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Abstract—This paper describes a proof-of-concept mission 
demonstrating a multi-agent system performing visual inspection of 
damage sustained by a spacecraft. Free-flying satellites, simulated 
by unmanned aerial vehicles (UAVs), autonomously fly around a 
mock space module maximizing the search space for damage 
detection. The free-flyers are responsible for independently 
coordinating their flights to avoid collision with the space module 
and each other, while executing mission tasks. Damage analysis on 
the surface of the mock space module is performed in real-time 
using video from each free-flyer. Three-dimensional modeling is 
deployed offline to supplement and improve damage detection. This 
approach demonstrates the feasibility of deploying real space 
systems for damage detection, where 2D analysis can quickly 
determine region of interest and 3D visualization can produce a 
human-navigable virtual environment with depth perspective for 
further investigation. 

Index Terms—unmanned aerial vehicle (UAV), multi-agent 
cooperation, computer vision, autonomous systems, free-flyer 
spacecraft, in-space assembly 

I. INTRODUCTION 

In the past 20 years, space technology has rapidly evolved, 
presenting new challenges to a growing number of spacecraft 
in Earth’s orbit. A major hazard for spacecraft is structural 
damage from collision with orbital debris or ablation. 
Structural damage may degrade performance and, in the worst 
case, cause catastrophic failure. According to [1], debris larger 
than 1cm can cause significant damage to a satellite 
endangering the spacecraft or its mission. As of January 2019, 
there are nearly one million pieces of space debris greater than 
1cm in length estimated to be orbiting around Earth. The 
number of pieces less than 1cm that could still cause sensor 
damage is estimated to be over 128 million. As the United 
States and other countries take aim for new, large vessels like 
the Lunar Orbital Platform, these problems will continue to 
threaten the next generation of spacecraft. 

The works in [2], [3] consider detecting damage on satellites 
prior to being launched into space. In contrast to those works, 

the research in this paper considers the problem of damage 
detection for a spacecraft after launch and in-orbit. This effort 
simulates a swarm of autonomous free-flyer satellites 
surveying a larger spacecraft for possible damage.  

In order to test the feasibility of the proposed damage 
detection system, a testbed is developed to simulate several 
free-flyer satellites working in unison to scan and inspect a 
simulated larger satellite body. Multiple unmanned aerial 
vehicles (UAVs) are used to simulate a free-flyer swarm. Each 
UAV is controlled using NASA’s Independent Configurable 
Architecture for Reliable Operations of Unmanned Systems 
(ICAROUS) [4]. ICAROUS is an onboard software architecture 
intended to enable the development of autonomous UAV 
operations. ICAROUS consists of several distributed 
applications communicating over a software bus provided by 
NASA’s core Flight System (cFS) [5].  

This work extends ICAROUS to autonomous spaceflight for 
in-orbit systems. In particular, a 2D damage analysis 
application is developed for real-time damage detection via 
video feed. Additionally, several post-processing techniques 
were used to create a 3D reconstruction of the object-of-
interest, including visible damage, for further post-mission 
analysis. This work demonstrates the viability of using 
ICAROUS on a swarm of free-flyers for detecting external 
damage on spacecraft in orbit. 

II. BACKGROUND 

From the SPHERES project to Astrobees and Int-Ball, over 
the past decade, many teams have engaged long running 
experiments with free-flying small satellites. This work 
approaches mock missions for these maneuverable space 
robots using UAVs running ICAROUS. 
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A. Using UAVs for Damage Detection 

 Several studies have been conducted on the use of a UAV 
mounted camera for visual inspection of a building [6], [7]. 
More recent work has focused on sensor fusion techniques, 
combining sensor data from multiple UAVs to create more 
accurate analysis of damage to building structures [8]. Further 
work has taken advantage of a UAV’s capabilities to move in 
three dimensions using LIDAR and IR systems to create highly 
accurate 3D maps [9][10], as well as perform group sensing 
tasks, such as search and rescue operations [11]. 

Usually referred to as a “swarm,” a large group of UAVs is 
capable of cooperating to achieve a common goal or collective 
behavior [12]. Swarms also provide greater robustness against 
mission failures, via redundancy and error checking [13], [14]. 
Often, all agents in a swarm use a common communication 
platform for coordination. Some swarms are organized by a 
single leader; decentralized swarm models may require each 
UAV retain individual autonomy to make its own choices but 
share data. This work develops a scalable multi-agent system 
to utilize as many agents as possible to conduct inspections, 
drawing on work from the field of swarm robotics. 

B. Overview of cFS 

cFS is a mission framework for flight software applications 
developed at NASA Goddard Space Flight Center (GSFC). It 
consists of a dynamic runtime environment, layered software 
systems, and a component-based design [5]. cFS has a layered 
architecture that supports a variety of software and hardware 
platforms. cFS also provides a standardized application 
programming interface (API) for easier application 
development. The cFS software has been designed for 
spaceflight systems and is bundled with a variety of tools that 
help develop robust, safety-critical code for mission success. 

 
C. Overview of ICAROUS 

ICAROUS is an onboard software capability for UAVs 
developed at NASA Langley Research Center [4]. ICAROUS is 
intended to enable autonomous decision making and to 
provide functionalities needed for beyond visual line of sight 
UAS operations. ICAROUS consists of several applications 
communicating over a software bus provided by cFS. ICAROUS 
runs on an onboard companion computer, receiving data from 
various sensors and sending commands to an autopilot to 
maneuver around obstacles, to enforce adherence to a 
predetermined flight path, or to avoid intruders in the 
airspace. ICAROUS provides path planning [15], sense and 
avoid [16], and merging and spacing [17] for cFS-based 
systems. This work uses ICAROUS as the primary onboard 
mission planning software for free-flyers in-orbit.  
 A diagram of the ICAROUS system is shown in Figure 1. 

 

 
Fig. 1. ICAROUS Architecture 

D. Computer Vision for Spacecraft Damage Detection  

The 2D damage analysis application performs image 
segmentation for the mock satellite and highlights of detected 
damage. Image segmentation for objects is a well-studied 
computer vision problem. Some techniques used in this 
research effort are described below. 

Otsu thresholding is a technique for extracting a binary mask 
from an image. A foreground object can be segmented from a 
background object if the intensities are different. A threshold 
intensity level that separates low and high intensity regions 
with minimum intra class variance is used. Otsu can also be 
applied adaptively, i.e., as image region dependent [18]. 
Template matching is another technique for object 
segmentation. Section 1.2 of [19] describes basic template 
matching as searching the image for a subregion (or vector) 
with the smallest distance to the template vector.  

Color matching is used to segment an object of a particular 
color. Global thresholding generalizes intensity-based 
thresholding [20]. In this paper, the global thresholding 
method is extended to a color ratio-based thresholding, which 
better suits this application.  

After segmentation, highlighting of damage on the mock 
satellite is posed as a filtering problem. For each segmentation 
window, the goal is to give a binary result of normal or 
damaged. Highlighting damage on the mock satellite is posed 
as a filtering problem. Sobel edge detection is a filtering 
technique based on gradient calculation in the vertical and 
horizontal image directions. The Sobel method involves 2D 
filtering with a kernel representing a directional derivative 
[21].  

Alternatively, convolutional neural networks (CNNs) are a 
deep learning technique that takes image input and can return 
classification (or detection) output. CNNs employ weight 
sharing to enable effective training for a given function on high 
dimensional image input [22].  

The 2D damage detection software is developed as a cFS 
application for use in ICAROUS during flight. The 3D modeling 
is performed for an object from a gallery of 2D images. A 
technique called photogrammetry is used to perform this 
function. The toolkit used in this work is AliceVision 
Meshroom™ [23]. 
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III. SYSTEM DESIGN 

This work deploys ICAROUS with cFS in UAV mission 
computers to simulate free-flyers operating in orbit. New 
modules for ICAROUS provide high-level mission management 
and multi-agent coordination. This work also develops a cFS 
Vicon™ interface for indoor localization during research and 
testing. Furthermore, a novel computer vision module is 
implemented in cFS for accurately detecting damage in-situ.  

 
A. System Software Architecture 

Three new modules are added to ICAROUS for the free-flyer 
damage-detection mission: Cognition, Guidance, and 
Coordination. Figure 2 shows the various software modules 
that comprise the flight software system used for controlling 
the free-flyers. 

 
   

Fig. 2. Flight Software Architecture 

Cognition determines various levels of mission tasks for 
each of the free-flyer including takeoff/land, assigning specific 
waypoints for each free-flyer, and positioning for capturing 
data with available sensors. 

Guidance issues low-level commands to each free-flyer 
based on their allocated tasks, such as changes in directional 
velocity, position estimation, and local trajectory planning 
functions. 

Coordination manages the multi-agent aspects of the 
mission. This application accepts mission input from the 
ground station, determines how to distribute the mission tasks 
based on requirements and number of agents available to 
deploy. The Coordination application also handles the dynamic 
addition or loss of free-flyer at any time during the mission. 
 
B. Platform Support Applications 

1) Hardware Interface: In addition to ICAROUS suite 
applications, a firmware interface module allows ICAROUS to 
interface with the free-flyer firmware.  

2) Positioning System: As autonomous systems, the 
free-flyers require the ability to accurately determine position 

in orbit with respect to themselves and an object of interest. 
To use traditional GPS localization indoors, a cFS Vicon 
interface application is developed. This application translates 
local area positioning to GPS coordinates for real-time 
autonomous navigation using a Vicon motion capture (mocap) 
setup. The Vicon system is a commercially available indoor 
mocap system. The flight space in this work utilized 16 HD 
mocap cameras. Each free-flyer platform is marked with 
several tracking tags and individually registered in the system.  

3) Inter-craft Communication: Each system uses a 
specialized cFS application, namely the Software Bus Network 
(SBN), for communication. SBN enables each instance of cFS to 
receive messages published to the software bus by any 
member of the swarm. For example, if telemetry received 
from one free-flyer indicates its position is too close another, 
modification can be made to flight paths to avoid potential 
collisions while still progressing to its next waypoint. 

C. Inspection Protocol Using Computer Vision 

The inspection protocol uses computer vision (CV) 
techniques on video streams provided by each free-flyer to 
identify potential damage or anomalies. There are two 
subtasks for the computer vision protocol: first, the object-of-
interest (the mock satellite) is segmented from the 
background; second, damage is detected within a windowed 
area that corresponds to the segmented  
satellite. The 2D algorithm isolates regions of interest for 
autonomous operations and damage is highlighted and 
visualized for the operation team in real-time. As a 
complementary feature to 2D damage detection, 3D 
reconstruction for visualization is also implemented for 
human-in-the-loop post-mission analysis. The CV has been 
integrated into the flight software system as a cFS application.  

 
IV. IMPLEMENTATION 

 New ICAROUS modules and cFS applications are used for 
swarm coordination and control. In particular, the following 
modules were developed: a mission coordinator for 
decentralized task distribution, custom flight planner for 
multiple agents, networking module that enables free-flyers to 
share flight plans and mission objectives, visual damage 
inspector, Vicon Tracker interface for providing vehicle 
telemetry to enable the damage detection and analysis, and 
custom flight controller based on a Proportional-integral-
differential (PID) architecture to achieve the demonstration 
mission objectives. Several libraries are also created to 
autogenerate nominal flight plans for optimized video stability 
and field of view.  

A. UAV Hardware Platform 

In this demonstration mission, free-flyers are simulated with 
the Parrot™ AR 2.0 Drone equipped with an ARM™ Cortex A8 
processor, 1Gb of RAM, and a barebones version of Linux 2.6 
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[24]. These platforms come equipped with a built-in WIFI b/g/n 
chip for both establishing and connecting to wireless 
networks. The sensors onboard each platform included a 3-
axis gyro, a 3-axis accelerometer, magnetometer, ultrasonic 
sensor (for altitude measurements), and two cameras. A 720p 
30 FPS camera faces forward on the UAV and is used to collect 
video for the damage analysis in this demonstration. The other 
camera is a downward facing wide angle lens sensor. This 
camera is used for optical flow tracking, which allows for 
smoother movement and hover. 

 

Fig. 3 Hardware Architecture for Simulating Free-Flyer Swarms 

Due to a limit of 100g payload and insufficient computing 
power, the secondary mission computer payload 
communicates to the onboard computer (OBC) remotely, as 
depicted in Figure 3. The Intel™ NUC miniature PC is chosen 
due to its small form factor.  Each NUC is connected to one 
OBC via the UAV network. Each mission computer runs cFS and 
ICAROUS and issues low-level actuation commands. The live 
video from the forward-facing camera is streamed to the 
NUCs, where the cFS CV application would analyze the video 
for damage patterns. 

 

 B. Flight Control Software 

The Flight Control module provides two high-level functions: 
convert velocity commands from cFS to low-level commands 
for the AR 2.0 Drone and serve as a flight controller to maintain 
trajectories with minimal error. The Parrot AR 2.0 Drone 
Software Development Kit (SDK) provides a standard API to 
support for takeoff and land, hover in place, activate 
emergency mode, and modify the roll, pitch, yaw, and gaz 
(vertical thrust). Several control systems are implemented for 
precise movement control, seen in Figure 4. A PID controller is 
used for managing 2D grid-based navigation, bang-bang 
controller for altitude, double setpoint controller for yaw and 
field of view, and normalized proportional controller for 
ground speed.  

 

 
Fig. 4. High Level Control Overview 

 
The resulting velocity output matrices were multiplied with 

three sets of transformation matrices, to convert the values 
from the local frame to the global frame of reference. Several 
experiments were run to tune these controllers and determine 
their effectiveness in comparison to off-the-shelf solutions. 
The equations used for each controller are listed below. 

For the UAV flight controller, Equation (1) is used to 
determine a desired viewing angle for the object-of-interest. X 
and Y are the Cartesian coordinates for the UAV and object-of-
interest, in the local frame. 

 

  (1) 
 

Equation (2) is used to calculate the yaw velocity of the 
drone to change its camera orientation. Here, ψ is the current 
UAV heading, θ is the desired heading, and ωmax is the 
maximum UAV angular velocity. 
 
 

 

 

(2) 

Equation (3) is used to calculate the thrust needed to change 
the UAV’s current altitude. Velocity input for UAV thrust, 
where ∆Alt is the required change in altitude, Vx is the current 
velocity in the X direction, τ is the yaw scaling factor, and VALT 

is the vertical velocity required to stabilize the UAV. 

 

 

 
(3) 
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C. Multi-Agent Coordination 

In the most basic implementation of an inspection, the 
ground station uploads a single flight plan to one free-flyer, 
which then travels to each waypoint. The mission concludes 
once all points have been reached. The Cognition and 
Guidance applications guide the free-flyer effectively and 
safely. These applications rely on receiving an initial flight plan 
to carry out a mission. This becomes further complicated as 
more than one free-flyer is introduced into the system. The 
complexity increases with dynamic swarm sizes. The 
Coordination application monitors the swarm and dynamically 
allocates and distributes mission plans according to swarm size 
and remaining waypoints from the flight plan that is uploaded 
initially to each single free-flyer. Coordination evaluates, 
computes, and distributes the mission tasks for its own free-
flyer and all other swarm members based on their spacecraft 
ID. If a free-flyer is added to or removed from the system, a 
reassessment of remaining waypoints and free-flyer positions 
occurs, remaining tasks are redistributed. Coordination can 
handle several scenarios, including: 

1) Mission starts with one or more available agents 
2) A new agent is added to the swarm  
3) An existing agent is no longer able to perform a mission 

in media res (loss of platform, communication, etc.)  
4) A discrepancy in data is detected and new mission tasks 

need to be added  
5) The object undergoing inspection has moved and new 

mission waypoints need to be determined 

D. Automated Waypoint Generation 

The goal of this mission is to use free-flyers to inspect a 
spacecraft for damage using a computer vision approach. To 
acquire sufficient visual data and ensure the detection of all 
simulated damage, several tools are created that auto 
generate various flight plans to obtain images at various angles 
and distances. The tool requires a number of parameters, 
including the satellite’s size and GPS coordinates, number of 
images desired, resolution of the images, desired yaw and 
pitch angles of the photos, and any unique flight patterns 
(helix, circle, raster photos, etc.). The planner first calculates 
all requested waypoints in a 3D cartesian coordinate system, 
placing the satellite at the origin. Then, these coordinates are 
converted into geodesic coordinates using an open source 
UTM library, which simulates the projection of 3D space onto 
a sphere (the Earth). Lastly, these new coordinates are 
formatted and combined into a mission input file. 

E. Localization System 

The Vicon motion capture is integrated as a cFS application 
using the Vicon SDK. The application opens a socket 
connection to received telemetry as the free-flyers’ motions 
are tracked in real-time. Capturing 3D frames of the flight 

space at up to 200Hz, the free-flyers’ position and rotation are 
recorded relative to the global center. The Vicon application 
performs several calculations to derive velocity (taking the 
difference in position between frames) and heading. The Vicon 
application also translates the coordinates from the local 
frame (North-East-Down) to the spoofed global frame 
(geodesic). Geodesic position data are piped to the Guidance 
application where, based on the current location and the 
assigned destination, adjustments are made to the velocities 
in the local coordinate frame to keep on course. These 
adjustments are then passed to the Firmware Interface to be 
translated to the raw commands accepted by the firmware. 

F. Computer Vision Implementation 

Figure 5 shows the 2D damage detection pipeline, beginning 
with reading the live-stream video feed into image 
segmentation with color ratios. 

 

 
 Fig. 5 2D Online Damage Detection and Visualization 

 
For background subtraction, adaptive Otsu thresholding is 

considered, shown in Figure 5a. Otsu is fast, but imprecise 
because intensity between the cylinders and the background 
is insufficient. Template matching is considered, shown in 
Figure 5b. Template matching works when the mock satellite 
is at a fixed distance (or image size). However, when the mock 
satellite is too close or too far, the predefined template will 
not match. This can be remedied by performing multiple 
searches with different-sized templates.  Speed is drastically 
reduced with multiple template searches.  

Color-based thresholding is used to extract the location of 
the spacecraft module. The mock satellite is a gold color. Gold 
was chosen because of its similarity to that of the polyimide-
based insulation usually found on the outside of satellites. 

 

 
(a) Otsu Thresholding (b) Template Matching 

Fig. 5. Initial Segmentation Experiments 
This color-based segmentation is based on ratio matching. 

Standard color matching is based on color channel vector 
distance, shown in Equation 4. R refers to the red color 
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channel intensity, and so on for G and B. The symbol Rref refers 
to the target channel intensity and so on. 

   (4) 
This gives stable results invariant to lighting and background 

noise using ratio-based matching. Distance is described in 
Equation 5. The symbol RGref refers to a target red to green 
ratio, and likewise for green to blue ratio and blue to red ratio.  

 

                 (5) 
Once the cylinder image is segmented, CNN and Sobel edge 

detection are compared experimentally. The first CNN model 
is trained for a 3-class decision problem of “background”, 
“damage”, and “no damage”. Including “background” made 
the classification problem more complex. Next, the CNN is 
trained to return a binary decision, representing damage 
“present” or “absent”. This required building a training set of 
many example views of normal and damaged cylinders, with a 
variety of lighting and distance conditions. The CNN is applied 
as a sliding window operation to detect damage in regions of 
interest.  

Sobel edge detection returns a filtered image, where edges 
are highlighted. Two damage detection algorithms are applied 
to the Sobel output. The Sobel output is integrated over 
windows of interest to determine regions of damage. The 
Sobel output is also visualized at the granularity of pixel level. 
For post-mission processing, 3D damage visualization using 
photogrammetry is performed. Figure 6 shows the 3D virtual 
reconstruction pipeline. 

  

Fig. 6. 3D Offline Reconstruction 
 

A necessary condition for fidelity in 3D object rendering is 
the presence of discriminatory image features at each location 
of the object. Unlike the expectations for a spacecraft, the 
clean surfaces of the gold painted cylinders are feature poor. 
To correct this deficiency, a speckle paint pattern is applied to 
the surface of the damaged cylinder. The photogrammetry 
pipeline uses an algorithm called “Structure from Motion” to 
generate the 3D representation giving a gallery of images from 
different perspectives [23]. 

 

V. EXPERIMENTATION & RESULTS 

For this demonstration, a damaged aluminum cylinder is 
used as a mockup of a damaged satellite. Multiple free-flyers 
use ICAROUS to autonomously navigate around a satellite 
while keeping it within their cameras’ field of view for 
detecting damage at a high resolution. The free-flyers 
cooperate and maintain a safe distance between each other 
vehicle and the satellite while capturing damage at a high 
resolution. The satellite’s location is represented by GPS 
geofencing. The Coordination module creates a unique flight 
plan for each free-flyer based on the shared mission plan. 
Coordination also allows dynamic task reallocation when the 
number of free-flyers available for the mission changes 
(though addition or loss). The free-flyers complete a full 
successful scan of the spacecraft, highlighting the damaged 
surfaces in real-time and providing a video visualization during 
mission execution. A publicly released video of the demo and 
the project overview is available at 
http://autonomyincubator.blogspot.com/2019/08/2019-08-
09-free-flyers-autonomous.html. 
  

A. Full System Demo 

The mission success demonstrates that multiple agents can 
cooperatively inspect an object for damage in real-time. Two 
UAVs are used to simulate two free-flyers in space. The mock 
satellite sections were stacked together, with the damaged 
cylinder on top of the pristine cylinder, to mimic the large 
cylindrical body of a fuselage. A single flight plan was 
autogenerated for inspecting the cylinders, with three distinct 
parts: An orbit of the top cylinder, a downward spiral in the 
pattern of a helix with two full revolutions, and a full orbit of 
the bottom cylinder. With this flight plan, each portion of the 
object’s surface would be viewed at least twice by one of the 
cameras. In this demonstration mission, one free-flyer initiates 
the mission and a second free-flyer joins halfway through the 
mission. Three-quarters through the orbit, the second free-
flyer is abruptly removed from the space, simulating a loss of 
an agent. The Coordination application detects the loss and 
dynamically reallocates the remaining tasks. 
 

The mission progresses with the following events: 

1) Free-flyer 1 enters flight space 
2) Coordination module detects one free-flyer in swarm 

and distributes full flight plan from ground station 
3) Free-flyer 1 begins orbit of top half of mock satellite, in 

accordance with flight plan, and processes video 
stream for real-time damage analysis 

4) Free-flyer 2 is dispatched 
5) Coordination module detects new free-flyer in swarm 

and dynamically updates mission into two subtask lists: 
one for orbiting top-half, one for orbiting bottom-half 

6) Subtask lists are distributed between Free-flyer 1 and 2 
7) Free-flyer 1 and 2 begin executing mission subtasks 
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8) Free-flyer 2 abruptly departs 
9) Coordination module detects Free-flyer 2 loss  
10) Coordination module calculates new mission task list 

for Free-flyer 1 with remaining waypoints  
11) Free-flyer 1 completes visual analysis of top-half 
12) Free-flyer 1 enters downward helix pattern in order to 

complete analysis of bottom-half using waypoints 
inherited after loss of Free-flyer 2 

13) Free-flyer 1 completes remainder of mission 

 

Figure 7 shows the original mission flight plan path and 
represents the independent flight patterns for both free-flyers. 
Each track point is generated from the flight log of their 
respective free-flyer from this demonstration mission. 

 
Fig. 7 Free-flyer Waypoints Visualization  

 

B. Flight Controller Performance 

Several experiments are performed during the development 
of the UAV control software to assess the impact of the 
different control approaches and tuning methods. Figure 8 
shows the maximum error of the drone’s position across five 
trials. The PID controller for the 2D trajectory provides the AR 
2.0 Drone acceptably precise movement. During flight testing, 
each UAV’s actual position is recorded and compared to the 
intended position determined by ICAROUS. Figure 8a shows 
the error in terms of absolute distance (meters). and Figure 8b 
shows the error in terms of relative distance (percentage). 

For the yaw control, both a proportional controller and a 
double setpoint controller were considered. Tradeoffs 
between these controllers are discussed in Section VI-A. For 
the altitude controller, a simple bang-bang controller is used 
for thrust control. The system reaches the targeted altitude 
within 1.5 seconds, based on the ground speed of the 
platform, while maintaining smooth motion. 

 

 
(a) UAV Position:  Absolute Error over Time 

 

 
(b) UAV Position: Relative Error over Time 

Fig. 8. UAV Position Error 

D. Computer Vision Results 

The CNN is trained for damage detection on multiple 
surfaces. In comparison to Sobel filtering, the CNN presents as 
overengineered for a simple spacecraft surface. Figure 9 shows 
the output of the CNN on a sliding window damage detection 
where green represents normal and red represents damage. 

 

 

Fig. 9. CNN Sliding Window Output 

Based on performance, the final system incorporated Sobel 
filtering for damage detection. Given that the surfaces are 
rather smooth and have low inter class variance, the CNN 
would yield false negatives, where the Sobel filter would not. 
False negatives qualify as mission failure for detecting damage. 
The final system incorporates a tunable Sobel filter threshold 
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which enables the false negatives to be minimized by 
increasing false positives. This parameter is fine-tuned and 
found that the damage can be robustly isolated with very low 
false negatives, and at the same time the false positives are 
very low.  

The color ratio segmentation algorithm performs satellite 
segmentation, shown below in Figure 10 with the blue and 
green windows. The overlaid final damaged detection is shown 
using window-based damage detection in the left and edge-
based highlighting in the right. 

The final segmentation and damage detection algorithms 
are written in OpenCV, which requires C++. However, it is 
wrapped into a C application, so the CV algorithms are self-
contained in an ICAROUS module. 

 

 

Fig.10. CV output of segmented satellites and damage highlighting 
 
Additionally, 3D modeling is demonstrated to supplement and 
improve perception of damage to the spacecraft. Three- 
dimensional visualization shows a human-navigable depth 
perspective for further investigation. Given a spacecraft 
surface with arbitrary lines (features that the Sobel would pick 
up but do not represent damage), the original surface can be 
modeled for comparison with an after-damage 3D 
reconstruction to detect discrepancies due to damage. Figure 
11 shows where the speckle paint is applied to the cylinder, 
and 3D-reconstruction. 

 

Fig. 11. Speckled Painting (left) and 3D Reconstruction (right) 

VI. DISCUSSION 

The objective of this work is to demonstrate the utility of 
free-flyers to future space missions. Using simple, cost-
effective UAVs as free-flyer substitutes, a software framework 
for onboard computer vision for in-situ inspections of objects-
of-interest demonstrates the feasibility of such a system. The 
mission and experiments carried out have shown that the 
ICAROUS framework allows for simulating free-flyers with 
UAVs platforms and may be a suitable candidate for 
spaceflight missions. The following is a discussion on the 
outcomes, implementation results, and challenges for each 
major part of this project. 

A. Individual UAV Control 

The AR 2.0 Drone is adequate for the requirements of this 
mission simulator. The SDK enables precision control where 
the off-the-shelf control is insufficient. The PID control allows 
the UAV to follow the directed velocity commands and 
improve power efficiency by avoiding unnecessary 
acceleration and jerk. The original design of the yaw controller 
tended to overdampen, causing the UAV to jerk back and forth 
while focusing on the cylinder. This caused noise in the video 
data, which inhibited the damage analysis. The double 
setpoint control scheme for the yaw allows for smooth control 
of the UAV’s angular velocity, and the small margin of error 
allowed the video to stabilize sufficiently for video data 
analysis. The upgraded control system improved stability while 
hovering.  

The simple bang-bang controller for movement in the Z-axis 
proved sufficient, as the system would always have to provide 
a non-zero thrust to ensure stability. This allowed the UAV to 
reach the desired altitude quickly, while using the UAV’s 
current directional momentum and improving gaz. It was 
shown that this scaled approach to altitude hold allowed for 
the smoothest transition between altitudes, during UAV 
movement and position hold. 

B. Localization System 

The indoor localization system successfully integrates into 
ICAROUS, allowing for pseudo-GPS data to be provided for any 
of the tracked objects within the flight space’s vicinity. The GPS 
location was dynamic, allowing for simulated testing in 
numerous real-world locations. The use of the indoor 
localization system allows for a high degree of accuracy with 
respect to tracking the UAVs’ movement. This enables the 
cooperation of multiple platforms in a highly confined space. 
The Vicon system is designed to provide localization data for 
over one hundred unique agents. Each agent’s position and 
orientation data are provided at a rate of 200Hz. This rate 
allows for the tracking of vehicle acceleration and jerk at an 
interval measured in milliseconds. This is comparable to the 
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tracking necessary of any free-flyers in orbit, where the 
distance traveled in this short time frame is significant. 

C. Multi-Agent Implementation 

The main challenge of using multiple agents is determining 
how to distribute the mission tasks between available free-
flyers and coordinate their motion planning. This is challenging 
as the available free-flyers are treated as a dynamic resource, 
i.e., free-flyers may be added or removed from service at any 
time. In order to ensure all mission waypoints and tasks are 
achieved, the Coordination application tracks all assigned 
subtasks, and verified task completion with each agent at 
every milestone. At the beginning of each time step, the free-
flyers check to see if any other agents were added to or 
removed from the swarm. Only upon additional or loss would 
the Coordination module re-distribute mission tasks. 

This method of free-flyer coordination and mission 
allocation proves successful in all the testing scenarios. In 
addition to tests with variable number of free-flyers, some 
tests are run where platforms are suddenly removed from the 
system (to simulate sudden damage or system failure). Each 
agent’s data are marked with a timestamp including the 
platform’s spacecraft ID. This way, during 3D reconstruction, 
the CV module would be able to use each free-flyer’s 
position/velocity data to match with relevant video data in 
relative space. One challenge of joint motion planning is 
preventing any well-clear violations (making sure the free-
flyers do not fly too close to each other or the object). This is 
accomplished by having each free-flyer broadcast its current 
and next waypoint throughout the mission; a free-flyer’s path 
planner checks bands to make sure there is no intersection or 
adjacency of paths during movement. 

Another major challenge is verifying that each waypoint is 
visited the correct number of times by the swarm. To solve 
this, each platform kept track of the list of waypoints all the 
other free-flyers visited, based on the previously mentioned 
broadcasts; if there was a discrepancy, the affected waypoints 
would be visited again to verify data redundancy. 

 
D. Computer Vision System 

The CNN-based algorithm is trained as demonstrated for 
damage detection. This is less preferred for a simple spacecraft 
surface than Sobel. However, if the damage is more diverse in 
character, and the spacecraft has a complicated surface with 
equipment and junctions, a CNN can be trained, given an 
existing dataset of labeled damage. The final system 
incorporated Sobel filtering for damage detection. 
Advantageously, Sobel filters may be tuned to minimize false 
negatives. 

Adding 3D modeling offers two benefits:  first, comparative 
before and after models to detect damage; second, 3D models 
for visualizing damage offline in an interactive virtual 

environment. Using 3D modeling, human-in-the-loop 
operators may employ damage detection techniques that are 
not feasible on a free-flyer’s OBC.  

 
VII. FUTURE WORK 

For future work the new ICAROUS modules can be improved 
to allow for more complex methods of mission allocation and 
coordination. As part of this project, preliminary tests with 
distributed communication systems were conducted, e.g., 
Data Distribution Service (DDS) incorporated into the default 
cFS software communication bus [25]. Using DDS in a multi-
agent system would allow for other advanced networking and 
data sharing techniques when coordinating a large number of 
systems. In computer vision another step would be to 
implement 3D reconstruction capability in real time, as the 
free-flyers scan its surface. 

VIII. CONCLUSIONS 

This work implements and demonstrates the feasibility of 
computer vision and navigation techniques to perform 
inspection of a large spacecraft using the ICAROUS framework. 
In this demonstration mission, UAVs were successfully used to 
simulate free-flyer spacecraft. Moreover, localized damage 
was successfully detected on a uniform metallic surface. The 
multi-agent coordination approach proved capable of 
supporting a dynamic number of agents, allowing for efficient 
mission planning and completion based on a variable number 
of resources. The results of this work suggest free-flyers are a 
viable platform for in-situ, real-time damage detection of 
spacecraft structures. 

ACKNOWLEDGMENT 

The authors of this paper would like to thank the Safety-
Critical Avionics Branch and the Autonomy Incubator at NASA 
Langley Research Center as well as faculty and students of Old 
Dominion University and the NSF SHREC Center at the 
University of Pittsburgh (NSF SHREC Center and IUCRC 
Program of the NSF under Grant No. CNS-1738783), for their 
continued support, resources, and insights provided 
throughout the duration of this research project. 

REFERENCES 

[1] N. L. Johnson, “Orbital debris: the growing threat to space operations,” 
in 33rd Annual Guidance and Control Conference, 2010. 

[2] D. Doyle, A. Zagrai, B. Arritt, and H. C¸akan, “Damage detection in bolted 
space structures,” Journal of Intelligent Material Systems and Structures, 
vol. 21, no. 3, pp. 251–264, 2010. 

[3] A. Zagrai, D. Doyle, and B. Arritt, “Embedded nonlinear ultrasonics for 
structural health monitoring of satellite joints,” in Health Monitoring of 
Structural and Biological Systems 2008, vol. 6935. International Society 
for Optics and Photonics, 2008, p. 693505. 

[4] S. Balachandran, C. A. Muñoz, M. C. Consiglio, M. A. Feliú, and 
A. Patel, “Independent configurable architecture for reliable operation 
of unmanned systems with distributed onboard services,” in 2018 



10 
 

IEEE/AIAA 37th Digital Avionics Systems Conference (DASC). IEEE, 2018, 
pp. 1–6. 

[5] NASA, “core Flight System,” [Online]. Available: 
https://cfs.gsfc.nasa.gov. [Accessed 3 April 2020] 

[6] J. Fernandez Galarreta, N. Kerle, and M. Gerke, “UAV-based urban 
structural damage assessment using object-based image analysis and 
semantic reasoning.” Natural Hazards & Earth System Sciences, vol. 15, 
no. 6, 2015. 

[7] G. Morgenthal and N. Hallermann, “Quality assessment of unmanned 
aerial vehicle (UAV) based visual inspection of structures,” Advances in 
Structural Engineering, vol. 17, no. 3, pp. 289–302, 2014. 

[8] H. Sui, J. Tu, Z. Song, G. Chen, and Q. Li, “A novel 3d building damage 
detection method using multiple overlapping UAV images,” The 
International Archives of Photogrammetry, Remote Sensing and Spatial 
Information Sciences, vol. 40, no. 7, p. 173, 2014. 

[9] Q. Guo, Y. Su, T. Hu, X. Zhao, F. Wu, Y. Li, J. Liu, L. Chen, G. Xu, G. Lin et 
al., “An integrated UAV-borne lidar system for 3d habitat mapping in 
three forest ecosystems across china,” International journal of remote 
sensing, vol. 38, no. 8-10, pp. 2954–2972, 2017. 

[10] Z. Shang and Z. Shen, “Real-time 3d reconstruction on construction site 
using visual slam and UAV,” arXiv preprint arXiv:1712.07122, 2017. 

[11] Y. Tian, K. Liu, K. Ok, L. Tran, D. Allen, N. Roy, and J. P. How, “Search and 
rescue under the forest canopy using multiple UAS,” in International 
Symposium on Experimental Robotics. Springer, 2018, pp. 140–152. 

[12] E. S¸ahin, “Swarm robotics: From sources of inspiration to domains of 
application,” in International workshop on swarm robotics. Springer, 
2004, pp. 10–20. 

[13] P. Vincent and I. Rubin, “A framework and analysis for cooperative 
search using UAV swarms,” in Proceedings of the 2004 ACM symposium 
on Applied computing, 2004, pp. 79–86. 

[14] K. Lerman, A. Martinoli, and A. Galstyan, “A review of probabilistic 
macroscopic models for swarm robotic systems,” in International 
workshop on swarm robotics. Springer, 2004, pp. 143–152. 

[15] S. Balachandran, A. Narkawicz, C. Muñoz, and M. Consiglio, “A Path 
Planning Algorithm to Enable Well-Clear Low Altitude UAS Operation 
Beyond Visual Line of Sight,” in Proceedings of the 12th USA/Europe Air 
Traffic Management Research and Development Seminar (ATM2017), 
ATM-2017-16, 2017, pp. 1–9. 

[16] M. Consiglio, B. J. Duffy, S. Balachandran, L. Glaab, and C. Muñoz, “Sense 
and avoid characterization of the independent configurable architecture 
for reliable operations of unmanned systems,” in 13th USA/Europe Air 
Traffic Management Research and Development Seminar, 2019. 

[17] S. Balachandran, C. Manderino, C. Muñoz, M. Consiglio, A Decentralized 
Framework to Support UAS Merging and Spacing Operations in Urban 
Canyons. International Conference on Unmanned Aircraft Systems, 
2020. Accepted for Publication 

[18] H. J. Vala and A. Baxi, “A review on Otsu image segmentation algorithm,” 
International Journal of Advanced Research in Computer Engineering & 
Technology (IJARCET), vol. 2, no. 2, pp. 387–389, 2013. 

[19] R. Brunelli, “Template matching techniques in computer vision: theory 
and practice,” John Wiley & Sons, 2009. 

[20] F. Garcia-Lamont, J. Cervantes, A. Lopez, and L. Rodriguez, 
“Segmentation of images by color features: A survey,” Neurocomputing, 
vol. 292, pp. 1–27, 2018. 

[21] S. Gupta and S. G. Mazumdar, “Sobel edge detection algorithm,” 
International journal of computer science and management Research, 
vol. 2, no. 2, pp. 1578–1583, 2013. 

[22] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification 
with deep convolutional neural networks,” in Advances in neural 
information processing systems, 2012, pp. 1097–1105. 

[23] I. Reljic, I. Dunder, and S. Seljan, “Photogrammetric 3D scanning of´ 
physical objects: Tools and workflow,” TEM Journal, vol. 8, no. 2, p. 383, 
2019. 

[24] Parrot. Parrot ArDrone 2.0 Power Edition. Available: 
https://www.parrot.com/global/drones/parrot-ardrone-
20-power-edition 

[25] C. Manderino, A. Gillette, P. Gauvin, A. D. George, “Resilient Networking 
Framework for Mission Operations and Resource Sharing in Multi-Agent 
Systems,” in Proceedings of the Digital Avionics Systems Conference, 
2018. 

 


