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Abstract 

Air quality monitoring (AQM) is crucial for cities to develop management plans supporting 

population health. However, there is a dearth of measurements due to the high cost of standard 

reference instruments. Mobile AQM using low-cost sensors deployed on routine fleets of vehicles 

can enable the continuous detection of fine-scale pollutant variations in cities at a lower cost. New 

methods need to be developed to interpret these measurements. This paper presents three such 

methods. First, we propose a technique to identify aerosol hotspots. Second, we employ techniques 

published previously to assess the generalizable map of fine and coarse particle number 

concentrations, to understand qualitatively the contribution of local and regional sources across 

the region sampled. By using the raw number concentration of differently sized particles from the 

Optical Particle Counters (OPCs) instead of the noisier mass concentrations, we obtain more robust 

results. Third, in order to evaluate source signatures in cities, we propose another technique, in 

which we cluster the entire range of aerosol size-distribution measurements acquired. The 

properties of each cluster provide insight into the aerosol source characteristics in the sampling 
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environment. We test these methods using a dataset we collected by mounting OPCs on two trash-

trucks in Cambridge, Massachusetts. 
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1. Introduction 

Poor air quality is a major environmental health risk in cities. Air quality monitoring is crucial for 

developing informed air quality management plans. However, setting up and maintaining air 

quality monitors is expensive. Even in the United States, resource constraints dictate that the 

regulatory air quality monitoring network is sparse, with only 2-5 regulatory monitors per 1 million 

people or 1000 km2 in 60% of US census urban areas (Apte et al., 2017).  

 

Furthermore, air pollutant concentrations in complex urban environments display high variability 

and sharp gradients over distances as small as 10 meters (Brantley et al., 2013; Van den Bossche 

et al., 2015). To characterize the reactive-pollutant spatial variation in situ, even a dense (but 

realistic) network of fixed air quality monitors cannot capture this variability. Mobile air quality 

monitoring can be used to obtain air pollution concentrations at high spatial resolution with a 

smaller number of monitors over a fixed period of time.  

 

The difficulty of working with mobile air quality monitoring data arises from the combination of 

complex spatiotemporal sampling and temporal air quality variability in different locations, related 

to traffic dynamics, street topology, meteorology, background source strength, etc. (Goel and 

Kumar, 2015; Van den Bossche et al., 2015). As mobile sensors capture only a snapshot of air 

pollution at a given location and time, this temporal variability makes it difficult to characterize 

the air pollution at a given location based on these measurements alone. In order to produce 
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detailed, representative aggregate air quality maps, large amounts of data over different 

meteorological and traffic conditions would be required (Apte et al., 2017; Brantley et al., 2013).  

  

‘Purpose-built’ mobile air quality monitoring labs often require dedicated vehicles and trained 

research staff as drivers. For this reason, most mobile air quality monitoring studies to date have 

been relatively short-term campaigns and provide insufficient repetitive frequency to reveal long-

term spatial air quality trends in a city (Bukowiecki et al., 2002; Kolb et al., 2004; Pirjola et al., 

2012, 2004). Apte et al., (2017) conducted one of the first long-term mobile air quality monitoring 

studies with a routine fleet of vehicles. Their study used high-quality reference PM air quality 

monitors on Google Street View cars to repeatedly sample every street in Oakland, CA, over the 

course of a year.  

 

On the other end of the spectrum of air quality monitors, the use of low-cost monitors (costing less 

than USD $3,000) is increasing (Kumar et al., 2015; Morawska et al., 2018; Snyder et al., 2013), 

and several community-based mobile monitoring studies have used these low-cost instruments 

(Dutta et al., 2009; Elen et al., 2013). Mahajan and Kumar (2020) have evaluated the use of low-

cost sensors for quantifying personal exposure. Low-cost monitors offer the possibility of 

systematic air quality monitoring even for resource-limited cities. 

 

We add to this literature by developing new techniques to analyse measurements from mobile low-

cost sensors deployed on another routine fleet of vehicles: trash-trucks, which are deployed in 

nearly all major cities globally. Specifically, we show how data from mobile, low-cost sensors can 

be used: 1) to detect pollution hot spots from major, fixed, possibly intermittent sources in the built 

environment, 2) to develop a qualitative understanding of where local versus regional sources 

dominate in a city, and 3) to identify pollutant source signatures on different street segments. Such 

insights about air pollution can help city managers develop effective air quality management plans. 
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Anjomshoaa et al., (2018) compared the utility scheduled vehicles, such as trash-trucks, with non-

scheduled vehicles, such as taxis, as urban air quality sensing platforms in cities. Although taxis 

operate 24 hours a day and potentially sample at a higher rate the busiest streets in a city, there is 

no guarantee that they cover all streets. On the other hand, although trash-trucks operate for short 

periods during the day, and have a lower sampling frequency of most streets, they provide 

complete spatial coverage of city streets. Therefore, using trash-trucks as a scalable sampling 

platform is worth investigating. 

 

We test our techniques using measurements made in Cambridge, Massachusetts, between April 

21, 2017 and August 14, 2017, where we deployed low-cost Optical Particle Counters (OPC-N2s) 

on two trash-trucks as a pilot experiment. 

 

The rest of this paper is organized as follows: Section 2 describes the data used, the collection 

strategy, and the analysis methods.  Section 3 presents the results obtained from applying the three 

methods sketched out above to our Cambridge dataset. Lessons learned and practical implications 

for future deployments are given in Section 4.  

2. Materials  

2.1 Low-Cost Particulate Matter Monitors 

We use the data collected by Alphasense OPC-N2 monitors1 deployed on two trash-trucks in the 

City of Cambridge for a total of 27 days between April and August 2019, to gain qualitative 

insights into potential sources of PM in this urban environment. The Alphasense OPC-N2 sensor 

measures particle counts (N0.38-17.5) in 16 size bins ranging from 0.38 to 17.5 μm (Table S1, 

                                                 
1 http://www.alphasense.com/index.php/products/optical-particle-counter/” 
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Supplementary Information). The OPC works by illuminating one particle at a time with focused 

laser light and measuring the intensity of light scattered. The amount of scattering from a particle 

is a function of the particle size. The instrument is calibrated using monodisperse particles of 

known size to derive counts for particles of different sizes. 

  

The number and volume concentrations of particles can be obtained by dividing the particle counts 

by the flow rate and sampling time. The log-normal size distribution of particles at the midpoint 

of each diameter bin can be calculated using Equation (1): 

 

𝑑𝑁

𝑑𝑙𝑛(𝐷)
 𝑝𝑒𝑟 𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑎𝑖𝑟 𝑎𝑡 𝐷𝑚𝑖𝑑𝑝𝑜𝑖𝑛𝑡 =  

𝛥𝑁

𝑙𝑛(𝐷𝑢𝑝𝑝𝑒𝑟) − 𝑙𝑛(𝐷𝑙𝑜𝑤𝑒𝑟)
×  

1

𝑓𝑙𝑜𝑤 𝑟𝑎𝑡𝑒  × 𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝑡𝑖𝑚𝑒
  (1) 

  

where N is the number concentration of PM within a size bin (#/ml), D is the diameter of the 

particles, Dupper, Dlower and Dmidpoint  are the upper, lower and midpoint diameters of the OPC-N2 

bins in units of (μm), ΔN is the number of particle-counts in each bin.  

 

The particle counts agree well with reference instrument measurements for coarser particles (> 

0.78 μm), providing detection efficiency ranging from 83%-108%, but the particle counts for finer 

particles (< 0.78 μm) are underestimated (detection efficiency ~ 78% for mono-disperse 

polystyrene spheres (Sousan et al., 2016). Despite the greater noise in the detection of particles in 

the lower bins, the OPC measurements still provide useful information of the amount of finer 

aerosol in the atmosphere, and we retain these bins in this analysis. 

 

A partly proprietary Alphasense data reduction algorithm makes assumptions about particle 

density and the number of particles with diameters smaller than 0.38 µm, to report PM1, PM2.5 and 

PM10. These assumptions create uncertainty in the PM values that vary based on the ambient 

aerosol size distribution and density at the time of measurement.  

https://www.zotero.org/google-docs/?tcbc4t


 

Although the Alphasense OPC-N2 monitors are thus of lower quality than reference instruments, 

the particle number concentration measurements in 16 size bins represent much better constraints 

on the true values than the derived, size-resolved particle mass, as exemplified by the work of 

Sousan et al., (2016). Such information can constrain the aerosol size distribution over space, 

which can indicate local/regional pollution sources, as we demonstrate in the current study. It must 

be noted that If the aerosol is hygroscopic, under conditions of high humidity (RH > 85%) the 

OPC interprets the hydrated particles as larger “dry” particles, and the reported number 

concentrations will have errors (Crilley et al., 2018). The RH during times of measurement in 

Cambridge was between 60-70%, and therefore particle hydration is unlikely to be a major concern 

during our experiment.  

 

In addition to characterizing the variation of PM1, PM2.5 and PM10 across our sampling route, we 

also aggregate the spatial variation of particle number concentrations in different size bins derived 

from the raw OPC-N2 measurements: N1 (N0.38-1, comprising particles with diameters between 

0.38 µm and 1 µm), and coarser particles: N12 (N1-12, covering particles with diameters between 

1 µm and 12 µm).  

 

For more information about the experiment design, the study area and sampling protocol and the 

days on which sampling runs occurred in Cambridge, MA, please refer to section S1 in 

Supplementary Information. 

3 Methods 

In this section we present three techniques designed to identify and characterize PM2.5 hotspots, to 

estimate the generalised air pollution over the sampled routes, and to analyze aerosol size 

https://www.zotero.org/google-docs/?xDK6k4
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distribution from the OPC-N2s, yielding estimates of PM source signatures in different parts of 

the sampling route.  

3.1 Identification and characterization of PM2.5 hotspots  

We identified all measurements where PM2.5 > 100 μg/m3, that we arbitrarily selected to be much 

higher than the EPA daily average standard of 35 μg/m3. Such high measurements are 

substantially above the background values in the study region, as presented subsequently, and 

could either be 1) noise from the OPC-N2, or 2) an indicator of a strong local source of pollution.   

In order to identify measurements that were products of local sources rather than noise, we used 

hierarchical clustering (Johnson, 1967; Langfelder and Horvath, 2012) to cluster measurements 

made in the same spatial area using a distance cut off of 100 meters.   

 

We calculated the number of measurements in each cluster, as well as the number of unique days 

over which the measurements in each cluster were made. Most clusters contained only a few 

measurements, indicating that they could represent measurement noise. We thus only focused on 

clusters that contained > 30 measurements, or those for which the number of unique 

measurement days was greater than 1. We characterized each cluster by calculating the average 

properties (PM1, PM2.5, PM10, N1, N12) of each cluster. The temporal nature of these hotspots 

and their average properties allow us to deduce potentially important local fixed sources that 

contribute to the hotspot formation. This information is useful for planners in developing air 

pollution management plans.  

 

 Even in locations where we see pollution hotspots, it is possible that the source involved only 

operates for short periods of time, so typical pollutant concentrations might be low. In the next 

subsection, we describe how we obtain the relative distribution of typical pollutant 

concentrations across the trash-truck sampling route.  

https://www.zotero.org/google-docs/?xWC1ZW


3.2 Methodology for estimating generalized air pollution over the sampled routes 

3.2.1 Pre-processing: Background Correction 

To compare measurements made at the same location but on different days and at different times, 

we need to account for possible bias created by diurnal variation in background aerosol number 

concentration and PM concentrations over the study region. We assume that the background value 

varies temporally but not spatially over the region.   

 

We assessed the background contribution using three different methods. The first method involves 

applying an hourly multiplicative factor derived from concentrations reported by a reference air 

quality monitor at a designated background site (Hagler et al., 2012; Van Poppel et al., 2013). In 

our case, this requires using the regulatory monitor at Boston’s North End (N:42.363, E:-71.055, 

4 km southeast of the center of the study region). Unfortunately, here is no reference air quality 

monitor in Cambridge, the site of our experiment. This technique involves uncertainties, in part 

because the OPC optical measurements are not directly comparable to the reference monitor’s 

gravimetric ones.  

  

The second method, following (Bukowiecki et al., 2002), takes the lowest 10th percentile of the 

pollutant concentrations for a given hour during the run as the fixed background value for that run.  

 

The third method uses a time-series, spline-of-minimums approach, presented by Brantley et al., 

(2013), to estimate the background number concentrations of finer particles: N1, N12, as well as 

PM2.5 for each day. We did this by (a) applying a rolling 30-second mean to smooth the 

measurements, (b) dividing the time series into discrete 10-minute segments and locating the 

minimum concentration in each segment, and (c) fitting a smooth, thin-plate regression spline 

through the minimum concentrations. Note that on nine days the two OPCs were operating 
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simultaneously. We consider the total observations made for a given day in this methodology, 

consistent with our assumption that the background is temporally varying but spatially uniform.  

 

We compared each of the three proposed methods to choose a background pollution value, and 

found that they produced similar corrected values. Specifically, the mean differences in the 

corrected N1, N12 and PM2.5 values using the different methods were less than 5%. The differences 

between the corrected values and the raw N1, N12 and PM2.5 measurements were also less than 

5% (Table S2 in Supplementary Information). Given the minimal differences in background-

corrected number concentrations and PM2.5 values vis a vis the raw measurements  using the 

different methods, we chose the splines-of-minimum approach to obtain background 

concentrations for all pollutants. This is supported by Brantley et al. (2013), who found this 

approach to be an effective way to account for background concentrations for a range of pollutants 

in their North Carolina study over a variety of meteorological conditions and sampling routes.  

 

Once the method for evaluating background air pollution was selected, we performed a 

background time-of-day correction using Equations 2 and 3 to account for the period during which 

the trucks operated: 

 

PM2.5,norm i= PM2.5,OPC, i x PM2.5, bkg,median / PM2.5,bkg,i........................................ (2) 

 

where PM2.5,OPC,i is the OPC measurement for event i, PM2.5,bkg,,i is the contemporaneous 

background value of pollution over the entire region, and PM2.5, bkg,median is the median of the 

PM2.5,bkg values on the day of measurement for the time period 07:00 to 14:00h (local time).  

 

However, Cambridge is a city with relatively clean air, so the background PM2.5 is often very low. 

As a result, we apply an additive rather than a multiplicative background-correction factor: 



 

PM2.5,norm i= PM2.5,OPC i - PM2.5, bkg,i + PM2.5, bkg,median                                  (3) 

 

By subtracting the time-of-day-resolved regional background from the pollution measurement, we 

can now compare local air pollution over space. Note that, conversely, PM2.5 in Equations 2 and 3 

can be replaced with particle number concentrations (N1 or N12) to estimate background-corrected 

aerosol number concentrations. 

3.2.2 Estimating generalizable pollutant values across the sampling route  

Given our large dataset (>500,000 observations), we applied a series of steps to convert the data 

into estimates of median concentrations for individual road segments over all sampling runs. We 

constructed these road segment estimates by dividing the Cambridge street network into segments 

of fixed lengths, using the ‘Locate Points Along Lines’ QGIS Python Plugin 

(https://plugins.qgis.org/plugins/LocatePoints/). We adopted a process for aggregating these data 

and deriving sampling error from previous work (e.g., Apte et al., (2017)).  

 

First, we spatially-aggregated all our mobile (1) background-adjusted PM2.5, and (2) background-

adjusted number-concentration measurements for 0.38 µm to 17.5 µm particles from the OPC-

N2s, by snapping them to the road segment on which they were acquired.  This allows 

measurements made in the same segment to be analysed as a group. This distance is small enough 

to capture pollutant-concentration gradients, but is not so finely sliced that GPS errors overwhelm 

the results. Therefore, we also use segment lengths of 30 meters.  

 

Second, we selected the median as an outlier-resistant metric of PM and number concentration 

central tendency, as others have done (Apte et al., 2017; Hankey and Marshall, 2015). We chose 

not to remove peak concentrations caused by encounters with vehicle exhaust plumes, as such 

https://plugins.qgis.org/plugins/LocatePoints/
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plumes contribute to the particle concentration at a given location. For comparison, we also 

calculated the mean values, with the understanding that individual outliers can significantly skew 

those results.  

 

Third, we used a set of bootstrap resampling procedures to quantify the effect of sample-to-sample 

variability and of sampling error on the median concentrations. As a metric of precision, we used 

the ratio of standard error of the median (mean) concentration to the median (mean) concentration 

itself. In general, the average skew of the median PM2.5 concentrations for the 30m segments is 

~0.9. This indicates that the distributions are close to central tendency, with the mean slightly 

greater than the median.  

3.3 Working with the aerosol size distribution from the OPC-N2s 

It is challenging to analyse the aerosol size distribution at each point in time, because for each 

measurement Equation 1 allows us to calculate the size distribution at the midpoint of each of the 

16 bins. We thus have 16 data points for each time-step. Pey et al., (2008) showed that aerosol 

number and mass concentrations can be affected by multiple sources and atmospheric processes.  

 

To simplify the analysis of the OPC size distributions systematically, we clustered the size-bin 

observations (without background-correction) using the k-means technique. The final cluster 

centres reflect particle number size distributions representative of each cluster, thereby reducing 

the complexity of the dataset (Beddows et al., 2009). This technique allows us to identify a small 

number of typical aerosol size distributions that can be compared across space and time, which 

can give us insights into the kinds of sources responsible for measurements within a cluster. 

 

Without access to the size distribution of the background aerosol, it is impossible to perform a 

background correction on the aerosol size distribution. However, by applying the k-means 

https://www.zotero.org/google-docs/?gy7XXV
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clustering technique on the complete range of raw size distribution data, we are able to gain a better 

understanding of the source attribution of aerosols in the sampling route environment.  

 

In order to choose the number of clusters, we examined the within-group sum-of-squares error for 

cluster sizes ranging from 2 to 30 to determine an optimum number of clusters. Figure S3 in 

Supplementary Information shows that the error in representing the full dataset decreases sharply 

between 1 and 4 or 5 clusters. When we applied k-means clustering with more than 5 groups, the 

average size distributions of the newly created clusters had a similar shape to that of previously 

identified clusters, albeit with different total number concentrations. Normalizing the size 

distribution by the number concentration of aerosols per measurement might have led to better 

results. Unfortunately, because the OPC doesn’t detect particles with diameters < 0.38 μm, the 

total aerosol number concentration at each measurement is unknown, and we were thus unable to 

normalize the measured size distribution.  

 

To avoid over-interpreting the data, we cluster the data into five groups. We evaluated the average 

size distribution and the spatial and temporal variation of each cluster to infer source characteristics 

and assess the aerosol dynamics at work in our dataset.  

4. Results and Discussion of the application of these techniques in 

Cambridge 

4.1 Hotspot identification 

Figure 1 shows the results of performing hierarchical clustering on PM2.5 measurements > 100 

µg/m3 as described in Section 2.5.1. Forty-four distinct clusters were identified. Thirty-seven of 

the clusters contained fewer than 10 measurements made over the course of a unique day, 

indicating that these spikes could be artefacts. We highlight in Figure 1 four of the seven other 



clusters of PM2.5 values recorded by the OPC, where the number of measurements is > 30, or the 

number of unique days over which the measurements are made are > 1.  

 

Table S3 in Supplementary Information reports the number of measurements that comprise each 

cluster and the number of unique days over which measurements in each cluster were made. Table 

S3 also provides a google maps image of the location at which each cluster was made. All of these 

clusters were only detected on a handful of days, indicating the temporal intermittency of the local 

sources responsible for these hotspots that we now explore. In addition, Figure S4 in the 

Supplementary Information depicts the average particle size distribution for each cluster. The 

Table associated with Figure S4 reports the average PM1, PM2.5, N1, N12 for each cluster and the 

time at which the measurements in each cluster were observed. 

 

Figure 1: Locations of the centroid of clusters produced via hierarchical clustering described in 

Section 2.5.1. The color of the cluster represents the number of data points in each cluster. The 



size of the cluster corresponds to the number of unique days of measurement corresponding to 

each cluster. Four large hotspots / clusters (number of points in the cluster are > 10 and number 

of unique days of measurement > 1) are identified and numbered. 

 

We now explore each of the four robust hotspots in detail: 

 

1) Cluster 1 comprises 30 measurements of high PM2.5 values that were made at the site marked 

‘1’ in Figure 1, which is an organic farm in Rocky Hill Farm, in the city of Saugus, Massachusetts, 

also a site of waste disposal. A smaller cluster comprising 11 measurements is nearby. However, 

it is worth noting that on only one of the 27 days of sampling a trash-truck travelled north to the 

Saugus dumping zone. (See Figure S2 in Supplemental Information, which displays the number 

of unique days over which each street along the trash-truck routes was sampled.)  

2) The location of cluster 2 is at the Department of Public Works, where the trash-trucks are 

housed. This is the largest hotspot, with > 1,800 PM2.5 measurements exceeding 100 µg/m3. 

Although the trash-trucks travelled to and from this location on every day of their operation, such 

high PM2.5 values were seen on only three days during the experiment. 

3) The third cluster is located at a waste collection site in Roxbury, Boston, MA. The number of 

unique days over which measurements comprising this cluster were made is ten. This indicates 

that there is likely a major, fairly consistent source of particulate matter at this site. 

4) The last PM2.5 cluster is on Hamlin Street, in Cambridge, close to a large parking area and a 

park. It consists of 34 measurements made over a span of two unique days.  

 

The modal diameter of the aerosol distribution on Hamlin Street and one of the clusters at Saugus 

(the smaller cluster, comprising 11 measurements) is > 1 μm, as seen in Table associated with 

Figure S4. As most combustion pollution particles tend to be well below 0.5 μm in diameter, this 

suggests that local soil or dust particles make a large contribution to pollution at these sites. From 



the Table associated with Figure S4, the high ratios of PM10/PM2.5 for these clusters bolsters this 

hypothesis. The shape of the average aerosol size distribution of the other cluster at Saugus 

indicates a massive number concentration of fine particles at this site, which is borne out by the 

low PM10/PM2.5, high N1 and low N12 concentrations. At Roxbury, the shape of the aerosol 

distribution indicates a complex environment, with high concentrations of fine as well as coarser 

particles. A massive number concentration of coarse particles is found at the Cambridge Public 

Works Department.  

 

Three of the four hotspot locations identified above are at waste disposal sites, and the Cambridge 

Public Works Department concentration is likely due to the indoor housing of trash-trucks. In both 

cases, it indicates that personnel, such as the trash-truck drivers, are exposed to high pollution 

values at these locations. Stationary monitoring would be required to measure air quality at the 

sites when the trash-trucks are not present, to interpret these air pollution values generally.  

 

In the next subsection, we highlight the general values of pollution across the sampling routes, 

taking into consideration all measurements made over the period of study. This gives us 

information about the ‘typical’ sources that contribute to pollution at each location. 

4.2 Spatial Patterns 

The median background-corrected concentration of PM2.5, fine particles (N1), and coarse 

particles (N12) are depicted in Figure 2a, b and c respectively. Figure S5a 

(Supplementary Information) shows the median PM2.5 on road segments where the 

normalised error in the median PM2.5 derived from bootstrapping is ≤ 20%, and the 

number of unique days on which a road segment was sampled exceeds unity. Figure S5b 

and c are similar plots for N1, and N12. Figure S5 thus shows us pollutant values at 



locations along the sampling route for which we are reasonably confident to have 

estimated the ‘typical’ value of pollution during the period of study. 

 

Figure 2a indicates that on average, PM2.5 in Cambridge is likely low and uniform across the city 

for weekdays between 07:00 to 14:00 local time, when and where the trash-trucks operate. Some 

of the locations where high PM2.5 values are observed coincide with previously identified hotspots, 

such as at the Roxbury waste disposal/transfer site, whereas at the Cambridge Public Depot and 

Hamlin Street, we see PM2.5 observed are only moderately high, indicating that hotspots of 

pollution in the latter locations are sporadic or atypical. 

 

High values of PM2.5 over the period of study were also observed on Prospect Street (close to the 

trash-truck depot), as well as on Broadway across the Malden Bridge, near the Everett Casino 

construction site. As the normalised error in the median is > 20% (Figure S5a), further 

generalizable statements about levels of pollution at these locations would require more 

measurements. The sites with the highest PM2.5 values in Fig. 2a also appear as hot spots for N1 

(Figure 2b) and N12 (Figure 2c), indicating high concentrations of both sub-micron and super-

micron particles.  However, from Figures S5b and c, as for PM2.5, only the calculated 

‘generalizable’ N1 and N12 concentrations at the Roxbury waste transfer/disposal site is stable. 

More measurements need to be made at the other locations to gain confidence in the ‘typical’ 

pollutant concentration levels at these locations. Other than these sites, the PM2.5 values observed 

during the sampling are much lower than the EPA daily averaged standard of 35 μg/m3 overall, as 

well as the EPA annual standard of 12 μg/m3. 

 

There are at least two reasons why the distribution of larger particles is likely to be more localized 

than that of fine particles: 1) Larger particles tend to travel shorter distances than finer particles 

under similar wind conditions (Wilson et al., 2005), and 2) There are additional sources of fine 

https://www.zotero.org/google-docs/?2zzTzh


particles. This is indeed the case: Figure S5c shows high local concentrations of N12 along 

Cambridge Street, where we observed many construction projects going on during the period of 

sampling. N1 is more dispersed along Cambridge Street and its surrounding environs (Figure S5b). 

In addition, high fine particle concentrations on main roads, such as Brattle Street and Cambridge 

Street, indicate that vehicular traffic in these areas are additional sources of fine particulate matter. 

 



 



 

Figure 2: a) Map of median PM2.5 (μg/m3) for each 30-meter road segment that the trash-trucks 

travelled, after the background correction had been made, b) Map of the median background-

corrected number concentration (#/ml) of particles having diameters between 0.38 μm and 1 μm 

(N1), c) Map of the median background-corrected number concentration of particles having 

diameters between 1 μm and 12 μm (N12).  

4.3 Analysis of the size distribution of particulates monitored 

As discussed in Section 2.6, we used K-means clustering to interpret the OPC particle size-

concentration data, and identified five clusters in the optimal grouping. Unlike the hierarchical 

clustering method presented in Section 2.5.1, where similar measurements located within a radius 

of 100 meters of each other were grouped, we use the k-means analysis to identify signatures of 

similar sources across time and space. The average size distribution of each cluster is shown in 

Figure 3. Table 1 gives the average pollutant concentrations and trash-truck velocity corresponding 

to each cluster, as well as the number of days on which measurements corresponding to each 

cluster were made.  

 

 



 

Figure 3: Average size distribution of each cluster 

 

Figure 3 shows that the aerosol concentration mode values for clusters 3 and 5 occur at ~0.78 μm 

diameter. Modes for clusters 1, 2, and 4 occur at diameters < 0.38 μm. This indicates that the 

sources contributing to the measurements in the different clusters are likely distinct. Figure S6 in 

Supplementary Information is a map of the most frequent cluster present on each 30-meter road 

segment in Cambridge.  

 

Clusters 1 and 4, having the lowest contributions from particles larger than 0.38 μm, dominate in 

most parts of Cambridge. Cluster 4 is dominant on main roads/major intersections on the sampling 

routes, with high concentrations of background-corrected N1 (Figure 2b). Although from Table 1 

the background concentration of PM2.5 makes up a large fraction of the PM2.5 measured, it appears 

that measurements corresponding cluster 1 are almost entirely due to background/regional PM 

sources. Cluster 4, on the other hand, is composed of measurements where vehicular traffic 

contributes noticeably to the aerosol load.  



 

After clusters 1 and 4, cluster 2 is the most prevalent, with high values of pollutants (though lower 

than that in clusters 3 and 5). Observations corresponding to this cluster are observed on all 27 

days. This could indicate that these observations were likely due to vehicles. The number 

concentration of fine particles corresponding to cluster 2 are higher than for cluster 4, suggesting 

that these measurements might be due to passing vehicular emission plumes. 

 

From Figure S7c and S7e, we see that clusters 3 and 5 correspond to a small number of 

measurements made along the sampling route. Measurements within cluster 3 were made in six 

different locations on seven different days (Table 1). These locations correspond to the smaller 

clusters of PM2.5 hotspots depicted in Figure 1. Cluster 5 corresponds only to observations at two 

locations made on two different days (Table 1).  

 

There is a spatial overlap between measurements in cluster 3 and 5. Although the aerosol size 

distribution of clusters 3 and 5 appear to be similar, the number concentration of measurements 

corresponding to cluster 5 are higher. This could indicate that the sources contributing to both 

clusters are the same, but due to either temporal variations of the source characteristics, or via the 

mediation of the built environment, different aerosol number concentrations were observed. From 

Table 1, we see that both clusters 3 and 5 correspond to very low trash-truck velocities. This could 

indicate that the trash-trucks were stationary or idling when observations corresponding to these 

clusters were made.  
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Average 
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of 
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corresponding 



r PM2.5 

μg/m3 

days to each cluster  

1 2  3 13 3 4 0.74 1.2 27 440,988 

2 41 71 316 5 79 23 1.0 27 5,039 

3 215 419 817 9 323 178 0.2 7 682 

4 8 11 38 5 18 2 1.2 27 128,205 

5 321 804 2586 9 414 460 0.1 2 886 

 

Table 1: The average background-corrected PM1, PM2.5, PM10, N1 and N12 and contribution of 

background aerosol to each PM2.5 measurement for each cluster type 

5 Conclusions and Practical Implications 

Our results indicate that the city of Cambridge air is relatively clean and spatially uniform (PM2.5 

is < 10 μg/m3). Using low-cost OPCs, we found that fine particles tended to concentrate along 

heavily trafficked roads, and we identified several coarse-mode particle hotspots in close proximity 

to likely sources, such as a waste transfer site and the Cambridge Public Works depot.  We 

recommend a future experiment to validate these results, by co-locating the mobile low-cost 

monitors with at least one high-quality instrument to calibrate and/or validate the OPC 

measurements.  

 

As background pollution appears to comprise a major fraction of the aerosol concentrations 

measured by the trash-trucks, in future deployments it is important to ensure that background 

pollution concentration is well characterized, probably using measurements from nearby fixed 



monitors located in areas away from local sources. We also note the need to record when a stopped 

truck is idling and when it is at a halt with the engine off, to better characterize self-emissions. We 

further propose the development of a standard protocol that can be used by different mobile air 

quality monitoring studies for other cities.  

 

Our insights result from the deployment of low-cost monitors on trash-trucks, which run from 

07:00 to 14:00 on weekdays. Thus, in future studies these measurements need to be supplemented 

by other scheduled or non-scheduled vehicles that operate at different hours to obtain truly 

representative pollution values over the region. Scheduled vehicles, such as buses, have the 

advantage of traversing the same street segments several times per day, whereas with unscheduled 

vehicles, such as taxis, we can still use a relatively small fleet (if compared with the total fleet of 

the city) to collect data in more randomly distributed street segments not covered by buses.  

 

Despite the limitations of the case study in Cambridge, Massachusetts, this paper demonstrates 

that insights into the spatial and temporal nature of sources and their impact in the urban 

environment can be obtained via low-cost monitors. Importantly, this paper argues that the oft-

discarded aerosol size distribution data from the Alphasense OPC-N2 within the range of detection 

can yield information about air pollution in urban areas that have important implications for air 

pollution management plans. Combining the deployment and analytical tools, we believe that 

mobile air quality monitoring using existing urban vehicles can be done more extensively and 

relatively inexpensively. 
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