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Acronyms

• DUT – Device Under Test
• FBB – Forward Body Bias
• FDSOI – Fully-Depleted Silicon-on-

Insulator
• LBNL – Lawrence Berkeley National 

Laboratory
• nMOS – N-Channel Metal Oxide 

Semiconductor
• PDSOI – Partially-Depleted Silicon-

on-Insulator
• pMOS – P-Channel Metal Oxide 

Semiconductor

• REF – Radiation Effects Facility
• RBB – Reverse Body Bias
• SEE – Single-Event Effects
• SOI – Silicon-on-Insulator
• SRAM – Static Random Access 

Memory
• TID – Total Ionizing Dose
• VNW – N-Well Bias Voltage
• VPW – P-Well Bias Voltage
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Introduction

• GlobalFoundries’ 22FDX process is a 22 nm fully-depleted SOI process
• Previous generations were PDSOI (45 nm, 32 nm)

• It employs standard, planar transistors (rather than novel designs like 
finFETs used in other highly scaled processes)

• Planar transistors are simpler and less expensive to design and manufacture 
than 3D

• FDSOI supports body biasing, which can significantly reduce energy 
consumption
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Body Biasing

• 22FDX offers two well configurations
• Standard: NMOS are located in p-wells and 

PMOS are located in n-wells
• Allows for reverse body biasing the 

transistors and reduces leakage currents
• Flipped well: NMOS are located in 

n-wells and PMOS are located in 
p-wells

• Allows for forward body biasing and higher 
performance operation

• P-well voltage can decrease from 
nominal 0 V to -2 V

• N-well voltage can increase from 
nominal 0 V to 2 V
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Test Vehicle
• DUTs are a 128-Mb SRAM line monitor circuit
• Nominal supply voltage is 0.8 V, but voltages as low as 0.4 V and as high as 

1.08 V are supported by the technology
• The bit cell array in this device is manufactured with all transistors in a p-well, 

while the n-well is implanted to isolate the SRAM bit cell array
• NMOS are in the standard configuration (allows reverse body biasing)
• PMOS are in the flipped well configuration (allows forward body biasing)

• As a result of the n-well only being used for isolation, n-well biasing was 
expected to have a limited effect on the radiation response of the SRAM

5

N-Well



To be presented by Megan Casey at the NASA Electronic Parts and Packaging (NEPP) 2020 Electronics Technology Workshop (ETW), 
June 15-18, 2020 and published on nepp.nasa.gov.

Setup

• Previous testing indicated MicroZed 
survived to ~17 krad

• Lead bricks were stacked to reduce dose 
rate to MicroZeds

• MicroZeds were also replaced before 
overnight steps

• Pattern was written before irradiation and 
read back and the number of upset bits 
was recorded

• After irradiation, cells were read back 
again and number of upsets were 
recorded

• If any cells were incorrect, then the memory 
was rewritten and read back to see if the 
number of incorrect cells changed

Radiation Source

DUT

MicroZed

Lead Bricks

***Not to scale
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Bias Conditions
During Irradiation
• DUT 609

• Nominal array voltage (0.8 V)
• Nominal p-well voltage (0 V)
• Nominal n-well voltage (0 V)

• DUT 601
• Nominal array voltage (0.8 V)
• Extreme p-well voltage (-2 V)
• Extreme n-well voltage (2 V)

Post-Irradiation Measurements
• Sweep array voltage (0.7 V to 1.08 V), 

holding n- and p-well voltages 
constant (0 V)

• Sweep p-well voltage (0 V to -2 V), 
holding array (0.8 V) and n-well (0 V) 
voltages constant

• Sweep n-well voltage (0 V to 2 V), 
holding array (0.8 V) and p-well (0 V) 
voltages constant

• Sweep p- (0 V to -2 V) and n-well (0 V 
to 2 V) voltages, holding array (0.8 V) 
voltage constant

• Measure retention voltage at nominal 
well voltages
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Total Ionizing Dose Test Results

Bias: P-well = 0 V, N-well = 0 V, Pattern: FF Bias: P-well = -2 V, N-well = 2 V, Pattern: FF

More upsets were observed in part biased with nominal voltage conditions during irradiation
8
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Total Ionizing Dose Test Results
Bias: P-well = 0 V, N-well = 0 V, Pattern: FF
Test: P-well = 0 V, N-well = 0 V

Bias: P-well = -2 V, N-well = 2 V, Pattern: FF
Test: P-well = 0 V, N-well = 0 V

A pattern dependence emerges when biased in the “extreme” conditions during irradiation
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Total Ionizing Dose Test Results
Bias: P-well = 0 V, N-well = 0 V, Pattern: FF
Test: P-well = 0 V, Pattern: FF

Bias: P-well = -2 V, N-well = 2 V, Pattern: FF
Test: P-well = 0 V, Pattern: FF

As expected, n-well bias has no impact on the number of incorrect bits post-irradiation
10
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Total Ionizing Dose Test Results
Bias: P-well = 0 V, N-well = 0 V, Pattern: FF
Test: N-well = 0 V, Pattern: FF

Bias: P-well = -2 V, N-well = 2 V, Pattern: FF
Test: N-well = 0 V, Pattern: FF

The more negative the p-well bias voltage is after irradiation, the fewer the 
number of bits are read incorrectly
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Total Ionizing Dose Test Results
Bias: P-well = 0 V, N-well = 0 V, Pattern: FF
Test Pattern: FF

Bias: P-well = 0 V, N-well = 0 V, Pattern: FF
Test Pattern: FF

Changing the p-well and n-well bias voltages simultaneously results in nearly identical results 
as when just changing the p-well bias voltage
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Combined Total Ionizing Dose and Single-
Event Effects Testing
• After TID irradiations, DUTs were stored on dry ice to ensure no 

annealing and were then transported to LBNL and subjected to heavy 
ion irradiation

• Due to high levels of gamma dose, the number of pre-heavy-ion-
irradiation bits that were upset was on average about half of all bits

• Made measuring the single-event contribution to the number of upset bits 
difficult to obtain

• Data are still useful for observing trends rather than considering absolute 
values
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Previous SEE Testing

Previous SEE testing conducted on devices that were not TID-irradiated showed 
no pattern dependence
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Combined Effects Test Results
Bias: P-well = 0 V, N-well = 0 V
Test: P-well = 0 V, N-well = 0 V

Bias: P-well = -2 V, N-well = 2 V
Test: P-well = 0 V, N-well = 0 V

When tested at the “extreme” conditions, both bias conditions provide little information
15
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Combined Effects Test Results
Bias: P-well = -2 V, N-well = 2 V, Pattern: FF
Test: P-well = -2 V, N-well = 2 V
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Pattern dependence observed in TID-only results is also apparent in combined effects results 
for part biased with “extreme” conditions 

Bias: P-well = 0 V, N-well = 0 V, Pattern: FF
Test: P-well = -2 V, N-well = 2 V
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Implications of Pattern Dependence

• In both the TID-only and combined effects testing, a pattern dependence 
has emerged where there are more incorrect bits when an all-zeroes 
pattern is written to the memory than when an all-ones pattern is written

• This pattern was not observed in SEE testing of parts that had not been TID-
irradiated

• May indicate the NMOS transistors are experiencing greater degradation than the 
PMOS transitors

• We are still working to understand the mechanism for this response, but 
believe the flipped well (RBB – reduced leakage currents) configuration for 
the NMOS transistors contributes to the degraded response compared to 
the standard (FBB – enhanced performance) configuration for the PMOS 
transistors
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Conclusions

• Parts irradiated with “extreme” bias conditions (VPW = -2 V and VNW = 2 V) have 
fewer incorrect bits when TID-irradiated compared to parts irradiated with 
nominal bias voltages (VPW = 0 V and VNW = 0 V)

• An input pattern dependence emerges in “extreme” bias parts
• More upsets are observed when all 0s are written and read back

• Varying the n-well bias voltage has no impact on the number of upset cells after 
irradiation

• P-well bias voltage greatly changes the number of upset cells in both irradiation 
bias conditions

• The “extreme” condition results in a saturated response sooner than the nominal condition
• The “extreme” condition also has a higher number of upset cells for all p-well voltages
• Dynamically adjusting well bias voltages may compensate for TID-induced degradation

• Combined effects testing also showed pattern dependence in the device 
irradiated with “extreme” voltage conditions
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Backup Slides
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Background

• The same 128-Mb SRAM line 
monitor test vehicles were used in 
this work as in the TID/combined 
effects testing

• Previous heavy-ion SEE data was used 
to approximate the critical charge of 
the technology at 0.06 fC

• A single device was cross-sectioned 
and the thicknesses of the layers 
were measured

• The substrate is at the top of the 
image and moving down is 30 nm of 
BOX, 40 nm of silicon, including 7-nm 
channel, and 200 nm of metal layers
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Modeling and Simulation
• Using the layer thicknesses measured in the 

cross-section, the device was modeled using 
the MRED code

• Various substrate thickness were simulated, as 
well as extreme ends of the electron energies 
(100 keV and 1.5 MeV)

• Assuming the critical charge of 0.06 fC and that 
holes do not contribute to the transient 
current, then the critical deposited energy is 
1.35 keV

• As each simulation is for a single sensitive 
volume, the resulting cross-sections are per-
bit, so multiplying by the number of bits in the 
SRAM gets us our per-device cross-section, 
and therefore our 
minimum test fluences
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Test Facility

• All experiments were conducted at 
the NASA GSFC REF

• The 2-MeV Van de Graaff generator 
used is capable of supplying either 
protons or electrons with a mono-
energetic beam ranging from 
approximately 100 keV to 2 MeV

• Each irradiation was run to a 
fluence of 1.05×1010 e-/cm2 at an 
average flux of 1×109 e-/cm2/s

• Results in a dose per run of 275 to 
321 rad depending on electron 
energy
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Test Set-up

21

Custom shield was manufactured to limit irradiation to only DUT and reduce charging 
on the test board and cables, as well as the MicroZed
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Low-Energy Electron Test Results

• Most previous low-energy electron 
SEE test data uses parts with lower 
than nominal supply voltages to 
increase device sensitivity

• We were able to irradiate at 
nominal and higher voltages and 
saw cross-sections decrease with 
increasing voltage

• Significant dose effects were 
observed at much lower doses 
than the TID results

• Stuck bits were observed at ~6.2 krad
• Consistent with dose enhancement 

effects observed by Gadlage et al., 
TNS 2017
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Low-Energy Electron Test Results

Greater p-well bias voltage results in fewer upsets than nominal – consistent with 
heavy ion SEE test results and gamma TID results
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Conclusions and Future Work

• We observed single-event upsets from low-energy electrons at 
nominal supply voltages

• Dose enhancement seriously complicates the ability to accumulate 
wide range of data on a single device

• Low-energy electron SEE trends are consistent with heavy-ion SEE
• Decreased sensitivity with increased supply voltage
• Decreased sensitivity with increased p-well bias voltage

• Additional testing is planned with fewer collected datapoints at each 
electron energy to reduce dose effects

• Additional electron energies are also planned
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