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Abstract

We report the discovery of TOI-677b, first identified as a candidate in light curves obtained within Sectors 9 and
10 of the Transiting Exoplanet Survey Satellite (TESS) mission and confirmed with radial velocities. TOI-677b
has a mass ofMp = -

+1.236 0.067
0.069 MJ, a radius of RP = 1.170 0.03 RJ, and orbits its bright host star (V=9.8 mag)

with an orbital period of 11.23660 0.00011 d, on an eccentric orbit with = e 0.435 0.024. The host star has a
mass of M = 1.181 0.058 M, a radius of R = -

+1.28 0.03
0.03 R, an age of -

+2.92 0.73
0.80 Gyr and solar metallicity,

properties consistent with a main-sequence late-F star with = T 6295 77eff K. We find evidence in the radial
velocity measurements of a secondary long-term signal, which could be due to an outer companion. The TOI-
677b system is a well-suited target for Rossiter–Mclaughlin observations that can constrain migration mechanisms
of close-in giant planets.

Unified Astronomy Thesaurus concepts: Exoplanets (498); Extrasolar gas giants (509); Exoplanet astronomy (486);
Transit photometry (1709); Radial velocity (1332); Planet hosting stars (1242)
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1. Introduction

In the past two decades the population of known transiting
exoplanets has grown at an accelerating pace. While the Kepler
satellite (Borucki et al. 2010) dominates the overall number of
discoveries, the particular class of close-in gas giants around
nearby stars were until recently most efficiently discovered by
wide-field photometric series (e.g., Bakos et al. 2004, 2013;
Pollacco et al. 2006; Pepper et al. 2007; Talens et al. 2017).
Due to the biases inherent to ground-based observatories,
most of the discoveries of these surveys have periods of
P10 days. Systems of stations around the globe such as the
HATSouth survey (Bakos et al. 2013) can in principle improve
the efficiency of discovery for longer periods, but the number
of systems with P>10 days uncovered by wide-field ground-
based surveys is small, with the current record holder being
HATS-17b with P≈16 days (Brahm et al. 2016).

The population of close-orbiting gas giants has opened a
number of questions about their physical structural and
dynamical evolution, which are still topics of active research
(Dawson & Johnson 2018). In particular, the nature of the
migration history and the detailed mechanism of radius
inflation for hot Jupiters needs further elucidation. In order to
make further progress on those fronts the population of warm
giants, loosely defined as systems with periods P10 days, is
of importance. They are close enough to the star that they are
likely to have undergone significant migration, but not as close
that tidal effects can erase the potential imprints of that
migration (Albrecht et al. 2012; Dawson 2014; Li &
Winn 2016). In the same vein, they are far enough from their
parent star that their radii have not been inflated by the
mechanism that acts to bloat the radii of hotter giants (Kovács
et al. 2010; Demory & Seager 2011; Miller & Fortney 2011).
But while it is clear that these systems are very interesting, the
population of known warm giants around nearby stars
(allowing the most detailed characterization) is still very small.
The launch of the Transiting Exoplanet Survey Satellite (TESS)
mission (Ricker et al. 2015) is changing that. By scanning
nearby stars around the whole sky the expectation is that
hundreds of giant planets with P10 days will be uncovered
(Sullivan et al. 2015; Barclay et al. 2018).

In this work we present the discovery originating from a
TESS light curve of an eccentric warm giant planet with a
period of P= 11.23660 0.00011days orbiting a bright late-
F star. This is part of a systematic effort to characterize warm
giants in the southern hemisphere uncovered with TESS, which
has contributed to the discovery and mass measurement of
three warm giants already (Brahm et al. 2019; Huber et al.
2019; Rodriguez et al. 2019). The paper is structured as
follows. In Section 2 we describe the observational material
used to perform a global modeling of the system, as described
in Section 3. The results are then discussed in Section 4.

2. Observations

2.1. TESS

Between 2019 March 1 and 2019 April 22, the TESS mission
observed TOI-677 (TIC280206394, 2MASS J09362869-
5027478, TYC 8176-02431-1, WISE J093628.65-502747.3)
during the monitoring of Sectors 9 and 10, using camera 3 and
CCDs 1 and 2, respectively. The TESS Science Processing
Operations Center (SPOC; for an overview of the processing it
carries out see Jenkins et al. 2016) Transiting Planet Search

module detected the planetary signature in the Sector 9
processing run and in the Sectors 1–13 multi-sector search
and triggered the data validation module (Twicken et al. 2018;
Li et al. 2019) to analyze the transit-like feature in Sector 9 and
combined the light curves of Sectors 9 and 10. All diagnostics
tests performed as part of the data validation report, including
the odd/even depth test, the signal-to-noise ratio (S/N), the
impact parameter, the statistical bootstrap probability, the ghost
diagnostic, and the difference image centroid offset from the
TIC position and from the out-of-transit centroid, strongly
favored the planetary hypothesis and resulted in the promotion
of TOI-677 to the list of targets of interest.
The properties of TOI-677 as obtained from literature sources

and derived in this work are detailed in Table 1. The target was
observed in short (2 minutes) cadence, and we downloaded the
pre-search data conditioning (PDC) simple aperture photometry
(SAP) light curves from the Mikulski Archives for Space
Telescopes. The PDC SAP light curves have systematic trends
removed using co-trending basis vectors (Smith et al. 2012;
Stumpe et al. 2014), and are produced by the TESS SPOC at the
NASA Ames Research Center. We masked the regions of high
scattered light as indicated in the data release notes for each of
the sectors, augmenting the masked windows in a few cases
where it was evident that there were some remaining trends that
were insufficiently masked.34 We did not mask data points with
data quality flags, as we noticed that all of the second transit
had been masked with a flag value of 2048 (stray light from
Earth or the Moon in the camera field of view), but inspection

Table 1
Stellar Properties of TOI-677

Parameter Value Reference

Names TIC280206394 TIC
2MASS J09362869-5027478 2MASS
TYC 8176-02431-1 TYCHO
WISE J093628.65-502747.3 WISE

R.A. (J2000) 15h32m17.84 s
decl. (J2000) −22d21m29.74 s
μα (mas yr−1) −24.82±0.05 Gaia
μδ (mas yr−1) 42.42±0.05 Gaia
π (mas) 7.02±0.03 Gaia
Spectral type F8

TESS (mag) 9.24±0.018 TIC
G (mag) 9.661±0.020 Gaia
BP (mag) 9.968±0.005 Gaia
RP (mag) 9.229±0.003 Gaia
J (mag) 8.722±0.020 2MASS
H (mag) 8.470±0.038 2MASS
Ks (mag) 8.429±0.023 2MASS

Teff (K) 6295 77 This work
glog (dex) 4.291 0.025 This work

Fe H[ ](dex) 0.00 0.05 This work
v isin (km s−1) 7.80 0.19 This work

M (M) 1.181 0.058 This work

R (R) -
+1.28 0.03

0.03 This work

Age (Gyr) -
+2.92 0.73

0.80 This work

r
*
(g cm−3) -

+0.80 0.06
0.06 This work

34 In detail, in the first and second orbits of Sector 10 we excluded up to
cadence numbers 247,000 and 257,300, respectively, instead of the values
246,576 and 256,215 indicated in the data release notes for Sector 10.
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of the masked portions revealed no anomalous signs on the
light curve.

The TESS light curve is shown in Figure 1, where four
transits are clearly seen. The out-of-transit light curve is
remarkably flat. We estimated the power spectral density of the
out-of-transit light curve of TOI-677 using the method of
Welch (1967) as implemented in the scipy.signal Python
module and found it to be featureless and at precisely the level
expected given the reported photometric uncertainties of the
magnitude measurements (see Figure 2). We conclude from
this exercise that there is no need for any deterministic or
stochastic component beyond the white noise implied by the
photometric uncertainties in the modeling of the out-of-transit
light curve. Because of this we only fit for regions of ≈1 day
around each transit, removing the median value calculated in
the out-of-transit portion for each transit. The TESS data used
for the analysis is presented in Table 2.

2.2. Spectroscopy

We followed up TOI-677 with several spectrographs in order
to confirm the TESS transiting planet candidate and to measure
its mass. In what follows we describe the observations obtained

by each spectrograph we used. The derived radial velocities,
and bisector span measurements when available, are reported in
Table 4.

2.2.1. FEROS

TOI-677 was monitored with The Fiber-fed Extended Range
Optical Spectrograph (FEROS; R≈48,000, Kaufer et al.
1999) mounted at the MPG 2.2 m telescope at La Silla
Observatory between 2019 May and July, where 26 spectra
were obtained. Observations were performed in simultaneous
calibration mode, with the secondary fiber observing a
thorium–argon (ThAr) lamp to trace the instrumental variations
produced by changes in the environment during the science
exposures. The adopted exposure times were of 300 and 400 s,
which translated into an S/N ranging between 40 and 150 per
resolution element. The FEROS data were processed with the

Figure 1. Two-minute cadence TESS light curve. These are the PDC SAP measurements produced by the SPOC pipeline. Four transits are clearly seen in the TESS
photometry, with the middle transit falling within a gap.

Figure 2. Power spectral density of the out-of-transit TESS light curve. The
dashed line marks the expected value of the power spectral density, estimated
as s n ná ñ -i u l

2 ( ), where sá ñi
2 is the average measurement variance of the TESS

photometry, νl=0, and n » 0.004 Hzu is the Nyquist frequency for the short
cadence sampling.

Table 2
Relative Photometry for TOI-677a

BJD f σf Instrument
(2,400,000+) (ppt) (ppt)

58547.001330 −0.199 0.789 TESS
58547.002719 1.058 0.790 TESS
58547.004108 0.339 0.789 TESS
58547.005496 −1.082 0.790 TESS
58547.006885 0.377 0.790 TESS
58547.008274 1.051 0.790 TESS
58547.009663 0.314 0.789 TESS
58547.011052 1.058 0.790 TESS
58547.012441 −0.483 0.790 TESS
58547.013830 0.617 0.789 TESS
58547.015219 −0.675 0.790 TESS
58547.016608 −0.039 0.789 TESS
58547.017997 0.166 0.790 TESS
58547.019386 0.393 0.788 TESS
58547.020774 −0.916 0.790 TESS
58547.022163 −1.167 0.789 TESS
58547.023552 2.311 0.790 TESS
58547.024941 1.251 0.790 TESS
58547.026330 0.043 0.789 TESS
58547.027719 −0.603 0.790 TESS

Note.
a Table 2 is published in its entirety in machine readable format. A portion is
shown here for guidance regarding its form and content.

(This table is available in its entirety in machine-readable form.)
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CERES pipeline (Brahm et al. 2017a), which delivers the radial
velocities corrected by the instrumental drift variations and the
by the Earth’s motion. These radial velocities were obtained
with the cross-correlation technique, where a G2-type binary
mask was used as a template. From this cross-correlation peak
CERES also computes the bisector span measurements, and
delivers a rough estimate of the stellar parameters by
comparing the continuum normalized spectrum with a grid of
synthetic ones.

2.2.2. Coralie

We monitored TOI-677 with the Coralie spectrograph
(R≈60,000; Mayor et al. 2003) mounted on the Swiss-Euler
1.2 m telescope in six different epochs. These observations
were also performed with the simultaneous calibration
technique, but in this case the secondary fiber is illuminated
by a Fabry–Perot etalon. We adopted an exposure time of
300 s, which produced spectra having a typical S/N of 30 per
resolution element. Coralie data were also processed with the
CERES pipeline for obtaining the radial velocities.

2.2.3. CHIRON

We collected a total of 11 spectra of TOI-677 using the
CHIRON high-resolution spectrograph (Tokovinin et al. 2013)
between 2019 May 17 and June 19. The exposure time was
between 750 and 1200 s, leading to an S/N per pixel between
≈20 and 35. CHIRON is mounted on the Small and Moderate
Aperture Research Telescope System (SMARTS) 1.5 m
telescope at the Cerro Tololo Inter-American observatory in
Chile, and is fed by an octagonal multi-mode optical fiber. For
these observations we used the image slicer, which delivers
relatively high throughput and high spectral resolution
(R≈80,000). The radial velocities were computed from the
cross-correlation function between the individual spectra and a
high-resolution template of the star, which is built by stacking
all individual observations of this star. Since CHIRON is not
equipped with a simultaneous calibration, we observed the
spectrum of a ThAr lamp before the science observations, to
correct for the instrumental drift. Using this method we have
measured a long-term radial velocity stability of <10 m s−1 on
bright targets (texp<60 s) and <15 m s−1 for fainter objects
(texp< 1800 s). For more details of the method see Wang et al.
(2019) and Jones et al. (2019).

2.2.4. NRES

Las Cumbres Observatory’s Network of Robotic Echelle
Spectrographs (NRES; Siverd et al. 2018) is a global array of
echelle spectrographs mounted on 1 m telescopes, with a
resolving power of ≈53,000. TOI-677 was observed at 12
epochs with the NRES node located at the Cerro Tololo Inter-
American Observatory. At each observing epoch, three
consecutive 1200 s exposures were obtained, with an individual
S/N40. The velocity of each exposure was derived via
cross-correlation with a PHOENIX template (Husser et al.
2013) with Teff=5800 K, glog =3.5, Fe H[ ]=−0.5, and
v isin =7 km/s. Systematic drifts were corrected per order
(e.g., Engel et al. 2017) and the radial velocity of each epoch
was then taken as the mean of the three exposures.

2.2.5. Minerva-Australis

We obtained 17 observations on nine separate nights with the
Minerva-Australis telescope array (Addison et al. 2019) at Mount
Kent Observatory in Queensland, Australia. All of the telescopes
in the Minerva-Australis array simultaneously feed a single
Kiwispec R4-100 high-resolution (R≈80,000) spectrograph with
a wavelength coverage from 500 to 630 nm over 26 echelle
orders. We derived radial velocities for each telescope using the
least-squares analysis of Anglada-Escudé & Butler (2012) and
corrected for spectrograph drifts with simultaneous ThAr arc lamp
observations. TOI-677 was observed with telescopes 3, 4, and 5 of
the array, and the derived radial velocities are reported under the
instrument labels Minerva_T3, Minerva_T4, and Miverva_T5 in
Table 4.

2.3. Ground-based Photometry

2.3.1. Shared Skies Telescope at Mt. Kent Observatory (SSMKO)

TOI-677 was observed on the night of UTC 2019-05-09 with
the University of Louisville’s Shared Skies MKO-CDK700
(SSMKO) telescope at Mt. Kent Observatory of the University
of Southern Queensland, Australia. The telescope is a 0.7 m
corrected Dall-Kirkham with a Nasmyth focus manufactured
by Planewave. Images with an exposure time of 64 s were
taken through a Sloan i’ filter using an Apogee U16 CCD
camera with a Kodak KAF-16801E sensor. A sequence of 92
images were acquired over 180 minutes. The light curve, which
is shown in Figure 3, displays a clear egress. No significant
activity or modulation other than the transit itself was apparent
in the light curve, which shows residuals of 0.85 ppt at the

Figure 3. Photometric data with the trend subtracted as a function of phase for
the two photometric instruments used in this work (TESS, SSMKO). The
orange line shows the posterior transit model.
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observational cadence. The SSMKO data used for the analysis
is presented in Table 2.

2.4. Gaia DR2

Observations of TOI-677 by Gaia were reported in DR2
(Gaia Collaboration et al. 2016, 2018). From Gaia DR2, TOI-677
has a parallax of 7.02±0.03mas, an effective temperature of

= -
+T 5895eff 200

105 K, and a radius of = -
+

R R1.37 0.05
0.1

. The
parallax obtained from Gaia was used to determine the stellar
physical parameters of TOI-677 as described in Section 3.1. In our
analysis we corrected the Gaia DR2 parallax for the systematic
offset of −82μas reported in Stassun & Torres (2018).

2.5. High Spatial Resolution Imaging

The relatively large angle subtended by the TESS pixels,
approximately 21″ on a side, leaves it susceptible to photometric
contamination from nearby stars, including additional wide stellar
companions. We searched for nearby sources to TIC280206394
with the Southern Astrophysical Research (SOAR) telescope
speckle imaging (Tokovinin 2018) on 2019 May 18 UT,
observing through a similar visible bandpass as TESS. More
details of these observations are available in Ziegler et al. (2020).
We detected no nearby sources within 3″ of TIC280206394. The
5σ detection sensitivity and the speckle autocorrelation function
from the SOAR observation are plotted in Figure 4.

The radial velocity variations measured on TOI-677 phase
with the transit signal. This fact, combined with the lack of
nearby companions, the lack of correlation of the bisector span
measurements with orbital phase, and the tests carried out as
part of the SPOC data validation report show that the transit is
not caused by a blended stellar eclipsing binary.

3. Analysis

3.1. Stellar Parameters

In order to characterize the star, we follow the same
procedure presented in Brahm et al. (2019). First, we compute
the stellar atmospheric parameters using the co-added FEROS
spectra through the ZASPEcode (Brahm et al. 2017b). ZASPE

estimatesTeff , glog , Fe H[ ], and v isin , by comparing an
observed spectrum with a grid of synthetic models generated
with the ATLAS9 atmospheres (Castelli & Kurucz 2004).
Then, we estimate the physical parameters of the host star

using the publicly available broadband photometry of Gaia (G,
BP, RP) and Two Micron All Sky Survey (2MASS) (J, H, KS),
which is compared to the synthetic magnitudes provided by the
Padova-Trieste Stellar Evolution Code (PARSEC) stellar
evolutionary models using the distance to the star from the
Gaia DR2 parallax. For a given stellar mass, age, and
metallicity, the PARSEC models can deliver a set of synthetic
absolute magnitudes and other stellar properties (e.g., stellar
luminosity, effective temperature, stellar radius).
We determine the posterior distributions for M , age, and AV,

via a Markov Chain Monte Carlo (MCMC) code using the
emcee package (Foreman-Mackey et al. 2013), where we fix
the metallicity of the PARSEC models to that obtained with
ZASPE, and we apply the Cardelli et al. (1989) extinction laws
to the synthetic magnitudes.
This procedure provides a more precise estimation of glog

than the one obtained from the spectroscopic analysis. For
this reason we iterate the procedure where we fix the glog
value when running ZASPE to the value obtained from the
PARSEC models. The resulting values are = T 6295 77eff K,

= Fe H 0.00 0.05[ ] dex, = glog 4.291 0.025, =v isin
7.80 0.19 -km s 1, = -

+A 0.226V 0.058
0.056 mag, age= -

+2.92 0.73
0.80 Gyr,

= L 2.33 0.11 L = M 1.170 0.06 M, and =R
1.282 0.03 R. The values and uncertainties of M and R

are used to define priors for them in the global analysis described
in the next section.

3.2. Global Modeling

We performed joint modeling of the radial velocity and
photometric data using the exoplanet toolkit (Foreman-
Mackey et al. 2019). The radial velocities used are given in
Table 4 and the photometric data are given in Table 2. We
denote the TESS photometric time series by =y tT i i

n
1

T{ ( )} , the
SSMKO one by =y tS i i

n
1

S{ ( )} , and the radial velocity measure-
ments (with their mean values removed) by =y ti i

n
F 1

F{ ( )} ,

=y ti i
n

C 1
C{ ( )} , c =

cy ti i
n

1{ ( )} , =y ti i
n

N 1
N{ ( )} , and =y ti i

n
M i 1

N{ ( )}( ) for FEROS,
Coralie, CHIRON, NRES, and Minerva-Australis respectively.
In the case of Minerva, M(i) is a function that returns the
telescope used at observation ti (recall the Minerva observa-
tions include three different telescopes). The observational
uncertainties are denoted by s ti*( ), where ∗ can take the value
of any of the instrument labels. As shown in Section 2.1, the
TESS light curve shows no evidence of additional structure
beyond white noise. The TESS photometric time series is
therefore modeled as

s= + py t t N; 0, , 1T i i T i,
2( ) ( ) ( ) ( )

where N(0, σ2) denotes a normal distribution of mean 0 and
variance σ2,  pt ;i( ) is the transit model, and p is the vector of
model parameters. Explicitly,

w=p R M b P t e R M u u, ln , , , , , , , , , , 2p p 0 1 2* *( ( ) ) ( )

where Rp is the planetary radius,Mp is the planetary mass, b is the
impact parameter, P is the period, t0 is the reference time of mid-
transit, e is the eccentricity, ω is the angle of periastron, R* and
M* the stellar radius and mass, and u1 and u2 are the limb-
darkening law coefficients, which we describe using a quadratic

Figure 4. I-band autocorrelation function from Speckle using SOAR. The 5σ
contrast curve for TOI-677 is shown by the black points. The black solid line is
the linear fit to the data for separations <0 2 and >0 2. The autocorrelation
function is shown within the contrast curve plot.
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law. The parameters Rp and b are derived from the parameters r1
and r2 defined in Espinoza (2018) to allow efficient sampling of
physically possible combinations of b and Rp/R*, so that from the
sampled parameters r1, r2, and R* we determine =b b r r,1 2( )
and =R R r r R, ,p p 1 2 *( ).

The SSMKO photometric time series is modeled as

s h

f s

= + +
+ + -

º +

 py t t N

b b t t

t N

; 0,

0, , 3

S i i S i S

i

S i S i

u ,
2 2

0 1 0

,
2

( ) ( ) ( )
( )

( ) ( ) ( )

where the bi{ } coefficients account for up to a linear systematic
trend in the photometry, sS i,

2 are the reported photometric
uncertainties, and ηS is an additional photometric variance
parameter. The parameter vector is the same as that for TESS,
but the limb-darkening coefficients are fixed to the values

=u u, 0.2489, 0.3051 2( ) ( ). These values were calculated using
the ATLAS atmospheric models and the Sloan i’ band using
the limb-darkening coefficient calculator (Espinoza & Jordán
2015), and in particular using the methodology of sampling the
limb-darkening profile in 100 points as described in Espinoza
& Jordán (2015). We chose to fix the limb-darkening
coefficients given that the SSMKO light curve covers only
the egress. The radial velocity times series are modeled as

s h g

s h

= + + +
+ -

º + +

 qy t t N

a a t t

r t N

; 0,

0, 4

i i i

i i

,
2 2

0 1 0

,
2 2

* * * *

* * *

( ) ( ) ( )
( )

( ) ( ) ( )

where  represents the Keplerian radial velocity curve and
the parameter vector of the model; a subset of p, is =q

wP M t e M, ln , , , ,p 0 *( ( ) ). The wild card ∗ in Equation (4) can
take the values cF C N M, , , , for FEROS, Coralie, CHIRON,
NRES, and Minerva respectively, and h2

*
is a white noise jitter

term to account for additional variance not accounted for in
the reported observational variances s i,

2
* . The parameters {ai}

account for up to a linear systematic trend in the radial
velocities. We set priors for h2

*
by first running a model

without jitter terms, and determining for each instrument how
much extra variance was present around the posterior model
over that predicted by the observational uncertainties. We
note that for NRES we found no need for a jitter term and thus
we set ηN≡0. The log-likelihood l is given by

s

s h f s h

s h s h

s h s h

s h s h

s h

s h

s

- = å -

+ å + - + +

+ å + - + +

+ å + - + +

+ å + - + +

+ å +

´ - + +

+ å -

c c c c c c

=
-

=
-

=
-

=
-

=
-

=
-

=
-

c

pl y

y

y r

y r

y r

y r

y r

2

ln

ln

ln

ln

ln

.

5
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n
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n
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n
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i
n

i i i i

i
n

M i i M
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i
n
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2

, ,
2

1 ,
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,
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,
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,
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, ,
2

,
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1 ,
2

, ,
2

T

S

F

C

M

N

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( )

( ) ( )

( )
( )

( )

( ) ( )

Posteriors were sampled using an MCMC algorithm, specifically
the No U-Turn Sampler (NUTS; Hoffman & Gelman 2011) as

implemented in the PyMC3 package through exoplanet. We
sampled using four chains and 3000 draws, after a tuning run of
4500 draws where the step sizes are optimized. Convergence was
verified using the Rubin-Gelman and Geweke statistics. The
effective sample size for all parameters, as defined by (Gelman
et al. 2013), was>4000. The priors are detailed in Table 3. Priors
for M* and R* stem from the analysis described in Section 3.1.
The priors on P, T0, ÅM Mln p( ), e, and =ai i 0

1{ } were obtained

Table 3
Prior and Posterior Parameters of the Global Fit

Parameter Prior Value

P (days) N 11.27, 0.72( ) 11.23660 0.00011
T0 (BJD) N 2458547.4743, 0.00122( ) -

+2458547.47448 0.00029
0.00028

ÅM Mln p( ) N ln 500 , 0.32( ( ) ) -
+5.973 0.056

0.054

R (R) N 1.282, 0.032( ) -
+1.28 0.03

0.03

M (M) N 1.17, 0.062( ) 1.181 0.058
r1a U(0,1) -

+0.0942 0.0012
0.0010

r2a U(0,1) -
+0.723 0.024

0.018

u1
TESS U 0, 1( ) -

+0.50 0.27
0.19

u2
TESS U(0,1) - -

+0.06 0.23
0.33

e Nb(0.4,0.1; 0,1) 0.435 0.024
ω (rad) p p-U ,( ) -

+1.230 0.063
0.063

γFEROS (m s−1) -N 40, 202( ) - -
+42.8 8.6

8.8

gCoralie (m s−1) -N 20, 202( ) - -
+26.9 15.4

14.7

gCHIRON (m s−1) -N 20, 202( ) - -
+20.9 10.6

10.7

gNRES (m s−1) -N 20, 202( ) - -
+28.5 11.4

11.4

g _Minerva T3 (m s−1) N 0, 202( ) -
+4.2 10.2

10.1

g _Minerva T4 (m s−1) -N 20, 202( ) - -
+32.2 10.5

10.6

g _Minerva T5 (m s−1) N 0, 202( ) -
+20.9 12.9

12.7

ηFEROS (m s−1) ¥N 13, 5 ; 0,b
2( ) -

+13.5 3.1
3.3

ηCoralie (m s−1) ¥N 22, 10 ; 0,b
2( ) -

+45.1 11.4
12.4

ηCHIRON (m s−1) ¥N 45, 15 ; 0,b
2( ) -

+21.7 7.6
8.0

ηMinerva (m s−1) ¥N 30, 12 ; 0,b
2( ) -

+33.0 3.8
4.5

ηS ¥N 0.001, 0.0003 ; 0,b
2( ) -

+0.00114 0.00010
0.00011

a0 (m s−1) N(0,202) - -
+6.4 8.2

8.1

a1 (m s−1 day−1) N(0.7,0.52) 1.58 0.19
b0 N 0, 0.12( ) - -

+0.00197 0.00032
0.00033

b1 (day
−1) N(0,0.012) -

+0.0204 0.0040
0.0039

b -
+0.723 0.024

0.018

i (deg) -
+87.63 0.1

0.11

RP/ R -
+0.0942 0.0012

0.0010

RP(RJ) 1.170 0.03
Mp(MJ) -

+1.236 0.067
0.069

a (au) -
+0.1038 0.0017

0.0017

Teq(K)
b 1252 21

D(days)c -
+0.1074 0.0007

0.0010

Notes. Derived parameters, which are deterministic functions of the parameters
fitted for, are presented in the bottom part of the table. For the priors, m sN , 2( )
stands for a normal distribution with mean μ and variance σ2, m sN l u, ; ,2( ) is
a bounded normal distribution with lower and upper limits given by l and u,
respectively, and U a b,( ) stands for a uniform distribution between a and b.
a These parameters correspond to the parameterization presented in Espinoza
et al. (2019) for sampling physically possible combinations of b and p=RP/
R . We used an upper and lower allowed value for p of pl=0.075 and

pu=0.125, respectively.
b Time-averaged equilibrium temperature computed according to Equation
(16) of Méndez & Rivera-Valentín (2017).
c Transit duration.
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from a fit to the radial velocities alone carried out with the radvel
package (Fulton et al. 2018).

The posterior model for the radial velocities is shown in
Figure 5 as a function of time and in Figure 6 against orbital
phase with the quadratic term removed. The posterior model
for the photometric observations is shown in Figure 3. Table 3
lists all the priors assumed and the posterior values for the
stellar and planetary properties. A fully independent analysis of
the data with the juliet package (Espinoza et al. 2019) using

different priors and treatment of photometric and radial velocity
trends results in planetary parameters consistent with the ones
presented in Table 3. It is noteworthy that besides the Keplerian
orbit, there is significant statistical evidence for a long-term
trend in the radial velocities, which could be caused by an outer
companion. If described by a linear trend the slope is estimated
to be = a 1.58 0.191 m s−1 day−1.

4. Discussion

We put TOI-677b in the context of the population of known,
well-characterized35 transiting exoplanets in Figure 7, where we

Figure 5. Radial velocities as a function of time for the five spectroscopic instruments used in this work (FEROS, Coralie, CHIRON, NRES, and Minerva). Note that
we use a single symbol for Minerva but the observations were made with three different telescopes in the array. The error bars include the posterior values for the jitter
terms.

Figure 6. Radial velocities as a function of orbital phase for the five
spectroscopic instruments used in this work (FEROS, Coralie, CHIRON,
NRES, and Minerva). Note that we use a single symbol for Minerva but the
observations were made with three different telescopes in the array. The error
bars include the posterior values for the jitter terms.

Table 4
Radial Velocities and Bisector Spans for TOI-677a

BJD RVb σRV BIS σBIS Instrument
(2,400,000+) (m s−1) (m s−1) (m s−1) (m s−1)

58615.051551 −26.62 5.4 K K Minerva_T3
58615.051551 −70.76 5.3 K K Minerva_T4
58615.072962 −26.25 5.4 K K Minerva_T3
58615.072962 −12.28 5.3 K K Minerva_T4
58616.005135 −43.36 5.4 K K Minerva_T3
58616.026546 −81.33 5.4 K K Minerva_T3
58616.047945 −81.42 5.4 K K Minerva_T3
58618.484021 −107.13 12.0 34 9 FEROS
58619.499881 −78.23 9.6 47 8 FEROS
58620.482581 −54.73 11.3 14 9 FEROS
58621.616231 42.13 23.5 −51 20 Coralie
58621.623201 −14.62 13.3 K K CHIRON
58621.628071 −20.13 13.3 23 10 FEROS
58621.948677 −47.48 5.2 K K Minerva_T4
58621.948677 67.59 5.4 K K Minerva_T3
58621.970088 −6.47 5.4 K K Minerva_T4
58621.970088 −27.69 5.4 K K Minerva_T3
58622.467171 −1.33 9.8 35 8 FEROS
58622.623371 14.93 23.1 86 20 Coralie
58622.626601 116.18 24.5 K K CHIRON

Notes.
a Table 4 is published in its entirety in machine readable format. A portion is
shown here for guidance regarding its form and content.
b For convenience, the mean has been subtracted from the originally measured
radial velocities for each instrument, and the instrument-dependent radial
velocity zero-points reported in Table 3 are with respect to these mean-
subtracted values. The mean values m (in m s−1) that should be added
to recover the original measurements are mFEROS=37656.23, mCoralie=
37665.27, mCHIRON=20.1, mNRES=38228.49, and mMinerva=37844.01

(This table is available in its entirety in machine-readable form.)

35 We use the catalog of well-characterized planets of Southworth (2011). We
restrict the sample to systems whose fractional error on their planetary masses
and radii are <25%.
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show a scatter plot of planetary mass versus planetary radius,
coding with color the equilibrium temperature. The orbit
averaged incident flux for TOI-677b is ≈3.9×108 erg s−1

cm−2, close to the value of ≈2×108 erg s−1 cm−2 below
which it has been shown that the effects of irradiation on the
planetary radius are negligible (e.g., Demory & Seager 2011).
The radius of TOI-677b is in line with what is expected for a
gas giant with a core of MC=10 ÅM according to the standard
models of Fortney et al. (2007). This underscores the value of
warm giants, whose structure can be modeled without the
complications of an incident flux resulting in radius inflation
(Kovács et al. 2010; Demory & Seager 2011). Figure 7 also
shows that TOI-677b, having a transmission spectroscopy
metric (Kempton et al. 2018) of≈100, is not a particularly
well-suited target of transmission spectroscopy studies, if
compared with the rest of the population of close-in giant
planets.

In Figure 8 we plot the same population of well-
characterized planets in the period–eccentricity plane, coding
the planetary mass with the symbol size. It is apparent that
TOI-677b lies in a part of this plane that is still sparsely

populated. The eccentricity of exoplanets is very low for close-
in systems, and starts to grow for periods of P4 days. With
an eccentricity of = e 0.435 0.024, TOI-677b lies in the
upper range of eccentricity values for planets with similar
periods in the currently known sample. Besides the significant
eccentricity of the orbit of TOI-677b, the presence of a long-
term trend in the radial velocities is interesting in the context of
migration mechanisms of giant planets. Warm Jupiters can be
formed via secular gravitational interactions with an outer
planet followed by tidal interactions with the star in the high
eccentricity stage of the secular cycle (e.g., Kozai 1962). In this
context, Dong et al. (2014) predict that in order to overcome
the precession caused by general relativity, the warm Jupiters
produced via this mechanism should have outer planets at
relatively short orbital distances that can be detected with a
radial velocity monitoring. At the moment we cannot provide
meaningful constraints on a potential outer companion. We will
continue to monitor the system with radial velocities to
determine the exact nature of the long-term radial velocity
we uncovered.

Figure 7. Mass–radius diagram for the population of well-characterized transiting planets (Southworth 2011). The point corresponding to TOI-677b is indicated with
a dashed line. The color represents the equilibrium temperature of the planet, while the size scales down with the transmission spectroscopy metric as defined by
Kempton et al. (2018). The dashed gray lines correspond to isodensity curves for 0.3, 3, and 30 g cm−3, respectively. The solid line corresponds to the predicted radius
using the models of Fortney et al. (2007) for a planet with a 10 ÅM central core.

Figure 8. Period–eccentricity diagram for the population of well characterized transiting planets. The point corresponding to TOI-677b is indicated with a dashed
line. The size scales with the mass of the planet. The black points with error bars are the average eccentricities of the sample in bins that are equally spaced in log(P)
for P<100 days.
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The determination of the orbital obliquity of transiting planets
through the Rossiter–McLaughlin (R–M) effect, particularly for
planets with orbital periods longer than≈10 days, provides a
powerful tool to constrain migration theories (Petrovich &
Tremaine 2016). With a sizable v isin of 7.80 0.19 -km s 1

and a bright magnitude of V=9.8 mag, TOI-677b is a prime
target to perform a measurement of the projected angle between
the stellar and orbital angular momenta. Specifically, the expected
semi-amplitude of the R–M signal for TOI-677b in the case of an
aligned orbit is of K = 70 10R M– m s−1. While still based on
a very limited population, the current obliquity distribution of
transiting planets with similar periods as TOI-677b seems to
follow a similar behavior to that of the eccentricity distribution,
with a large spread in their values. Current discoveries include
aligned systems like WASP-84b (Anderson et al. 2015) and HAT-
P-17b (Fulton et al. 2013), mildly misaligned systems (WASP-
117b; Lendl et al. 2014), and also others that are even retrograde
(WASP-8b; Queloz et al. 2010). The measurement of the
obliquity of TOI-677b will increment this small sample and
help in further understanding how close-in giant planets form.
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