
1

Autonomous Spacecraft Inspection with
Free-Flying Drones

Sami Mian∗, Tyler Garrett∗, Alexander Glandon†, Christopher Manderino∗,
Swee Balachandran‡, Cesar A. Muñoz§, and Chester V. Dolph§

Email: {sam415, tmg61, clm199}@pitt.edu, aglan001@odu.edu,
{sweewarman.balachandran, cesar.a.muñoz, chester.v.dolph}@nasa.gov

∗NSF SHREC Center, University of Pittsburgh, Pittsburgh, PA, USA
†Old Dominion University, Norfolk, VA, USA

‡National Institute of Aerospace, Hampton, VA, USA
§NASA Langley Research Center, Hampton, VA, USA

Abstract—This paper describes a proof-of-concept mission
demonstrating a multi-agent system performing visual inspection of
damage sustained by a spacecraft. Free-flying satellites, simulated
by unmanned aerial vehicles (UAVs), autonomously fly around a
mock space module maximizing the search space for damage
detection. The free-flyers are responsible for independently
coordinating their flights to avoid collision with the space module
and each other, while executing mission tasks. Damage analysis on
the surface of the mock space module is performed in real-time
using video from each free-flyer. Three-dimensional modeling is
deployed offline to supplement and improve damage detection. This
approach demonstrates the feasibility of deploying real space
systems for damage detection, where 2D analysis can quickly
determine region of interest and 3D visualization can produce a
human-navigable virtual environment with depth perspective for
further investigation.

Index Terms—unmanned aerial vehicle (UAV), multi-agent
cooperation, computer vision, autonomous systems, free-flyer
spacecraft, in-space assembly

I. INTRODUCTION

In the past 20 years, space technology has rapidly evolved,
presenting new challenges to a growing number of spacecraft
in Earth’s orbit. A major hazard for spacecraft is structural
damage from collision with orbital debris or ablation.
Structural damage may degrade performance and, in the worst
case, cause catastrophic failure. According to [1], debris larger
than 1cm can cause significant damage to a satellite
endangering the spacecraft or its mission. As of January 2019,
there are nearly one million pieces of space debris greater than
1cm in length estimated to be orbiting around Earth. The
number of pieces less than 1cm that could still cause sensor
damage is estimated to be over 128 million. As the United
States and other countries take aim for new, large vessels like
the Lunar Orbital Platform, these problems will continue to
threaten the next generation of spacecraft.

The works in [2], [3] consider detecting damage on satellites
prior to being launched into space. In contrast to those works,

the research in this paper considers the problem of damage
detection for a spacecraft after launch and in-orbit. This effort
simulates a swarm of autonomous free-flyer satellites
surveying a larger spacecraft for possible damage.

In order to test the feasibility of the proposed damage
detection system, a testbed is developed to simulate several
free-flyer satellites working in unison to scan and inspect a
simulated larger satellite body. Multiple unmanned aerial
vehicles (UAVs) are used to simulate a free-flyer swarm. Each
UAV is controlled using NASA’s Independent Configurable
Architecture for Reliable Operations of Unmanned Systems
(ICAROUS) [4]. ICAROUS is an onboard software architecture
intended to enable the development of autonomous UAV
operations. ICAROUS consists of several distributed
applications communicating over a software bus provided by
NASA’s core Flight System (cFS) [5].

This work extends ICAROUS to autonomous spaceflight for
in-orbit systems. In particular, a 2D damage analysis
application is developed for real-time damage detection via
video feed. Additionally, several post-processing techniques
were used to create a 3D reconstruction of the object-of-
interest, including visible damage, for further post-mission
analysis. This work demonstrates the viability of using
ICAROUS on a swarm of free-flyers for detecting external
damage on spacecraft in orbit.

II. BACKGROUND

From the SPHERES project to Astrobees and Int-Ball, over
the past decade, many teams have engaged long running
experiments with free-flying small satellites. This work
approaches mock missions for these maneuverable space
robots using UAVs running ICAROUS.

2

A. Using UAVs for Damage Detection

 Several studies have been conducted on the use of a UAV
mounted camera for visual inspection of a building [6], [7].
More recent work has focused on sensor fusion techniques,
combining sensor data from multiple UAVs to create more
accurate analysis of damage to building structures [8]. Further
work has taken advantage of a UAV’s capabilities to move in
three dimensions using LIDAR and IR systems to create highly
accurate 3D maps [9][10], as well as perform group sensing
tasks, such as search and rescue operations [11].

Usually referred to as a “swarm,” a large group of UAVs is
capable of cooperating to achieve a common goal or collective
behavior [12]. Swarms also provide greater robustness against
mission failures, via redundancy and error checking [13], [14].
Often, all agents in a swarm use a common communication
platform for coordination. Some swarms are organized by a
single leader; decentralized swarm models may require each
UAV retain individual autonomy to make its own choices but
share data. This work develops a scalable multi-agent system
to utilize as many agents as possible to conduct inspections,
drawing on work from the field of swarm robotics.

B. Overview of cFS

cFS is a mission framework for flight software applications
developed at NASA Goddard Space Flight Center (GSFC). It
consists of a dynamic runtime environment, layered software
systems, and a component-based design [5]. cFS has a layered
architecture that supports a variety of software and hardware
platforms. cFS also provides a standardized application
programming interface (API) for easier application
development. The cFS software has been designed for
spaceflight systems and is bundled with a variety of tools that
help develop robust, safety-critical code for mission success.

C. Overview of ICAROUS

ICAROUS is an onboard software capability for UAVs
developed at NASA Langley Research Center [4]. ICAROUS is
intended to enable autonomous decision making and to
provide functionalities needed for beyond visual line of sight
UAS operations. ICAROUS consists of several applications
communicating over a software bus provided by cFS. ICAROUS
runs on an onboard companion computer, receiving data from
various sensors and sending commands to an autopilot to
maneuver around obstacles, to enforce adherence to a
predetermined flight path, or to avoid intruders in the
airspace. ICAROUS provides path planning [15], sense and
avoid [16], and merging and spacing [17] for cFS-based
systems. This work uses ICAROUS as the primary onboard
mission planning software for free-flyers in-orbit.
 A diagram of the ICAROUS system is shown in Figure 1.

Fig. 1. ICAROUS Architecture

D. Computer Vision for Spacecraft Damage Detection

The 2D damage analysis application performs image
segmentation for the mock satellite and highlights of detected
damage. Image segmentation for objects is a well-studied
computer vision problem. Some techniques used in this
research effort are described below.

Otsu thresholding is a technique for extracting a binary mask
from an image. A foreground object can be segmented from a
background object if the intensities are different. A threshold
intensity level that separates low and high intensity regions
with minimum intra class variance is used. Otsu can also be
applied adaptively, i.e., as image region dependent [18].
Template matching is another technique for object
segmentation. Section 1.2 of [19] describes basic template
matching as searching the image for a subregion (or vector)
with the smallest distance to the template vector.

Color matching is used to segment an object of a particular
color. Global thresholding generalizes intensity-based
thresholding [20]. In this paper, the global thresholding
method is extended to a color ratio-based thresholding, which
better suits this application.

After segmentation, highlighting of damage on the mock
satellite is posed as a filtering problem. For each segmentation
window, the goal is to give a binary result of normal or
damaged. Highlighting damage on the mock satellite is posed
as a filtering problem. Sobel edge detection is a filtering
technique based on gradient calculation in the vertical and
horizontal image directions. The Sobel method involves 2D
filtering with a kernel representing a directional derivative
[21].

Alternatively, convolutional neural networks (CNNs) are a
deep learning technique that takes image input and can return
classification (or detection) output. CNNs employ weight
sharing to enable effective training for a given function on high
dimensional image input [22].

The 2D damage detection software is developed as a cFS
application for use in ICAROUS during flight. The 3D modeling
is performed for an object from a gallery of 2D images. A
technique called photogrammetry is used to perform this
function. The toolkit used in this work is AliceVision
Meshroom™ [23].

ICAROUS
Decision Making Conflict Monitor

& Risk Assessment
DAIDALUS

(Detect and Avoid)

Scheduler

Autopilot
Interface

Communication Layer (cFS)

PolyCarp
(Geofence Containment)

Path Planning … Ground Station
Interface

Ground Station

Autopilot

3

III. SYSTEM DESIGN

This work deploys ICAROUS with cFS in UAV mission
computers to simulate free-flyers operating in orbit. New
modules for ICAROUS provide high-level mission management
and multi-agent coordination. This work also develops a cFS
Vicon™ interface for indoor localization during research and
testing. Furthermore, a novel computer vision module is
implemented in cFS for accurately detecting damage in-situ.

A. System Software Architecture

Three new modules are added to ICAROUS for the free-flyer
damage-detection mission: Cognition, Guidance, and
Coordination. Figure 2 shows the various software modules
that comprise the flight software system used for controlling
the free-flyers.

Fig. 2. Flight Software Architecture

Cognition determines various levels of mission tasks for
each of the free-flyer including takeoff/land, assigning specific
waypoints for each free-flyer, and positioning for capturing
data with available sensors.

Guidance issues low-level commands to each free-flyer
based on their allocated tasks, such as changes in directional
velocity, position estimation, and local trajectory planning
functions.

Coordination manages the multi-agent aspects of the
mission. This application accepts mission input from the
ground station, determines how to distribute the mission tasks
based on requirements and number of agents available to
deploy. The Coordination application also handles the dynamic
addition or loss of free-flyer at any time during the mission.

B. Platform Support Applications

1) Hardware Interface: In addition to ICAROUS suite
applications, a firmware interface module allows ICAROUS to
interface with the free-flyer firmware.

2) Positioning System: As autonomous systems, the
free-flyers require the ability to accurately determine position

in orbit with respect to themselves and an object of interest.
To use traditional GPS localization indoors, a cFS Vicon
interface application is developed. This application translates
local area positioning to GPS coordinates for real-time
autonomous navigation using a Vicon motion capture (mocap)
setup. The Vicon system is a commercially available indoor
mocap system. The flight space in this work utilized 16 HD
mocap cameras. Each free-flyer platform is marked with
several tracking tags and individually registered in the system.

3) Inter-craft Communication: Each system uses a
specialized cFS application, namely the Software Bus Network
(SBN), for communication. SBN enables each instance of cFS to
receive messages published to the software bus by any
member of the swarm. For example, if telemetry received
from one free-flyer indicates its position is too close another,
modification can be made to flight paths to avoid potential
collisions while still progressing to its next waypoint.

C. Inspection Protocol Using Computer Vision

The inspection protocol uses computer vision (CV)
techniques on video streams provided by each free-flyer to
identify potential damage or anomalies. There are two
subtasks for the computer vision protocol: first, the object-of-
interest (the mock satellite) is segmented from the
background; second, damage is detected within a windowed
area that corresponds to the segmented
satellite. The 2D algorithm isolates regions of interest for
autonomous operations and damage is highlighted and
visualized for the operation team in real-time. As a
complementary feature to 2D damage detection, 3D
reconstruction for visualization is also implemented for
human-in-the-loop post-mission analysis. The CV has been
integrated into the flight software system as a cFS application.

IV. IMPLEMENTATION

 New ICAROUS modules and cFS applications are used for
swarm coordination and control. In particular, the following
modules were developed: a mission coordinator for
decentralized task distribution, custom flight planner for
multiple agents, networking module that enables free-flyers to
share flight plans and mission objectives, visual damage
inspector, Vicon Tracker interface for providing vehicle
telemetry to enable the damage detection and analysis, and
custom flight controller based on a Proportional-integral-
differential (PID) architecture to achieve the demonstration
mission objectives. Several libraries are also created to
autogenerate nominal flight plans for optimized video stability
and field of view.

A. UAV Hardware Platform

In this demonstration mission, free-flyers are simulated with
the Parrot™ AR 2.0 Drone equipped with an ARM™ Cortex A8
processor, 1Gb of RAM, and a barebones version of Linux 2.6

4

[24]. These platforms come equipped with a built-in WIFI b/g/n
chip for both establishing and connecting to wireless
networks. The sensors onboard each platform included a 3-
axis gyro, a 3-axis accelerometer, magnetometer, ultrasonic
sensor (for altitude measurements), and two cameras. A 720p
30 FPS camera faces forward on the UAV and is used to collect
video for the damage analysis in this demonstration. The other
camera is a downward facing wide angle lens sensor. This
camera is used for optical flow tracking, which allows for
smoother movement and hover.

Fig. 3 Hardware Architecture for Simulating Free-Flyer Swarms

Due to a limit of 100g payload and insufficient computing
power, the secondary mission computer payload
communicates to the onboard computer (OBC) remotely, as
depicted in Figure 3. The Intel™ NUC miniature PC is chosen
due to its small form factor. Each NUC is connected to one
OBC via the UAV network. Each mission computer runs cFS and
ICAROUS and issues low-level actuation commands. The live
video from the forward-facing camera is streamed to the
NUCs, where the cFS CV application would analyze the video
for damage patterns.

 B. Flight Control Software

The Flight Control module provides two high-level functions:
convert velocity commands from cFS to low-level commands
for the AR 2.0 Drone and serve as a flight controller to maintain
trajectories with minimal error. The Parrot AR 2.0 Drone
Software Development Kit (SDK) provides a standard API to
support for takeoff and land, hover in place, activate
emergency mode, and modify the roll, pitch, yaw, and gaz
(vertical thrust). Several control systems are implemented for
precise movement control, seen in Figure 4. A PID controller is
used for managing 2D grid-based navigation, bang-bang
controller for altitude, double setpoint controller for yaw and
field of view, and normalized proportional controller for
ground speed.

Fig. 4. High Level Control Overview

The resulting velocity output matrices were multiplied with

three sets of transformation matrices, to convert the values
from the local frame to the global frame of reference. Several
experiments were run to tune these controllers and determine
their effectiveness in comparison to off-the-shelf solutions.
The equations used for each controller are listed below.

For the UAV flight controller, Equation (1) is used to
determine a desired viewing angle for the object-of-interest. X
and Y are the Cartesian coordinates for the UAV and object-of-
interest, in the local frame.

 (1)

Equation (2) is used to calculate the yaw velocity of the
drone to change its camera orientation. Here, ψ is the current
UAV heading, θ is the desired heading, and ωmax is the
maximum UAV angular velocity.

(2)

Equation (3) is used to calculate the thrust needed to change
the UAV’s current altitude. Velocity input for UAV thrust,
where ∆Alt is the required change in altitude, Vx is the current
velocity in the X direction, τ is the yaw scaling factor, and VALT

is the vertical velocity required to stabilize the UAV.

(3)

5

C. Multi-Agent Coordination

In the most basic implementation of an inspection, the
ground station uploads a single flight plan to one free-flyer,
which then travels to each waypoint. The mission concludes
once all points have been reached. The Cognition and
Guidance applications guide the free-flyer effectively and
safely. These applications rely on receiving an initial flight plan
to carry out a mission. This becomes further complicated as
more than one free-flyer is introduced into the system. The
complexity increases with dynamic swarm sizes. The
Coordination application monitors the swarm and dynamically
allocates and distributes mission plans according to swarm size
and remaining waypoints from the flight plan that is uploaded
initially to each single free-flyer. Coordination evaluates,
computes, and distributes the mission tasks for its own free-
flyer and all other swarm members based on their spacecraft
ID. If a free-flyer is added to or removed from the system, a
reassessment of remaining waypoints and free-flyer positions
occurs, remaining tasks are redistributed. Coordination can
handle several scenarios, including:

1) Mission starts with one or more available agents
2) A new agent is added to the swarm
3) An existing agent is no longer able to perform a mission

in media res (loss of platform, communication, etc.)
4) A discrepancy in data is detected and new mission tasks

need to be added
5) The object undergoing inspection has moved and new

mission waypoints need to be determined

D. Automated Waypoint Generation

The goal of this mission is to use free-flyers to inspect a
spacecraft for damage using a computer vision approach. To
acquire sufficient visual data and ensure the detection of all
simulated damage, several tools are created that auto
generate various flight plans to obtain images at various angles
and distances. The tool requires a number of parameters,
including the satellite’s size and GPS coordinates, number of
images desired, resolution of the images, desired yaw and
pitch angles of the photos, and any unique flight patterns
(helix, circle, raster photos, etc.). The planner first calculates
all requested waypoints in a 3D cartesian coordinate system,
placing the satellite at the origin. Then, these coordinates are
converted into geodesic coordinates using an open source
UTM library, which simulates the projection of 3D space onto
a sphere (the Earth). Lastly, these new coordinates are
formatted and combined into a mission input file.

E. Localization System

The Vicon motion capture is integrated as a cFS application
using the Vicon SDK. The application opens a socket
connection to received telemetry as the free-flyers’ motions
are tracked in real-time. Capturing 3D frames of the flight

space at up to 200Hz, the free-flyers’ position and rotation are
recorded relative to the global center. The Vicon application
performs several calculations to derive velocity (taking the
difference in position between frames) and heading. The Vicon
application also translates the coordinates from the local
frame (North-East-Down) to the spoofed global frame
(geodesic). Geodesic position data are piped to the Guidance
application where, based on the current location and the
assigned destination, adjustments are made to the velocities
in the local coordinate frame to keep on course. These
adjustments are then passed to the Firmware Interface to be
translated to the raw commands accepted by the firmware.

F. Computer Vision Implementation

Figure 5 shows the 2D damage detection pipeline, beginning
with reading the live-stream video feed into image
segmentation with color ratios.

 Fig. 5 2D Online Damage Detection and Visualization

For background subtraction, adaptive Otsu thresholding is

considered, shown in Figure 5a. Otsu is fast, but imprecise
because intensity between the cylinders and the background
is insufficient. Template matching is considered, shown in
Figure 5b. Template matching works when the mock satellite
is at a fixed distance (or image size). However, when the mock
satellite is too close or too far, the predefined template will
not match. This can be remedied by performing multiple
searches with different-sized templates. Speed is drastically
reduced with multiple template searches.

Color-based thresholding is used to extract the location of
the spacecraft module. The mock satellite is a gold color. Gold
was chosen because of its similarity to that of the polyimide-
based insulation usually found on the outside of satellites.

(a) Otsu Thresholding (b) Template Matching

Fig. 5. Initial Segmentation Experiments
This color-based segmentation is based on ratio matching.

Standard color matching is based on color channel vector
distance, shown in Equation 4. R refers to the red color

6

channel intensity, and so on for G and B. The symbol Rref refers
to the target channel intensity and so on.

 (4)
This gives stable results invariant to lighting and background

noise using ratio-based matching. Distance is described in
Equation 5. The symbol RGref refers to a target red to green
ratio, and likewise for green to blue ratio and blue to red ratio.

 (5)
Once the cylinder image is segmented, CNN and Sobel edge

detection are compared experimentally. The first CNN model
is trained for a 3-class decision problem of “background”,
“damage”, and “no damage”. Including “background” made
the classification problem more complex. Next, the CNN is
trained to return a binary decision, representing damage
“present” or “absent”. This required building a training set of
many example views of normal and damaged cylinders, with a
variety of lighting and distance conditions. The CNN is applied
as a sliding window operation to detect damage in regions of
interest.

Sobel edge detection returns a filtered image, where edges
are highlighted. Two damage detection algorithms are applied
to the Sobel output. The Sobel output is integrated over
windows of interest to determine regions of damage. The
Sobel output is also visualized at the granularity of pixel level.
For post-mission processing, 3D damage visualization using
photogrammetry is performed. Figure 6 shows the 3D virtual
reconstruction pipeline.

Fig. 6. 3D Offline Reconstruction

A necessary condition for fidelity in 3D object rendering is
the presence of discriminatory image features at each location
of the object. Unlike the expectations for a spacecraft, the
clean surfaces of the gold painted cylinders are feature poor.
To correct this deficiency, a speckle paint pattern is applied to
the surface of the damaged cylinder. The photogrammetry
pipeline uses an algorithm called “Structure from Motion” to
generate the 3D representation giving a gallery of images from
different perspectives [23].

V. EXPERIMENTATION & RESULTS

For this demonstration, a damaged aluminum cylinder is
used as a mockup of a damaged satellite. Multiple free-flyers
use ICAROUS to autonomously navigate around a satellite
while keeping it within their cameras’ field of view for
detecting damage at a high resolution. The free-flyers
cooperate and maintain a safe distance between each other
vehicle and the satellite while capturing damage at a high
resolution. The satellite’s location is represented by GPS
geofencing. The Coordination module creates a unique flight
plan for each free-flyer based on the shared mission plan.
Coordination also allows dynamic task reallocation when the
number of free-flyers available for the mission changes
(though addition or loss). The free-flyers complete a full
successful scan of the spacecraft, highlighting the damaged
surfaces in real-time and providing a video visualization during
mission execution. A publicly released video of the demo and
the project overview is available at
http://autonomyincubator.blogspot.com/2019/08/2019-08-
09-free-flyers-autonomous.html.

A. Full System Demo

The mission success demonstrates that multiple agents can
cooperatively inspect an object for damage in real-time. Two
UAVs are used to simulate two free-flyers in space. The mock
satellite sections were stacked together, with the damaged
cylinder on top of the pristine cylinder, to mimic the large
cylindrical body of a fuselage. A single flight plan was
autogenerated for inspecting the cylinders, with three distinct
parts: An orbit of the top cylinder, a downward spiral in the
pattern of a helix with two full revolutions, and a full orbit of
the bottom cylinder. With this flight plan, each portion of the
object’s surface would be viewed at least twice by one of the
cameras. In this demonstration mission, one free-flyer initiates
the mission and a second free-flyer joins halfway through the
mission. Three-quarters through the orbit, the second free-
flyer is abruptly removed from the space, simulating a loss of
an agent. The Coordination application detects the loss and
dynamically reallocates the remaining tasks.

The mission progresses with the following events:

1) Free-flyer 1 enters flight space
2) Coordination module detects one free-flyer in swarm

and distributes full flight plan from ground station
3) Free-flyer 1 begins orbit of top half of mock satellite, in

accordance with flight plan, and processes video
stream for real-time damage analysis

4) Free-flyer 2 is dispatched
5) Coordination module detects new free-flyer in swarm

and dynamically updates mission into two subtask lists:
one for orbiting top-half, one for orbiting bottom-half

6) Subtask lists are distributed between Free-flyer 1 and 2
7) Free-flyer 1 and 2 begin executing mission subtasks

7

8) Free-flyer 2 abruptly departs
9) Coordination module detects Free-flyer 2 loss
10) Coordination module calculates new mission task list

for Free-flyer 1 with remaining waypoints
11) Free-flyer 1 completes visual analysis of top-half
12) Free-flyer 1 enters downward helix pattern in order to

complete analysis of bottom-half using waypoints
inherited after loss of Free-flyer 2

13) Free-flyer 1 completes remainder of mission

Figure 7 shows the original mission flight plan path and
represents the independent flight patterns for both free-flyers.
Each track point is generated from the flight log of their
respective free-flyer from this demonstration mission.

Fig. 7 Free-flyer Waypoints Visualization

B. Flight Controller Performance

Several experiments are performed during the development
of the UAV control software to assess the impact of the
different control approaches and tuning methods. Figure 8
shows the maximum error of the drone’s position across five
trials. The PID controller for the 2D trajectory provides the AR
2.0 Drone acceptably precise movement. During flight testing,
each UAV’s actual position is recorded and compared to the
intended position determined by ICAROUS. Figure 8a shows
the error in terms of absolute distance (meters). and Figure 8b
shows the error in terms of relative distance (percentage).

For the yaw control, both a proportional controller and a
double setpoint controller were considered. Tradeoffs
between these controllers are discussed in Section VI-A. For
the altitude controller, a simple bang-bang controller is used
for thrust control. The system reaches the targeted altitude
within 1.5 seconds, based on the ground speed of the
platform, while maintaining smooth motion.

(a) UAV Position: Absolute Error over Time

(b) UAV Position: Relative Error over Time

Fig. 8. UAV Position Error

D. Computer Vision Results

The CNN is trained for damage detection on multiple
surfaces. In comparison to Sobel filtering, the CNN presents as
overengineered for a simple spacecraft surface. Figure 9 shows
the output of the CNN on a sliding window damage detection
where green represents normal and red represents damage.

Fig. 9. CNN Sliding Window Output

Based on performance, the final system incorporated Sobel
filtering for damage detection. Given that the surfaces are
rather smooth and have low inter class variance, the CNN
would yield false negatives, where the Sobel filter would not.
False negatives qualify as mission failure for detecting damage.
The final system incorporates a tunable Sobel filter threshold

8

which enables the false negatives to be minimized by
increasing false positives. This parameter is fine-tuned and
found that the damage can be robustly isolated with very low
false negatives, and at the same time the false positives are
very low.

The color ratio segmentation algorithm performs satellite
segmentation, shown below in Figure 10 with the blue and
green windows. The overlaid final damaged detection is shown
using window-based damage detection in the left and edge-
based highlighting in the right.

The final segmentation and damage detection algorithms
are written in OpenCV, which requires C++. However, it is
wrapped into a C application, so the CV algorithms are self-
contained in an ICAROUS module.

Fig.10. CV output of segmented satellites and damage highlighting

Additionally, 3D modeling is demonstrated to supplement and
improve perception of damage to the spacecraft. Three-
dimensional visualization shows a human-navigable depth
perspective for further investigation. Given a spacecraft
surface with arbitrary lines (features that the Sobel would pick
up but do not represent damage), the original surface can be
modeled for comparison with an after-damage 3D
reconstruction to detect discrepancies due to damage. Figure
11 shows where the speckle paint is applied to the cylinder,
and 3D-reconstruction.

Fig. 11. Speckled Painting (left) and 3D Reconstruction (right)

VI. DISCUSSION

The objective of this work is to demonstrate the utility of
free-flyers to future space missions. Using simple, cost-
effective UAVs as free-flyer substitutes, a software framework
for onboard computer vision for in-situ inspections of objects-
of-interest demonstrates the feasibility of such a system. The
mission and experiments carried out have shown that the
ICAROUS framework allows for simulating free-flyers with
UAVs platforms and may be a suitable candidate for
spaceflight missions. The following is a discussion on the
outcomes, implementation results, and challenges for each
major part of this project.

A. Individual UAV Control

The AR 2.0 Drone is adequate for the requirements of this
mission simulator. The SDK enables precision control where
the off-the-shelf control is insufficient. The PID control allows
the UAV to follow the directed velocity commands and
improve power efficiency by avoiding unnecessary
acceleration and jerk. The original design of the yaw controller
tended to overdampen, causing the UAV to jerk back and forth
while focusing on the cylinder. This caused noise in the video
data, which inhibited the damage analysis. The double
setpoint control scheme for the yaw allows for smooth control
of the UAV’s angular velocity, and the small margin of error
allowed the video to stabilize sufficiently for video data
analysis. The upgraded control system improved stability while
hovering.

The simple bang-bang controller for movement in the Z-axis
proved sufficient, as the system would always have to provide
a non-zero thrust to ensure stability. This allowed the UAV to
reach the desired altitude quickly, while using the UAV’s
current directional momentum and improving gaz. It was
shown that this scaled approach to altitude hold allowed for
the smoothest transition between altitudes, during UAV
movement and position hold.

B. Localization System

The indoor localization system successfully integrates into
ICAROUS, allowing for pseudo-GPS data to be provided for any
of the tracked objects within the flight space’s vicinity. The GPS
location was dynamic, allowing for simulated testing in
numerous real-world locations. The use of the indoor
localization system allows for a high degree of accuracy with
respect to tracking the UAVs’ movement. This enables the
cooperation of multiple platforms in a highly confined space.
The Vicon system is designed to provide localization data for
over one hundred unique agents. Each agent’s position and
orientation data are provided at a rate of 200Hz. This rate
allows for the tracking of vehicle acceleration and jerk at an
interval measured in milliseconds. This is comparable to the

9

tracking necessary of any free-flyers in orbit, where the
distance traveled in this short time frame is significant.

C. Multi-Agent Implementation

The main challenge of using multiple agents is determining
how to distribute the mission tasks between available free-
flyers and coordinate their motion planning. This is challenging
as the available free-flyers are treated as a dynamic resource,
i.e., free-flyers may be added or removed from service at any
time. In order to ensure all mission waypoints and tasks are
achieved, the Coordination application tracks all assigned
subtasks, and verified task completion with each agent at
every milestone. At the beginning of each time step, the free-
flyers check to see if any other agents were added to or
removed from the swarm. Only upon additional or loss would
the Coordination module re-distribute mission tasks.

This method of free-flyer coordination and mission
allocation proves successful in all the testing scenarios. In
addition to tests with variable number of free-flyers, some
tests are run where platforms are suddenly removed from the
system (to simulate sudden damage or system failure). Each
agent’s data are marked with a timestamp including the
platform’s spacecraft ID. This way, during 3D reconstruction,
the CV module would be able to use each free-flyer’s
position/velocity data to match with relevant video data in
relative space. One challenge of joint motion planning is
preventing any well-clear violations (making sure the free-
flyers do not fly too close to each other or the object). This is
accomplished by having each free-flyer broadcast its current
and next waypoint throughout the mission; a free-flyer’s path
planner checks bands to make sure there is no intersection or
adjacency of paths during movement.

Another major challenge is verifying that each waypoint is
visited the correct number of times by the swarm. To solve
this, each platform kept track of the list of waypoints all the
other free-flyers visited, based on the previously mentioned
broadcasts; if there was a discrepancy, the affected waypoints
would be visited again to verify data redundancy.

D. Computer Vision System

The CNN-based algorithm is trained as demonstrated for
damage detection. This is less preferred for a simple spacecraft
surface than Sobel. However, if the damage is more diverse in
character, and the spacecraft has a complicated surface with
equipment and junctions, a CNN can be trained, given an
existing dataset of labeled damage. The final system
incorporated Sobel filtering for damage detection.
Advantageously, Sobel filters may be tuned to minimize false
negatives.

Adding 3D modeling offers two benefits: first, comparative
before and after models to detect damage; second, 3D models
for visualizing damage offline in an interactive virtual

environment. Using 3D modeling, human-in-the-loop
operators may employ damage detection techniques that are
not feasible on a free-flyer’s OBC.

VII. FUTURE WORK

For future work the new ICAROUS modules can be improved
to allow for more complex methods of mission allocation and
coordination. As part of this project, preliminary tests with
distributed communication systems were conducted, e.g.,
Data Distribution Service (DDS) incorporated into the default
cFS software communication bus [25]. Using DDS in a multi-
agent system would allow for other advanced networking and
data sharing techniques when coordinating a large number of
systems. In computer vision another step would be to
implement 3D reconstruction capability in real time, as the
free-flyers scan its surface.

VIII. CONCLUSIONS

This work implements and demonstrates the feasibility of
computer vision and navigation techniques to perform
inspection of a large spacecraft using the ICAROUS framework.
In this demonstration mission, UAVs were successfully used to
simulate free-flyer spacecraft. Moreover, localized damage
was successfully detected on a uniform metallic surface. The
multi-agent coordination approach proved capable of
supporting a dynamic number of agents, allowing for efficient
mission planning and completion based on a variable number
of resources. The results of this work suggest free-flyers are a
viable platform for in-situ, real-time damage detection of
spacecraft structures.

ACKNOWLEDGMENT

The authors of this paper would like to thank the Safety-
Critical Avionics Branch and the Autonomy Incubator at NASA
Langley Research Center as well as faculty and students of Old
Dominion University and the NSF SHREC Center at the
University of Pittsburgh (NSF SHREC Center and IUCRC
Program of the NSF under Grant No. CNS-1738783), for their
continued support, resources, and insights provided
throughout the duration of this research project.

REFERENCES

[1] N. L. Johnson, “Orbital debris: the growing threat to space operations,”
in 33rd Annual Guidance and Control Conference, 2010.

[2] D. Doyle, A. Zagrai, B. Arritt, and H. C¸akan, “Damage detection in bolted
space structures,” Journal of Intelligent Material Systems and Structures,
vol. 21, no. 3, pp. 251–264, 2010.

[3] A. Zagrai, D. Doyle, and B. Arritt, “Embedded nonlinear ultrasonics for
structural health monitoring of satellite joints,” in Health Monitoring of
Structural and Biological Systems 2008, vol. 6935. International Society
for Optics and Photonics, 2008, p. 693505.

[4] S. Balachandran, C. A. Muñoz, M. C. Consiglio, M. A. Feliú, and
A. Patel, “Independent configurable architecture for reliable operation
of unmanned systems with distributed onboard services,” in 2018

10

IEEE/AIAA 37th Digital Avionics Systems Conference (DASC). IEEE, 2018,
pp. 1–6.

[5] NASA, “core Flight System,” [Online]. Available:
https://cfs.gsfc.nasa.gov. [Accessed 3 April 2020]

[6] J. Fernandez Galarreta, N. Kerle, and M. Gerke, “UAV-based urban
structural damage assessment using object-based image analysis and
semantic reasoning.” Natural Hazards & Earth System Sciences, vol. 15,
no. 6, 2015.

[7] G. Morgenthal and N. Hallermann, “Quality assessment of unmanned
aerial vehicle (UAV) based visual inspection of structures,” Advances in
Structural Engineering, vol. 17, no. 3, pp. 289–302, 2014.

[8] H. Sui, J. Tu, Z. Song, G. Chen, and Q. Li, “A novel 3d building damage
detection method using multiple overlapping UAV images,” The
International Archives of Photogrammetry, Remote Sensing and Spatial
Information Sciences, vol. 40, no. 7, p. 173, 2014.

[9] Q. Guo, Y. Su, T. Hu, X. Zhao, F. Wu, Y. Li, J. Liu, L. Chen, G. Xu, G. Lin et
al., “An integrated UAV-borne lidar system for 3d habitat mapping in
three forest ecosystems across china,” International journal of remote
sensing, vol. 38, no. 8-10, pp. 2954–2972, 2017.

[10] Z. Shang and Z. Shen, “Real-time 3d reconstruction on construction site
using visual slam and UAV,” arXiv preprint arXiv:1712.07122, 2017.

[11] Y. Tian, K. Liu, K. Ok, L. Tran, D. Allen, N. Roy, and J. P. How, “Search and
rescue under the forest canopy using multiple UAS,” in International
Symposium on Experimental Robotics. Springer, 2018, pp. 140–152.

[12] E. S¸ahin, “Swarm robotics: From sources of inspiration to domains of
application,” in International workshop on swarm robotics. Springer,
2004, pp. 10–20.

[13] P. Vincent and I. Rubin, “A framework and analysis for cooperative
search using UAV swarms,” in Proceedings of the 2004 ACM symposium
on Applied computing, 2004, pp. 79–86.

[14] K. Lerman, A. Martinoli, and A. Galstyan, “A review of probabilistic
macroscopic models for swarm robotic systems,” in International
workshop on swarm robotics. Springer, 2004, pp. 143–152.

[15] S. Balachandran, A. Narkawicz, C. Muñoz, and M. Consiglio, “A Path
Planning Algorithm to Enable Well-Clear Low Altitude UAS Operation
Beyond Visual Line of Sight,” in Proceedings of the 12th USA/Europe Air
Traffic Management Research and Development Seminar (ATM2017),
ATM-2017-16, 2017, pp. 1–9.

[16] M. Consiglio, B. J. Duffy, S. Balachandran, L. Glaab, and C. Muñoz, “Sense
and avoid characterization of the independent configurable architecture
for reliable operations of unmanned systems,” in 13th USA/Europe Air
Traffic Management Research and Development Seminar, 2019.

[17] S. Balachandran, C. Manderino, C. Muñoz, M. Consiglio, A Decentralized
Framework to Support UAS Merging and Spacing Operations in Urban
Canyons. International Conference on Unmanned Aircraft Systems,
2020. Accepted for Publication

[18] H. J. Vala and A. Baxi, “A review on Otsu image segmentation algorithm,”
International Journal of Advanced Research in Computer Engineering &
Technology (IJARCET), vol. 2, no. 2, pp. 387–389, 2013.

[19] R. Brunelli, “Template matching techniques in computer vision: theory
and practice,” John Wiley & Sons, 2009.

[20] F. Garcia-Lamont, J. Cervantes, A. Lopez, and L. Rodriguez,
“Segmentation of images by color features: A survey,” Neurocomputing,
vol. 292, pp. 1–27, 2018.

[21] S. Gupta and S. G. Mazumdar, “Sobel edge detection algorithm,”
International journal of computer science and management Research,
vol. 2, no. 2, pp. 1578–1583, 2013.

[22] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural
information processing systems, 2012, pp. 1097–1105.

[23] I. Reljic, I. Dunder, and S. Seljan, “Photogrammetric 3D scanning of´
physical objects: Tools and workflow,” TEM Journal, vol. 8, no. 2, p. 383,
2019.

[24] Parrot. Parrot ArDrone 2.0 Power Edition. Available:
https://www.parrot.com/global/drones/parrot-ardrone-
20-power-edition

[25] C. Manderino, A. Gillette, P. Gauvin, A. D. George, “Resilient Networking
Framework for Mission Operations and Resource Sharing in Multi-Agent
Systems,” in Proceedings of the Digital Avionics Systems Conference,
2018.

