
AAS 17-651

A TOOL FOR IDENTIFYING KEY GRAVITY-ASSIST
TRAJECTORIES FROM BROAD SEARCH RESULTS

James W. Moore∗, Kyle M. Hughes†, Alec J. Mudek‡, and James M. Longuski§

A tool is presented that identifies desirable trajectory candidates from among tens
of thousands of gravity-assist trajectories. A broad trajectory search technique cre-
ates an exhaustive set of possible trajectories to a given planet. From this dataset,
our tool reveals candidate trajectories with user-defined characteristics. Typical
discriminating characteristics are launch V-infinity, time-of-flight, and delivered
mass. Mission planners evaluate and plot interesting trajectories from within the
tool. Our tool generates catalogs of selected trajectories for further evaluation with
higher-fidelity trajectory solvers. This paper outlines the key features of the tool
and gives examples of typical analyses.

INTRODUCTION

The JPL Satellite Tour Design Program1–3 (STOUR; pronounced “ess-tour”) is a patched-conic
trajectory solver that has been instrumental in finding gravity-assist paths for a variety of exploration
scenarios.4–12 A key feature of STOUR is the capability to perform exhaustive searches for trajec-
tory solutions along a given gravity-assist path. When multiple paths are considered, STOUR is
capable of producing more trajectory solutions than can be efficiently evaluated by an analyst. The
large dataset may require the trajectory planner to select a few trajectories for further evaluation
based on a single design goal (e.g. time of flight or launch V∞). The task of sorting through many
trajectory solutions to identify attractive candidates in a single attribute can be tedious. Comparing
trajectories across multiple attributes is even more difficult and time consuming.

We have developed a tool that provides new capability to perform comparative analyses of thou-
sands of gravity-assist trajectories generated by STOUR. The tool allows mission planners to iden-
tify trajectory candidates that best meet multiple criteria on parameters extracted (or derived) from
STOUR output such as launch V∞, time-of-flight, and delivered mass. Mission planners may review
key parameters and plot candidate trajectories. A catalog of selected trajectories can be created for
further evaluation with a higher-fidelity trajectory solver. The tool has proven useful in developing
catalogs of attractive trajectories to the Ice Giants over the coming decades.13, 14

∗Doctoral Candidate, School of Aeronautics and Astronautics, Purdue University, 701 W. Stadium Ave. West Lafayette,
IN 47907-2045. Currently at Intuitive Machines, 3700 Bay Area Blvd Suite 100, Houston, TX 77058, AIAA Member.
†Doctoral Candidate, School of Aeronautics and Astronautics, Purdue University, 701 W. Stadium Ave. West Lafayette,
IN 47907-2045. Currently at NASA Goddard Space Flight Center, Navigation and Mission Design Branch, Code 595,
Greenbelt, MD 20771, AIAA Member.
‡Graduate Student, School of Aeronautics and Astronautics, Purdue University, 701 W. Stadium Ave. West Lafayette, IN
47907-2045.
§Professor, School of Aeronautics and Astronautics, Purdue University, 701 W. Stadium Ave. West Lafayette, IN 47907-
2045, AAS Member, AIAA Associate Fellow.

1



Figure 1. The figure above demonstrates the complexity of the broad trajectory
search problem. The figure contains approximately 13,500 patched-conic trajecto-
ries to Uranus. The circular traces represent the orbits of the outer planets. Each
color represents a different path. Each line represents a single solution along one of
the paths with a specific launch date and energy. For example, the blue traces la-
beled “SU” for “Saturn-Uranus” are trajectories that leave Earth and fly by Saturn
on the way to Uranus. Note: Mercury is not considered as a gravity-assist body in this
dataset.

PROBLEM DESCRIPTION

STOUR has been successful at finding patched-conic solutions for multiple gravity-assist tra-
jectories. Typically, researchers have employed STOUR to identify the solutions within a limited
range of launch dates and launch V∞ over a single flyby sequence (or “path”). More recently, we
have been performing broad searches over decades of potential launch dates and over all feasible
paths. These searches generate a great number of patched-conic solutions that require further study
in higher-fidelity simulations. Figure 1 exemplifies the problem. Each color in Figure 1 represents a
different path to Uranus. The paths are identified by the initials of the planets in the sequence with a
zero representing a mid-course maneuver. Each line in the figure represents a unique conic solution
with a specific launch time and energy. STOUR identifies all conic solutions that exist (subject to
user-supplied constraints), even though they may be impractical for certain mission realities. Figure
1 presents only a few of the dozens of feasible paths that may exist. Because a higher-fidelity analy-
sis on each solution is time consuming, we wish to limit the number of trajectories to those that are
most attractive.

2



Figure 2. Representative output from STOUR for a single gravity-assist path (Earth-
Venus-Earth-Uranus with a maneuver after the second Earth flyby). Each table
(starting with ‘LAUNCH DATE’) summarizes a different trajectory solution for the
examined path. The boxes highlight features of the solutions that an analyst might
weigh simultaneously. There may be hundreds of tables within a single output file.
The tabular and chronological format does not lend itself to comparison of the vari-
ous trajectories within the output file or to paths described in other files.

STOUR is quite capable of performing the trajectory searches, but the traditional output and post-
processing tools are not well-suited for identifying the “best” trajectories among the results. Figure
2 presents a sample of an STOUR output file. Within the file are a series of tables summarizing the
planetary encounters for each trajectory solution discovered along a given gravity-assist path.

For example, the line (highlighted in red) that reads, “LAUNCH V-INFINITY = 11.00” begins
a table describing a patched-conic solution to Uranus that leaves Earth on January 6, 2023. The
subsequent rows summarize the encounters at Earth, Venus, and a second pass of Earth. The next
row provides information on an impulsive ∆V of 2.6 km/s that is the final trajectory event before
arrival at Uranus with a V∞ of approximately 6.8 km/s. The time-of-flight for each leg and cu-
mulative time-of-flight can be read from the rightmost columns. Our example trajectory requires
4769 days. Several of the columns represent different parameters depending on whether the row
describes a flyby or a maneuver.

The mission designer must weigh several competing parameters when selecting an appropriate
trajectory. The designer may seek a trajectory with a short time-of-flight and a low launch V∞, but
these two parameters are likely to be at odds with each other. STOUR can be used to find preliminary
values for many such characteristics, some of which (launch V∞, propulsive ∆V , arrival V∞, and
time-of-flight) are highlighted in Figure 2. STOUR does the work of searching for potential flyby
combinations and calculating the trajectory parameters. Our post-STOUR toolkit gives the mission
designer new power to find the most attractive results.

3



The results shown in Figure 2 are only the first few solutions in a file that may contain thousands
of solutions (depending on the granularity of the search and the chosen gravity-assist path). Finding
the “best” trajectories along a given path is a multi-dimensional optimization problem with hundreds
to thousands of trajectories to consider. Moreover, all the tables included an output file like Figure
2 are for a single sequence of flyby bodies. The problem grows more complicated when additional
paths to the target planet are considered as shown in Figure 1. The final product should be capable of
managing thousands of trajectories and be versatile enough to work for a variety of cost functions.

METHOD OF SOLUTION

Figure 3. The toolkit models the possible trajectories as a series of nested objects. A
Mission object contains multiple Path objects, each of which reach the target planet
through a different series of gravity assists. The Path object contains multiple Tra-
jectory objects, each of which is a patched-conic solution with different timing and
energy. Legacy STOUR output (as shown in Figure 2) is translated and merged into
the Trajectory and Path objects. The user provides input to the Mission object to
define mission parameters, command actions, and retrieve output.

Our solution retains the pedigree and “speediness” of the compiled-Fortran STOUR heritage
code and applies a set of generalized post-processing functions, written in Python15∗, to improve
the user’s ability to interact with large datasets in the traditional output format. The post-processor
toolkit employs the Python pandas16† library to manage the data. We introduce a set of Python
objects to represent gravity-assist concepts. The object methods simplify the interaction with the
pandas database. Researchers typically arrange these methods in a script organized to perform
standard analyses but the Python command line interpreter also provides a versatile interface.
∗https://www.python.org
†http://pandas.pydata.org

4

https://www.python.org
http://pandas.pydata.org


We have applied an object-oriented approach to the toolkit development. In this paradigm, code
is organized into a set of “objects” which contain data as “attributes”. The objects typically have
procedures or “methods” to act on the data. In a sense, objects are nouns and their methods are
verbs. Objects are often abstractions of physical things but in our case they model astrodynamical
concepts.

Figure 3 describes our toolkit software architecture. The toolkit parses the legacy STOUR text
output (as shown in Figure 2) and populates a series of hierarchical objects with the extracted data.
These objects provide an intuitive method of navigation through the STOUR results (from generic
mission to specific trajectory). The user primarily interacts with the Mission object which represents
the collection of possible trajectories to achieve a basic mission goal (i.e. arrive at a specified planet
within an allotted time). The Mission object also contains very simple launch vehicle and spacecraft
models that are user-configurable. Through the Mission object, the mission designer provides user
input in the form of commands to import STOUR output, perform filtering, generate plots, and
export results to tabular form. The Mission object contains a group of Path objects which represent
different paths from Earth to the target planet by a specific series of gravity assists. Within the Path
object is a group of Trajectory objects which represent actual patched-conic solutions along the
specified path with various launch times, launch energies, and flyby times. The individual STOUR
output text files translate into Path objects with each table in the file (see Figure 2) translating into a
Trajectory object. The grouping of many paths into a common data object is a key innovation that
enables new and broader mission design studies.

The Mission object includes a pandas DataFrame that assembles all the trajectory data from all
the paths into a common location. The DataFrame enables dynamic sorting, indexing, and filtering
of the data. The Mission object provides a wrapper around the DataFrame to simplify the data
manipulation and plotting capabilities by organizing the required commands into object methods.
Together, the methods allow the analyst to quickly produce standard analyses. The toolkit accepts
optional inputs to the standard methods to provide a degree of flexibility. Direct access to the
DataFrame allows complete versatility and insight into the data.

The toolkit is adept at filtering a large set of STOUR trajectory path solutions into a more manage-
able subset that meets certain design criteria of interest to the analyst. The plotting features include
a graphical display of each trajectory in up to four user-defined dimensions for visual comparison.
Built-in and user-defined filters also provide a means to discriminate between candidate trajectories.
Output methods organize selected candidates into a variety of formats for record keeping or transfer
to high-fidelity solvers.

The “User Commands” and “Toolkit Output” arrows in Figure 3 describe the interactive nature
of the toolkit. A typical user-interaction session begins by initializing a Mission object. We may
also configure a launch vehicle model, a spacecraft model, and capture orbit parameters (if these
are needed for the analysis). We then instruct the Mission object to load a set of STOUR output
files, which populates the Path and Trajectory objects. At this point, we can manipulate the dataset
to conduct the analysis. For example, we may instruct the Mission object to perform calculations
using the STOUR solutions and the spacecraft model, or apply some filtering to the dataset. We can
request plots of any parameter vs. any other parameter and we can export tabulated data. We may
also navigate down through the individual Path and Trajectory objects to further inspect any single
STOUR solution. Finally, all of this interaction may be saved as a script so it can be re-used.

5



Figure 4. A traditional STOUR analysis work flow includes manual reduction of
trajectories to be further analyzed. Multiple paths require a parallel process with
additional manual analysis. The trapezoids represent labor-intesive processes that
are performed on a limited number of trajectories.

FEATURES

Some key features of the tool are described below. The toolkit is highly configurable and easily
adaptable to any study based on STOUR output. For demonstration purposes, the examples be-
low assume the task is to produce a catalog of trajectories to an outer planet, considering multiple
potential flyby configurations.

Multiple Path Comparison

Mission planners traditionally use STOUR to find patched-conic solutions in the ephemeris model
along a specific flyby combination, or “path”. The path is the ordered sequence of flyby bodies (e.g.
Mars-Venus-Jupiter-Neptune). Path-solving is task of finding the launch dates, flyby dates, and
velocities for which a path is viable. STOUR can solve for all the trajectories (subject to user-defined
constraints) that follow a given path. Comparing the solutions for one path against an alternate path
(e.g. Mars-Venus-Saturn-Neptune) is not straightforward since solutions for each path reside in a
separate text file. Our tool combines the results of multiple STOUR studies into a single database
to enable comparative analysis of dozens of potential paths to any given planet.

A traditional analysis work flow is pictured in Figure 4. In this example, the goal is to generate a
catalog of desirable trajectories to a given planet by the following procedure:

1. Run STOUR for each potential path
2. For each Run:

(a) Select the most attractive candidates based on an STOUR output parameter (e.g. launch
date, time-of-flight, arrival V∞, total ∆V )

(b) Apply assumptions about mission parameters to convert STOUR output to mission de-
sign metrics

3. Assemble the best cases from each path into a catalog

6



The selection of the most attractive candidates typically involves weighing three or more param-
eters. The STOUR architecture is designed to walk through a range of launch times and launch
energies to identify all the solutions that follow a single sequence of planets. As a result, the output
(see Figure 2) is necessarily grouped into a single file for each flyby path. The solutions are ordered
by launch date and launch V∞. As discussed above, this legacy output format does not lend itself
to comparison of the different solutions against one another. The number of trajectory solutions
within a file can be significant. Previous tools (such as plots like Figure 6) enabled comparison of
the many trajectories within a single STOUR output file to allow selection of attractive candidates
even while considering multiple parameters. The direct comparison of multiple paths is solved by
our new tool.

Figure 5. An example of a workflow with the toolkit is shown above. Labor-intensive
processes have been automated and can be performed on all trajectories. Selection of
desirable candidate trajectories has been moved to the final stage.

The toolkit enables simultaneous comparison of many trajectories from multiple paths by ingest-
ing the legacy STOUR text output and compiling it into a single Python/pandas DataFrame. This
workflow is described by Figure 5. The merging of the various path data takes place early in the
process. The number of the repetitive tasks is reduced. The new workflow reverses steps 2(a) and
(b) in the procedure above. With the STOUR output available as a Python data object, many of the
previously labor-intensive processes have been automated. In particular, the steps that are required
to convert the STOUR output into mission design metrics such as payload mass have been standard-
ized and simplified. Deriving design metrics from STOUR output is discussed in the next section.
The new procedure allows the analyst to compare multiple flyby paths simultaneously and directly
in terms of the desired metrics.

STOUR Derived Data

A key feature of our architecture is the ability to update the database with information that can be
derived from the original STOUR output. For example, the analyst may add a mass timeline to the
database by choosing from a list of common launch vehicles, defining flyby or capture parameters,
and providing notional propulsion characteristics of the spacecraft. Our tool uses this performance
information and the STOUR propulsive ∆V output to add the spacecraft mass history as an attribute
of each trajectory. The analyst may then use arrival mass to filter trajectories for further study.

7



Analysts can add and employ any characteristic that can be derived from standard STOUR output
in a similar manner.

A traditional evaluation of STOUR results (for a capture mission) would compare all the solutions
for a given path on a plot with arrival V∞ on one axis and time-of-flight on the other. Additional
information could be simultaneously evaluated by coding the plot point to represent launch V∞. An
example of this technique is shown in Figure 6 taken from Spreen et al.10

Figure 6. The Uranus trajectories from STOUR are plotted in this figure taken from
Spreen et al.10 In this type of figure, the numerical plot point (or its color) is a key for
reading the launch V∞ on the scale to the right. The arrival V∞ and time-of-flight can
be read from the coordinates of the point. For example, the point annotated by the
arrow has an arrival V∞ of 19.5 km/s, a total time-of-flight of 3800 days, and a launch
V∞ between 5.48 and 5.61 km/s. Note: figures like this are limited to a single flyby
path, in this case VVEEJU (Venus-Venus-Earth-Earth-Jupiter-Uranus).

In the evaluation described above, analysts discriminate using V∞ because it is a rough stand-in
for payload mass. All other things being equal, the higher the arrival V∞, the more mass will be
required for capture at the target planet, and the lower the payload mass. However, all other things
are not equal when we configure STOUR to provide mid-course maneuvers to close some borderline
ballistic solutions. An additional evaluation step is required to determine if some attractive cases
from a figure such as Figure 6 actually require a significant mid-course ∆V . An example of this
problem is shown in Figure 7.

Figure 7 (a) shows the relationship between delivered mass when there are no mid-course ma-
neuvers (or the propellant needed for those maneuvers is ignored). Under these assumptions, it is
reasonable to select trajectories based on arrival V∞ because a lower arrival V∞ corresponds to a
higher delivered mass. However, if mid-course maneuvers are present, as in Figure 7 (b), some
trajectories with lower arrival V∞ may actually deliver less mass than the higher V∞ trajectories.
In addition, the propellant mass may be great enough in some cases that the arrival mass becomes
insignificant and the trajectory must be discarded.

8



(a) Without Maneuvers (b) With Maneuvers

Figure 7. The plots above show the relationship between arrival V∞ and delivered
payload mass under two assumptions on an identical set of trajectories. In Figure
(a), the propulsion system mass for the mid-course maneuvers is not taken into ac-
count. In this oversimplified approach, a lower arrival V∞ always equates to a higher
delivered mass. In Figure (b), the propulsion system mass required to perform the
maneuvers is deducted from the arrival mass. In this approach, a lower arrival V∞
does not always equate to a higher delivered mass. This nuance is not discernible from
raw STOUR output.

The problem described above is important to consider when we wish to compare multiple path
solutions, some of which may include mid-course maneuvers and others of which may not. STOUR
does not consider spacecraft mass when solving for the patched-conic solutions. This is the reason
for the mass estimation steps in Figures 4 and 5. The toolkit allows us to derive a mass history from
the STOUR output and make comparisons directly in terms of mass delivered to the target planet.

Creating a mass history starts with an initial mass estimate. This is the mass to be assumed at
Earth departure — the start of the STOUR search. Launch vehicles have established performance
curves describing the mass that can be delivered to a given C3 (or V 2

∞). Some examples of these
curves are shown in Figure 8. The toolkit contains roughly 30 launch vehicle performance curves
including some variants with upper stages. STOUR provides the launch V∞ for each trajectory
solution. This V∞ is converted to C3 and the performance curve for the user-selected launch vehicle
provides the mass that can be delivered to the given V∞.

Analysts provide the toolkit with gross estimates of spacecraft performance to complete the mass-
based comparisons. We specifiy an Isp value for chemical-propulsion maneuvers and use the rocket
equation to determine the mass of propellant required for each maneuver in the STOUR solution. We
specify a tanking penalty as a percentage of propellant mass to account for non-payload, structural
mass that must be included in the spacecraft. If capture and orbit about the target planet is envisioned
for the mission, we also compute the capture ∆V according to Equations 1 – 4.

rp = rplanet + hp (1)

a = 3
√
µT 2/(4π2) (2)

e = 1− (rp/a) (3)

9



Figure 8. Some examples from the library of launch mass vs. C3 curves maintained
in the toolkit are plotted above. The toolkit determines the maximum launch mass
from Earth for a particular launch V∞ and launch vehicle using a performance curve
like those above.

∆Vcapture =
√
V 2 + 2µ/rp −

√
µ(1 + e)/rp (4)

where rplanet is the target planet radius drawn from a database within the toolkit, V is assumed to
be the arrival V∞ at the target planet provided by STOUR, and T and hp are the period and periapse
altitude of the capture orbit provided by the analyst. The capture ∆V is converted into a propellant
mass as described above.

In this way, the initial mass is decremented to provide an estimate of the mass at each event in
the mission. These steps are repeated for each trajectory solution and for each path considered.
The procedure is illustrated in Figure 9. Here we see the mass histories for all the solutions that
STOUR found along a single path. The dashed line highlights a single trajectory solution. Each
of the solutions uses the same assumption for a launch vehicle (the same curve from Figure 8) and
begins with a similar mass. The differences in initial mass result from the variation in launch V∞.
Notably, several solutions result in negative delivered mass under the given assumptions. These
solutions can be eliminated from consideration. The toolkit performs the mass history calculations
for all the examined paths which allows graphical comparison of all the potential trajectories based
on the mass that the trajectory can deliver to the target planet.

Interactive Plots

In the Ice Giant catalog studies,13, 14 we (and others) have found the colorbar plot to be particularly
useful. This type of plot represents two attributes of a trajectory on the X- and Y-axes and a third
attribute on a graduated color bar as shown in Figure 10. Here, each point represents an individual
trajectory from Earth to Uranus found by STOUR (with various intermediate flyby bodies).

10



Figure 9. Mass histories derived from STOUR output are plotted above. The plot
shows the spacecraft mass (on the y-axis) immediately after each of the mass change
events (on the x-axis). The lines represent all the mass histories derived from a single
STOUR solution file. The bold, dashed trace highlights a single trajectory among
these solutions. The discontinuities in the lines represent the discrete change in mass
at the mid-course and capture maneuvers. The process described here is repeated for
each STOUR output file.

Trajectory designers quickly identify attractive trajectories using these plots. Appropriate selec-
tion of the plotting axes results in visible trends for the most desirable trajectories. For example,
in Figure 10, the preferred family of trajectories lies along the lower-right boundary of the plotted
points. For a given point on this boundary, trajectories to the left deliver less mass for the same
flight time and trajectories above require longer flight time for the same delivered mass. In addition,
lighter shaded points are less costly in terms of launch V∞.

The colorbar may also represent categorical attributes of each trajectory. Figure 11 plots the time-
of-flight against the launch date for the dataset shown in Figure 10. Here, we highlight the multiple
paths to Uranus found by STOUR in the colorbar. For example, in Figure 11, the darkest shade
represents the VVV0SU (Venus-Venus-Venus-Maneuver-Saturn-Uranus) path. By comparing the
location of the VVV0SU points to the full dataset, we see that this path tends to yield longer flight
times. We also note that plotting against launch date gives us insight into the periodic availability
of the different paths. The color palette can be selected for grayscale printing or to exaggerate
differences in the data.

The designer may click on a plot point to display detailed information for the selected trajectory.
For example, while analyzing Figure 11, we may wish to find a low launch V∞ or a specific launch-
date range. This easy access to other (unplotted) attributes allows the designer to find the most
attractive option from among several similar trajectories.

11



Figure 10. The output of our visualization tool is illustrated in this figure. Presented
here are thousands of gravity-assist trajectories to Uranus. Among these trajectories
is a case (indicated by the arrow) in which the time-of-flight is 7 years, the delivered
mass is 300 kg, and the Earth launch V∞ is 11 km/s. The diamonds highlight the
Pareto-optimal set of minimum time-of-flight, minimum propellant mass, and maxi-
mum delivered mass. Figure 11 presents the same trajectories but shows the gravity-
assist paths.

Automated Analysis

Establishment of a common database for the broad search results also enables our tool to automate
analyses. Some examples are examined below. A Pareto front algorithm identifies non-dominated
trajectories with respect to user-selected design objectives. Filtering methods remove trajectories
that do not meet user-specified constraints (such as solutions outside of a particular span of launch
dates). A cataloging process groups trajectories by launch date and identifies the “best” option (as
defined by the user) in each group. Task-specific analyses can be scripted and performed multiple
times.

Our toolkit includes a Pareto optimal sorting algorithm to assist analysts in finding trajectories
that are desirable in multiple objectives. The sorting algorithm is adapted from the Simple Cull
algorithm in Yukish17 and is outlined in Algorithm 1 in the Appendix. The analyst provides a list of
parameters to optimize. In our implementation, the parameters are variables to be minimized (or are
cast as such). The parameters may be any field loaded or derived from STOUR in the DataFrame.
The Pareto algorithm identifies those trajectories along the Pareto frontier for the given parameters.
The Pareto frontier is optimal in the sense that no solution on the frontier is dominated in every
objective by any other solution.

12



Figure 11. The Uranus trajectories in Figure 10 are replotted in this figure. However,
in this example, the X-axis represents the launch date and the shade of the marker
denotes the gravity-assist path for each trajectory. The case indicated by the arrow in
Figure 10 is highlighted again here and follows the path SU (Saturn-Uranus).

In our context, Ti,1−m in Algorithm 1 represents an individual conic solution. The algorithm
first sorts the trajectories by the first objective and moves the first trajectory to the Pareto set. The
remaining trajectories are then compared to the Pareto set. The procedure removes dominated tra-
jectories which allows non-dominated trajectories to bubble to the top of the list. Once a trajectory
reaches the top, it is added to the Pareto set (since it has not been dominated by any member already
in the Pareto set). After the sorting has been performed, members of Pareto set can be highlighted
in the toolkit plots or exported to an output file.

The diamonds in Figure 10 show an example of a Pareto-optimal set for minimum time-of-flight,
maximum delivered mass, and minimum propellant mass. In this figure, the plotting axes are cho-
sen for the first two objectives (time-of-flight and delivered mass). If the Pareto set were to be
computed for only time-of-flight and delivered mass it would lie along the lower-right edge of the
plotted points and plotting the Pareto set would be unnecessary. When three or more objectives are
considered, the Pareto set can identify cases that would not be obvious in a two-dimensional plot.
Figure 10 shows cases that are not along the lower-right boundary that are in the Pareto-optimal set
because of the additional objective (minimizing propellant mass).

In addition to the Pareto filter, the toolkit provides some basic filtering rules that can quickly
eliminate trajectories that are not interesting to the analyst. The simplest filter removes infeasible
trajectories. Using the mass history derived from the launch vehicle and maneuvers, the toolkit
identifies and removes trajectories that result in a negligible delivered mass at the target planet.
A generic filtering function removes trajectories that do not satisfy user-specified limits on any
parameter (or group of parameters) in the DataFrame. For example, a filter can be set to remove
trajectories that exceed a certain propellant mass value, or that launch outside of a desired launch
date range.

13



The toolkit’s cataloging utility applies several user-configurable filters to reduce the complete
dataset into a list of attractive trajectories in outlying years. The catalog utility first groups the
trajectories into launch-time periods (e.g. groups of trajectories with the same year of launch).
Within these groups, the utility limits results to those that exceed a user-defined, minimum delivered
mass. Finally, from the reduced group of trajectories, the utility selects the trajectory with the
minimum time-of-flight in each launch period.

STOUR applies a grid-search technique to find patched-conic solutions. A finer grid could pro-
duce better results for some design objectives. Trajectories that are optimized or propagated in a
higher-fidelity simulation may produce different results. For example, trajectory optimizers should
be able to improve delivered mass or reduce time-of-flight. The Pareto-optimal set produced directly
from STOUR solutions may differ from the Pareto-optimal set produced from STOUR solutions that
have been optimized or reproduced with higher fidelity. To account for this fact, the catalog utility
has logic to include additional trajectories in a user-specified region around the primary trajectory.
The resulting collection of trajectories can be tabulated for further study.

CONCLUSION

Our tool provides new and powerful analysis techniques for broad gravity-assist trajectory searches.
Combining many potential paths into a single database enables side-by-side comparison of trajec-
tory features across dissimilar trajectories. The plotting techniques allow analysts to spot trends in
trajectory solutions that would not be evident in the traditional text output. The filtering and sorting
methods deliver quick identification of attractive trajectories that warrant further investigation. The
ability to add user-defined data to the STOUR database enables users to easily weigh competing
trajectory solutions in aspects that may not be obvious from raw STOUR output. These capabil-
ities have proven themselves useful to our research needs and may help to uncover new mission
opportunities in the future.

REFERENCES

[1] E. A. Rinderle, “Galileo Users Guide, Mission Design System, Satellite Tour Analysis and Design Sub-
system,” Report JPL D-263, Jet Propulsion Laboratory, California Institute of Technology, Pasadena,
CA, July 1986.

[2] J. Longuski and S. Williams, “Automated Design of Gravity-Assist Trajectories to Mars and the Outer
Planets,” Celestial Mechanics and Dynamical Astronomy, Vol. 52, No. 3, 1991, pp. 207–220.

[3] M. R. Patel, “Automated Design of Delta-V Gravity-Assist Trajectories For Solar System Exploration,”
Master’s thesis, School of Aeronautics and Astronautics, Purdue University, West Lafayette, IN, 1993.

[4] S. N. Williams and J. M. Longuski, “Low Energy Trajectories to Mars via Gravity Assist from Venus
to Earth,” Journal of Spacecraft and Rockets, Vol. 28, July 1991, pp. 486–488.

[5] J. Longuski and S. Williams, “The Last Grand Tour Opportunity to Pluto,” Journal of the Astronautical
Sciences, Vol. 39, 1991, pp. 359–365.

[6] M. R. Patel, J. M. Longuski, and J. A. Sims, “A Uranus-Neptune-Pluto Opportunity,” Acta Astronautica,
Vol. 36, No. 2, 1995, pp. 91–98.

[7] M. R. Patel, J. M. Longuski, and J. A. Sims, “Mars Free Return Trajectories,” Journal of Spacecraft
and Rockets, Vol. 35, No. 3, 1998, pp. 350–354.

[8] A. E. Petropoulos and J. M. Longuski, “Trajectories to Jupiter via Gravity Assists from Venus, Earth,
and Mars,” Journal of Spacecraft and Rockets, Vol. 37, No. 6, 2000, pp. 776–783.

[9] M. Okutsu and J. M. Longuski, “Mars Free Returns via Gravity Assist from Venus,” Journal of Space-
craft and Rockets, Vol. 39, No. 1, 2002, pp. 31–36.

[10] C. M. Spreen, M. Mueterthies, K. Kloster, and J. Longuski, “Preliminary Analysis of Ballistic Tra-
jectories to Uranus Using Gravity-Assists from Venus, Earth, Mars, Jupiter, and Saturn,” AAS/AIAA
Astrodynamics Specialist Conference, Girdwood, AK, July 31 - Aug. 4 2011.

14



[11] K. M. Hughes, J. W. Moore, and J. M. Longuski, “Preliminary Analysis of Ballistic Trajectories to
Neptune via Gravity Assists from Venus, Earth, Mars, Jupiter, Saturn, and Uranus,” AAS/AIAA Astro-
dynamics Specialist Conference, Hilton Head Island, SC, Aug. 11–15 2013.

[12] K. M. Hughes, P. J. Edelman, S. J. Saikia, J. M. Longuski, M. E. Loucks, J. P. Carrico, and D. A. Tito,
“Fast Free Returns to Mars and Venus with Applications to Inspiration Mars,” Journal of Spacecraft
and Rockets, Vol. 52, No. 6, 2015, pp. 1712–1735.

[13] K. M. Hughes, Gravity-Assist Trajectories to Venus, Mars, and the Ice Giants: Mission Design with
Human and Robotic Applications. Ph.d. dissertation, School of Aeronautics and Astronautics, Purdue
University, West Lafayette, IN, 2016.

[14] A. J. Mudek, J. W. Moore, K. M. Hughes, S. J. Saikia, and J. M. Longuski, “Ballistic and High-
Thrust Trajectory Options to Uranus Considering 50 Years of Launch Dates,” AAS/AIAA Astrodynamics
Specialist Conference, Stevenson, WA, Aug. 20–24 2017.

[15] G. Rossum, “Python Reference Manual,” tech. rep., Amsterdam, The Netherlands, 1995.
[16] W. McKinney, “Data Structures for Statistical Computing in Python,” Proceedings of the 9th Python in

Science Conference, Vol. 445, Austin, TX, June 28 - July 3 2010, pp. 51–56.
[17] M. A. Yukish, Algorithms to Identify Pareto Points in Multi-dimensional Data Sets. Ph.d. dissertation,

College of Engineering, Pennsylvania State University, University Park, PA, 2004.

15



APPENDIX: PARETO ALGORITHM

Algorithm 1: Pareto Sorting Algorithm

1 function pareto search (T );
Input : Table of data with n values for each of m objectives, T1−n,1−m
Output: pareto set

2 P = empty array; // The Pareto set

3 sort T in ascending order of the first objective column;
// Until T is depleted

4 while length(T ) > 0 do
// Move the top row of T to the pareto set since it is not dominated

5 append T1,1−m to P;
6 remove T1,1−m from T ;
7 i = 0;

// While T is not depleted and we have not stepped all the way through

// Check each row of T against the latest pareto set addition

8 while length(T ) 6= 0 and i < length(T ) do
// For each objective

9 dominated = 0;
// Step through the columns

10 for c = 1 to m do
// Count columns that are dominated by the latest pareto set

addition

11 if Ti,c > Pend,c then
12 dominated = dominated + 1;
13 end
14 end
15 if dominated = m then

// Discard this row because it is dominated in each column

16 remove Ti,1−m from T ;
17 else

// Continue to the next row

18 i = i+ 1

19 end
20 end
21 end
22 return P ;

16


	Introduction
	Problem Description
	Method of Solution
	Features
	Multiple Path Comparison
	STOUR Derived Data
	Interactive Plots
	Automated Analysis

	Conclusion

