically significant (Fig. 4d). Finally, we obtained 434 

similar results for the surface and root-zone validation when using only days and locations for which 435 

satellite observations were assimilated (not shown).  436 

 437 
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   438 

Figure 4 (a, b) R skill and (c, d) ubRMSE of (a, c) surface and (b, d) root-zone soil moisture 439 

estimates from the open loop  (gray), DA(SMAP) (red), DA(ASCAT) (green), and DA(SMAP+ASCAT) 440 

(blue). The soil moisture estimates are validated against in situ measurements over North America (see 441 

Fig. 1 for locations) and averaged for each land cover class. Error bars represent 95% confidence 442 

intervals. 443 

 444 

The skill of soil moisture estimates from all assimilation experiments is commonly increased, but 445 

the magnitude of the improvements depends on the data source and the region. Figures 5a and 5b show 446 

the spatial distributions of the skill improvement from the open loop by DA(SMAP) and DA(ASCAT) 447 

experiments, respectively. Both experiments generally show improved performance, especially in the 448 

western U.S., even though the skill increase is less pronounced in DA(ASCAT). The larger 449 

improvement in the western U.S. is consistent with the clear performance improvement over grasslands 450 

(i.e., Fig. 4), as most of the western U.S. is classified as grasslands. Figure 5c compares the skill 451 

difference between DA(SMAP) and DA(ASCAT) (Fig. 5c). When the regions are separated into the 452 

western (125°W–100°W, 25°N–50°N) and the eastern U.S. (100°W–70°W, 25°N–50°N), the 453 

improvements from DA(SMAP) exceed those from DA(ASCAT) by ΔR ~ 0.06 over the western U.S. 454 

and by ΔR ~ 0.03 over the eastern U.S.. This result is further investigated in the following sub-section.  455 
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 456 

 457 

Figure 5 Skill difference between surface soil moisture estimates from (a) DA(SMAP) and the 458 

open loop, (b) DA(ASCAT) and the open loop, and (c) DA(SMAP) and DA(ASCAT). The bottom-left 459 

value in each panel is averaged across the entire domain. The red and blue dashed boxes indicate the 460 
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western and eastern U.S., respectively, and the value above the box represents the average of the values 461 

in each box.  462 

 463 

4.3 Component analysis for the skill improvement 464 

In an effort to better understand the differences in the skill improvements among the soil moisture 465 

data assimilation experiments, this section examines the assimilation metrics introduced in Section 3.5. 466 

Specifically, this section further examines the following three key points: (i) the skill of DA(SMAP) is 467 

higher than DA(ASCAT), (ii) the two single-sensor assimilation experiments concurrently reveal the 468 

higher skill improvement in the western U.S. compared to the eastern U.S., and (iii) the skill difference 469 

in both single-sensor experiments is higher in the western U.S. compared to the eastern U.S..  470 

Figures 6 represents the spatial distributions of the assimilation metrics for the two single sensor 471 

assimilation experiments and their difference. The average ∆𝑅𝑠𝑎𝑡 from SMAP is greater than that of 472 

ASCAT over the continental U.S. (Figs. 6a and 6b), mostly due to the higher skill of SMAP compared 473 

to ASCAT retrievals as indicated in Fig. 3d. The significantly better quality of the SMAP retrievals 474 

makes a clear difference in the results of the data assimilation (c.f., Fig. 5c).  475 

Furthermore, 𝐾𝐺 values from the DA(SMAP) and DA(ASCAT) experiments are higher in the 476 

western than the eastern U.S. (Figs. 6d and 6e), which is mostly attributed to the spatial distribution of 477 

the model background error (𝐸𝑏) rather than that of observation error (𝐸𝑜) (not shown). Therefore, 𝐾𝐺 478 

contributes to the improvement in the performance of data assimilation particularly in the western U.S. 479 

in both single-sensor assimilation experiments (c.f., Figs. 5a and 5b). Lastly, in trying to identify which 480 

factor plays a dominant role in the regional dependence of the skill improvement in the two single-481 

sensor experiments (Fig. 5c), we note that the ∆𝑅𝑠𝑎𝑡 values for SMAP and ASCAT are similar for the 482 

western and eastern U.S. (Figs. 6c).  This similarity for the western and eastern U.S. also applies to the 483 

𝐾𝐺  difference values between DA(SMAP) and DA(ASCAT) (Fig. 6f). On the other hand, the 484 

corresponding 𝑁𝑠𝑎𝑡 difference values are quite different for the western and eastern U.S. (Fig. 6i).  This 485 
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west-east discrepancy primarily originates with the  𝑁𝑠𝑎𝑡 ⁡values for DA(ASCAT) (Fig. 6h) because 486 

there is little west-east discrepancy in DA(SMAP) (Fig. 6g).   487 

Note also that the number of assimilated observations within each local patch is considerably 488 

smaller in DA(SMAP) than in DA(ASCAT) (compare Fig. 6g and 6h). For instance, the 𝑁𝑠𝑎𝑡 values 489 

for DA(SMAP) and DA(ASCAT) over the Continental U.S. are 0.16 and 0.52, respectively (Figs. 6g 490 

and 6h). First, ASCAT has finer spatial resolution than SMAP. Second, DA(ASCAT) utilizes two 491 

satellite sensors (METOP-A and METOP-B) in complementary orbits, instead of just one for 492 

DA(SMAP). Even accounting for the fact that ASCAT retrievals are from two satellite sensors (i.e., 493 

𝑁𝑠𝑎𝑡 = ~ 0.3 for each of the two sensors), the ASCAT 𝑁𝑠𝑎𝑡 ⁡value is still nearly two times larger than 494 

that of SMAP, which can be explained by the difference in spatial resolution between SMAP and 495 

ASCAT. Additionally, the number of assimilated ASCAT observations in the eastern U.S. is larger than 496 

that in the western U.S., which is due to the quality control of the retrievals. For instance, ASCAT 497 

observations are discarded when the topographic complexity flag provided with the retrievals is larger 498 

than 10%. The mountainous terrain of the western U.S. thus leads to a decrease in 𝑁𝑠𝑎𝑡 for DA(ASCAT). 499 

When the quality control process for the ASCAT observations with topographic complexity is omitted 500 

in a separate, one-year (2016) experiment, the soil moisture assimilation skill drops by ΔR = -0.01. 501 

Consequently, the skill values of the DA(SMAP) and DA(ASCAT) experiments are more different in 502 

the western U.S., because a relatively smaller number of ASCAT observations is assimilated there. 503 

   504 
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 505 

Figure 6 The spatial distribution of (a, b) the skill difference between the satellite retrievals and 506 

the open loop (∆𝑅𝑠𝑎𝑡), (d, e) the approximate Kalman gain (𝐾𝐺), and (g, h) the effective number of 507 

assimilated observational samples (𝑁𝑠𝑎𝑡). The results are from (a, d, and g) DA(SMAP) and (b, e, and 508 

h) DA(ASCAT). Panels (c, f, and i) in the last column show, separately for each row, the difference 509 

between the results for the two experiments. The bottom-left value in each panel represents the average 510 

across the entire domain. The red and blue dashed boxes indicate the western and eastern U.S., 511 

respectively, and the value above each box represents the average of the values within each box. The 512 

number of sites in the western and the eastern sub-domain is 69 and 66, respectively. 513 

 514 

4.4 Validation of the drought event 515 

There were several drought events since 2015 over the western U.S., especially in California. This 516 

section investigates the impact of soil moisture assimilation on the representation of hydrological 517 
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climate extremes such as a severe drought. Hereafter the soil moisture estimates from DA(SMAP) are 518 

presented as the best performance results. Figure 7 represents the daily time series of soil moisture and 519 

temperature from in situ observations, the open loop simulation, and DA(SMAP) at Cochora Ranch 520 

station in California during May-July 2015. DA(SMAP) clearly captures the dry surface and root-zone 521 

soil moisture conditions much better than the open loop simulation, even though the improvement is 522 

not always prominent due to the absence of satellite observations such as in mid-May when the SMAP 523 

retrieval is sampled much less. At this location, the RMSE of the surface (root-zone) soil moisture is 524 

reduced from 0.068 m3 m-3  (0.107 m3 m-3) for the open loop model to 0.035 m3 m-3  (0.090 m3 m-3) for 525 

the SMAP assimilation for May–July 2015. The drier soil moisture conditions in the assimilation 526 

experiment lead to the surface flux partitioning away from latent heat flux and toward increased sensible 527 

heat flux, which finally reduces the cold bias in the experiment. As a result, there is a slight improvement 528 

from the assimilation in the simulation of surface temperature. 529 

 530 
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 531 

Figure 7 Time series of (a) surface soil moisture, (b) root-zone soil moisture, and (c) land surface 532 

temperature at Cochora Ranch station (35.12°N, 119.6°W) in California from in situ measurements 533 

(black lines), DA(SMAP) (blue lines), the open loop model (green lines), and the SMAP retrievals (red 534 

dots).   535 

 536 
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Furthermore, the soil moisture assimilation estimates constrained by the SMAP satellite retrievals 537 

provide a more realistic spatial representation of drought conditions. The western U.S. suffered extreme 538 

drought from 2015 to 2016, with the most severe impacts seen in California (Supplementary Figures 1 539 

and 2, respectively). Figure 8 represents the spatial patterns of the SMCI drought index based on surface 540 

soil moisture estimates. The figure shows that the spatial distribution of land surface dryness in the 541 

western U.S. is better represented by DA(SMAP) than in the open loop simulation. The drought index 542 

from the satellite assimilation for 2 years reveals more similar features to the U.S. drought monitoring 543 

information presented in the Supplementary Figures compared with the result of the open loop, 544 

especially in California, where the most severe drought occurred. The drought assessment only based 545 

on the assimilated soil moisture estimate shows the spatial distribution of the land surface dryness. In 546 

contrast, it is not consistent with the coherent dry conditions from the U.S. drought monitoring system 547 

based on various variables such as precipitation, surface temperature, streamflow, and so on, as well as 548 

soil moisture contents without any assimilation. 549 

 550 

 551 

Figure 8 Weekly SMCI drought index for 5 May–2 June 2015 (top row) and 3 May–31 May 2016 552 

(bottom row) from the open loop model (left column) and DA(SMAP) (middle column). The SMCI 553 



29 

 

difference between DA(SMAP) and the open loop is shown in the right column. 554 

 555 

5. Conclusion  556 

This study develops a data assimilation system based on the JULES land surface model and the 557 

LETKF scheme. The system assimilates soil moisture retrievals from L-band passive (SMAP) and C-558 

band active (ASCAT) microwave remote sensing observations. The retrievals are subject to quality 559 

control and, prior to the data assimilation, are rescaled into the model soil moisture climatology using 560 

CDF fitting. Based on this data assimilation framework, we examine the impact of remote sensing 561 

retrievals on the assimilated soil moisture estimates through validation with ground-based 562 

measurements. This study investigates three different soil moisture assimilation experiments with the 563 

LETKF scheme: (i) single-sensor assimilation of SMAP retrievals, (ii) single-sensor assimilation of 564 

ASCAT retrievals, and (iii) combined assimilation of SMAP and ASCAT retrievals. The results reveal 565 

that both sets of satellite retrievals provide added value in the representation of surface and root-zone 566 

soil moisture in the assimilation estimates over the continental U.S. The skill improvement is more 567 

pronounced in the relatively dry grasslands regions of the western U.S. The result from the SMAP 568 

assimilation experiment shows the best performance, with surface and root-zone soil moisture skill 569 

improvements of 0.05 and 0.03, respectively. On the other hand, the skill of the combined SMAP and 570 

ASCAT assimilation estimates is similar to that of the SMAP-only assimilation, suggesting that the 571 

assimilation of additional observations has little impact if they are of relatively lower quality. 572 

The skill improvement of soil moisture estimates from the assimilation experiments can be broken 573 

into three different components. The three assimilation metrics are (i) the relative skill of satellite 574 

retrievals compared to that of the open loop, (ii) an approximation of the Kalman gain, and (iii) the 575 

number of assimilated observations. Based on this diagnostic, the skill of soil moisture estimates from 576 

the SMAP assimilation over the continental US is higher than that from the ASCAT assimilation mainly 577 

owing to the better quality of the SMAP retrievals. It is also found that the higher skill improvement in 578 

the western compared to the eastern U.S. is explained by the Kalman gain in both DA(SMAP) and 579 
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DA(ASCAT). Moreover, the skill difference between two single-sensor assimilation experiments 580 

shows a large regional dependence. Specifically, the SMAP assimilation estimates show relatively 581 

higher skill compared to the ASCAT assimilation estimates in the western U.S. than in the eastern U.S.. 582 

This result is attributed mainly to the fact that relatively fewer ASCAT observations are assimilated in 583 

the western U.S.. During quality control, ASCAT retrievals are discarded when the topographical 584 

complexity index exceeds 10 %. Even though there are smaller west-east differences in the relative skill 585 

of satellite retrievals and the Kalman gain between both experiments, the difference in the number of 586 

assimilated data contributes dominantly to the larger skill difference in the western U.S..  587 

Finally, the assessment of drought conditions is enhanced through the assimilation of SMAP soil 588 

moisture retrievals. The soil moisture assimilation estimates better match the observed extremely dry 589 

conditions for the 2015 and 2016 western U.S. drought events. This finding corroborates the emerging 590 

use of SMAP soil moisture estimates in the U.S. Drought Monitor and suggests that soil moisture 591 

estimates from an advanced land data assimilation system that ingests SMAP and other satellite 592 

observations may further improve the current drought monitoring. 593 

Looking further ahead, improved soil moisture estimates from the land data assimilation system 594 

developed in this study may also improve the initialization of dynamical forecast models. As the soil 595 

moisture strongly controls the energy and water balance at the land surface interface, this approach 596 

should lead to a better prediction of the atmospheric states through the realistic representation of land-597 

atmosphere interaction. This is especially true in regions with scarce precipitation observations (e.g., 598 

much of South America, Africa, Asia, and Australia) where the performance of soil moisture estimates 599 

from open loop simulations is less reliable. 600 

601 
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