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Introduction

Orbiting spacecraft are subject to a variety of environments.

Knowledge of the orbit is required to quantify the solar, albedo and planetary (also called outgoing longwave
radiation, or OLR) fluxes.

Some specific questions that might arise are:

. How close (or how far) does the planet/spacecraft pass from the sun?

. How close (or how far) does a spacecraft pass from a planet and how does it affect orbital heating to
spacecraft surfaces?

. How long does the spacecraft spend in eclipse during each orbit?

* At what angle does the solar flux impinge on the orbit plane (f angle) and how does that affect the
thermal environment?

*  What path does a spacecraft take between planets and how does the solar flux change during that
transfer?

*  Why is one type of orbit used for some spacecraft and another type used for others (e.g., sun
synchronous versus geostationary)?

What factors can make an orbit change over time and how might that affect the thermal environment?

*  What type of thermal environment extremes will the spacecraft experience?



Introduction

Orbit information alone is insufficient to determine how the environment affects the spacecraft.

Spacecraft orientation (or “attitude”) and orbit information is required to determine which spacecraft surfaces
experience a given thermal environment.

Spacecraft attitude and orbit information are required to determine the view factor to the central body which is
required for planetary and albedo flux calculations to a spacecraft surface.

What are the effects on the heating fluxes experienced by a spacecraft due to the attitude reference frame (e.g.,
celestial inertial versus local vertical — local horizontal reference frames)?

What spacecraft orientation(s) provide favorable thermal conditions for spacecraft components?

Orbits and spacecraft attitudes must be considered together for a successful spacecraft and mission design.
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Part 1 -- Review of Scalar, Vector, and Matrix
Operations
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Part 1 -- Content

Part 1 of this lesson is a review of mathematical operations we will need in our study
of orbital mechanics and spacecraft attitudes.

We will begin with a review of scalars and vectors.

After a brief review of Cartesian and Polar coordinates, we’ll consider vector dot and
cross products, units vectors, coordinate transformations with particular focus on the
Euler angle sequence, forming transformation matrices and, finally, stacking
transformations.
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Scalars and Vectors

A scalar has a magnitude whereas a vector has, both, a magnitude and a
direction.

As an example, speed is a scalar and has a magnitude (e.g., 30 m/s) but
velocity is a vector and has a magnitude and direction (e.g., 30 m/s in

the x-direction).

We will use, both, scalars and vectors in our study of orbital mechanics
and attitudes.
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Cartesian Coordinates

Consider the Cartesian coordinate system.

"
A
Each axis is orthogonal to the others.
o , t """""""""""""" ' (x,9,2)
Any point in the coordinate system may be o
described by three coordinates (x, y, z). Z /%/ .
To aid in describing the amount of travel in Yy

o~

each orthogonal direction, we specify unit
vectors (I, J, k).
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Polar Coordinates

Polar coordinates specify
the location of a point using
two points, a distance from
the origin, r and an angle, 6.

Polar coordinates will be 180°
especially useful in our |
discussion of orbits.

S~ o
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Vectors

The vector, r can be expressed in Cartesian 7
coordinates as: 4

r=xi+yj+zk

The magnitude of the vector, 7 is given by:

o~

7| = x2 + y2 + 22
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Useful Vector Operations

Consider the two vectors shown at the
right...

> &)

ﬁl

( —0)i + (3 — 0)j + (2, — 0)k

N

A+y.j+zk

(xS' ySrZS) (xT' yr;Zr)

vl
I

(xs = 0)T+ (ys — 0)j + (25 — 0)k
x4+ vy J+ Zsk

18



Vector Dot Product

The dot product of two vectors, 7 and s, is
a scalar given by...

> &)

r-s = |1_"| |§| cos 0 (x5, Vs, Zs) X, Yrr Zy)

For the vectors shown at the right...

Y-S =XX¢c+ VVs + Z,Zs
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Vector Cross Product

The cross product of two vectors, 1 and s, is a vector given by...

k
A

i j k (XS, Vs, Zs) (xr» Vr Zr)
1_‘ X g — x‘l‘ yT' ZT
xS yS ZS

For the vectors shown at the right...

rXs= (yTZS T Zrys)i _ (ers T ers)j + (erS o :ers)E
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Unit Vectors

As the name implies, a unit vector is a
vector with one unit of length;

To form a unit vector, 7 in the direction of

r...

r r

r =

|F| } \/(xr _ xs)z + (yr o ys)z + (Zr _ Zs)z

o~

(X Vs Zr)

P &)

(X, Vs Zs)
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Coordinate Transformations

Analysis of spacecraft in orbit in a specified attitude requires an
understanding of coordinate system transformations.

The position in orbit and the position with respect to heating sources
and the eclipse is determined using coordinate system transformations.

Additional transformations are performed to orient the spacecraft as
desired at any given point in orbit.

These transformations are performed as Euler angle sequences.
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The Euler Angle Sequence

An Euler angle sequence is a sequence of rotations of a rigid body with
respect to a fixed coordinate system.

The sequence is order dependent — that is, changing the order of the
rotations will affect the resulting transformation.

We will rely on Euler angle transformations considerably during this
lesson.

They are easily executed using multiplication of 3 X 3 matrices.

Some info from: https://en.wikipedia.org/wiki/Euler_angles 23



Rotation Sequences

However, we need to be specific about the type of rotation we seek —
there are two possibilities:

Rotation of the axes, or
Rotation of an object relative to fixed axes.

We ultimately seek a rotation of an object relative to fixed axes.

24

From: mathworld.wolfram.com/RotationMatrix.html



Rotation Sequences

Consider the vector P which is at an
angle, ¢ from the x-axis in the fixed y 4 P’ (x',y")
coordinate system. T '

We wish to transform this vector into 5
P’ by rotating it through angle, 6 in |}/ T P (x,y)
the same fixed coordinate system. | 5

What are the coordinates of the tip of v,
P', thatis x’,y’, in terms of x and y?

25



Rotation Sequences

From the figure, we see...

A D/ / /
1 P’ (x',y")
X =1 COSQ}
Yy =71sing
r i
pd | AP )
/ I r |
x' =rcos(¢p +6)
y' ' =rsin(¢p + 6)

From: https://www.youtube.com/watch?v=NNWeu3dNFWA 26



Rotation Sequences

But, using trigonometric identities, we see that...

x'"=rcos(¢p +6) =rcos¢pcosf —rsingsinf
y' =rsin(¢p + 0) =rcos¢psinf + rsin ¢ cosd

And since x = r cos ¢ and y = r sin ¢, we can substitute to obtain...

x' =rcos(¢p+6) =xcosf —ysinf
y' =rsin(¢p +6) = xsinf + ycos 9

Or, in matrix form...

(v} =[coso sind) )

From: https://www.youtube.com/watch?v=NNWeu3dNFWA 27



Forming the Transformation Matrix

We rotated the vector P in the xy plane about a vector coming out of
the page.

This is a z-axis transformation and any z coordinate would remain
unchanged. Hence, the 3 X 3 transformation matrix becomes...

2% 2 3 %3
cos@ —sind O]

cosf —sinf »
[sinH cos@‘ [sm@ COSH 0

1
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Forming the Transformation Matrix

Similar operations allow formation of rotation matrices about the x- and
y-axes. The resulting transformation matrices are...

. x' 1 0 0 X
X-aXIs. y' =10 cosf —sinf|yy
7' 0O sin@ cos@ 1\z

_ x' cos®@ 0 sinf](x
y-axis: ye=l o 1 0 [{y
7' —sinfd 0 cosfi\z

. x' cos§ —sinf® O0](x
Z-axiIs: y' ¢t =1sinf cosf O0fyy
7' 0 0 11\z
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Forming the Transformation Matrix

We will employ the following shorthand to represent transformation of
a vector, in this case ¥ into 7, about the x —, y —, and z —axes,
respectively...

' =1X1r)
(r'}=[Y {7}
r')=Z{r}

30



Stacking the Transformations

A series of rotations may be formed through multiplication of the 3 X 3
transformation matrices in the order which they are to occur.

For example, if we wish to transform 7 in to ¥’ through an Euler angle

rotation sequence first about the x —axis, then about the y —axis and
finally about the z —axis, the transformation is given by...

' =1X]Y ][ Z]i7)

31



Part 1 Wrap Up

In Part 1, we established that many facets of orbital mechanics and
spacecraft attitudes are of interest to thermal engineers;

We reviewed key vector and matrix operations including Euler angle
transformations that will serve as a tool kit for our study of orbital

mechanics and attitudes.
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Part 2 -- The Two Body Problem
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Aside: Anatomy of an Orbit

Periapsis -- the location
of minimum orbit
altitude

Argument of Periapsis --

the angle, measured in

the orbit plane, from a)
the ascending node to

the periapsis

Semimajor Axis-- half
a the distance from
apoapsis to periapsis

_________

True Anomaly -- angle
v from the periapsis

location to the

spacecraft location

Inclination -- the tilt of .
the orbit plane with l
respect to the equator

KScending Node -- the location
where the orbit crosses the
equator headed south to north

Apoapsis -- the loca
of maximum orbit

Right Ascension of the Ascending Node s 2
altitude

will be discussed in a subsequent section.
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Aside: History

Tycho Brahe was an
outstanding observational
astronomer and meticulously
recorded the positions of the
planets.

Johannes Kepler used Brahe’s
observational data to fit
geometrical curves to explain
the position of Mars.

Brahe, 1546-1601 Kepler, 1571-1630

Image Credits: https://en.wikipedia.org/wiki/Johannes_Kepler and https://en.wikipedia.org/wiki/Tycho_Brahe
Other info from: Bate, R. R., Mueller, D. D., and White, J. E., Fundamentals of Astrodynamics, Dover Publications, New York, 1971. 35



Aside: History

Kepler formulated his three laws of planetary
motion:

Kepler’s 15t Law: The orbit of each planet is an ellipse, with
the sun as a focus.

Kepler’s 2" Law: The line joining the planet to the sun
sweeps out equal areas in equal times.

Kepler’s 39 Law: The square of the period of a planet is
proportional to the cube of its mean distance to the sun.

Kepler, 1571-1630

Image Credit: https://en.wikipedia.org/wiki/Johannes Kepler
Other info from: Bate, R. R., Mueller, D. D., and White, J. E., Fundamentals of Astrodynamics, Dover Publications, New York, 1971. 36



https://en.wikipedia.org/wiki/Johannes_Kepler

Aside: History

In the context of orbital mechanics,
Newton’s 2"d Law and his Law of Universal
Gravitation are pertinent:

Newton’s 2" Law: The sum of the forces is equal
to mass times acceleration.

Gravitation: Every particle attracts every other
particle in the universe with a force which is
directly proportional to the product of their
masses and inversely proportional to the square of
the distance between their centers. Newton, 1643 (1642 0.S.) - 1727

Image Credit: https://en.wikipedia.org/wiki/lsaac_Newton
Source: https://en.wikipedia.org/wiki/Newton%27s_law_of_universal_gravitation 37



Strategy

We will derive the governing differential equation for two body motion for
an unperturbed orbit.

We will also show that specific mechanical energy and specific angular
momentum are conserved for the unperturbed orbit.

From this, we will derive Kepler’s Laws and apply them in examples.

38



Newton’s Laws

The governing differential equation for two body astrodynamics is derived
from two laws originated by Sir Isaac Newton.

Newton’s 2" Law

Newton’s Law of Gravitation

39



Relative Motion

We will need to define a reference frame for the
calculations. Consider the coordinate systems with masses
M and m at the right where...

Zl
M is the mass of the first body (assumed to be the larger 4
mass) ¥

. M, x -z

m is the mass of the smaller body (assumed here m < M) /. =" Th
Ty is the vector from the origin of the reference = >Y’
coordinate system to the center of M
T, is the vector from the origin of the reference X'

coordinate system to the center of m
T is the vector between M and m

X'Y’'Z’ is inertial and XY Z is non-rotating.

From: Bate, R. R., Mueller, D. D., and White, J. E., Fundamentals of Astrodynamics, Dover Publications, New York, 1971. 40



Relative Motion

We see that:

Recognize that since XY Z is non-rotating
with respect to X'Y'Z’, the respective
magnitudes of 7 and 7, will be equal in
both systems.

From: Bate, R. R., Mueller, D. D., and White, J. E., Fundamentals of Astrodynamics, Dover Publications, New York, 1971. a1



Relative Motion

Applying Newton’s laws, we have:

GMm (r

mr.,, = —
m rz2 \r
Iy GMm (r
Ty = —

M r¢ \r

From: Bate, R. R., Mueller, D. D., and White, J. E., Fundamentals of Astrodynamics, Dover Publications, New York, 1971. 42



Relative Motion

Combining the two previous expressions,
we arrive at:

_G(M+m)1_‘

r =
73

From: Bate, R. R., Mueller, D. D., and White, J. E., Fundamentals of Astrodynamics, Dover Publications, New York, 1971. 43



Relative Motion

For a spacecraft orbiting a planet or the sun (or even planets or other
bodies orbiting the sun), M > m so the expression becomes:

i‘*+%1‘~=0
r

Where u = GM, M is the mass of the central body (i.e., the body being
orbited) and G = 6.67 x 10" **Nm?kg—=2.

From: Bate, R. R., Mueller, D. D., and White, J. E., Fundamentals of Astrodynamics, Dover Publications, New York, 1971. 44



Aside: Some Useful Expansions of Terms

For an orbit, we have:

Ql
[
S
[
=lI
[
|

=
_|_
|
|
=
A\

From: Battin, R. H., An Introduction to the Mathematics and Methods of Astrodynamics, New York, American Institute of Aeronautics and Astronautics, 1987. 45



Conservation of Specific Mechanical Energy

To show conservation of specific mechanical energy, form the dot product of
the governing differential equation with 7:
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Conservation of Specific Mechanical Energy

Rearranging...

PR . _
(7 r)+r—3(r r) =
We note that...
2(___d__:>___1d(__)
rr—dtrr rr—Zdtvv
L o dr
Z(r-r —a(r-r)—ZrE
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Conservation of Specific Mechanical Energy

Substituting...

1d uld
2V 0T =0

Which becomes...

1d(v?) . u 1d(r2)
2 dt 32 dt
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Conservation of Specific Mechanical Energy

This becomes...

1d(w?) u dr

=0
2 dt +r3rdt

Rearranging and simplifying...

d [v* +udr_0
dt \ 2 r2dt

49



Conservation of Specific Mechanical Energy

Integrating with respect to time...

v u
— — — = constant

2 T

The first term is recognized as the kinetic energy per unit mass and the
second term is gravitational potential energy per unit mass. The quantity is

constant and the specific mechanical energy is conserved.

Adapted from: Bate, R. R., Mueller, D. D., and White, J. E., Fundamentals of Astrodynamics, Dover Publications, New York, 1971 and 50
http://docplayer.net/11209890-Orbital-mechanics-and-space-geometry.html



Conservation of Specific Angular Momentum

Conversation of specific angular momentum (i.e., momentum per unit mass)
may be shown taking the cross product of r and the governing differential
equation...

?xi‘*+7~x%7~=0
r

We note that a vector crossed with itself it is 0. The equation simplifies to...

rxr=0

From: Bate, R. R., Mueller, D. D., and White, J. E., Fundamentals of Astrodynamics, Dover Publications, New York, 1971. 51



Conservation of Specific Angular Momentum

We also note that...
d _ . . L —_ 22
E(rxr) = (rxr)+(r><r)

We note * X ¥ = 0. The equation simplifies to...

%(?x?)=7~xi‘;=0

From: Bate, R. R., Mueller, D. D., and White, J. E., Fundamentals of Astrodynamics, Dover Publications, New York, 1971.
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Conservation of Specific Angular Momentum

Finally, we recognize that ¥ = 7 so the equation becomes...

d
a(T_‘XT_J)ZO

where h = 7 X U is recognized as the specific angular momentum and we
have shown that this does not change with time...

h =7 X v = constant

From: Bate, R. R., Mueller, D. D., and White, J. E., Fundamentals of Astrodynamics, Dover Publications, New York, 1971.
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Derivation of Kepler’s Laws

Now that we have the governing differential equation, the conservation of,
both, specific mechanical energy and specific angular momentum, we are
ready to derive Kepler’s laws.
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Kepler’s First Law

The orbit of each
planet is an ellipse*,
with the sun as a
focus.

*Actually, other orbit
shapes are possible
and are described by
the “conic sections.”

Orbits of the Inner Planets



But what is a “conic
section”?

Take a cone and cut it with a
plane at different angles

The shapes appearing at the
cutting plane are also the
shapes of the orbits.

Kepler’s First Law

Parabola Hyperbola

! -



Kepler’s First Law

Starting with the governing differential equation:

i‘1+i

r=20
r3

Re-arrange to get:

Form the cross product with the angular momentum vector:

#xh=——(Fxh) = (Rx7)

From: Bate, R. R., Mueller, D. D., and White, J. E., Fundamentals of Astrodynamics, Dover Publications, New York, 1971.
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Kepler’s First Law

Let’s examine this equation in more detail:

wo,—
=r—3(h><‘r)
We see that:
0
i‘*xl_zzi‘;xl_z+?x\ﬁ\ (rxh)
P (hx7) =L Fxm) xF= i[w-ﬂ—?(?-ﬂ]
r r r

From: Bate, R. R., Mueller, D. D., and White, J. E., Fundamentals of Astrodynamics, Dover Publications, New York, 1971.
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Kepler’s First Law

And, within the triple vector triple product (¥ X V) X r:
rxv)xr=v(r-r)—r{r- -v)|
We note that:

7 _)_(_ ;)_ . drA+ d@a L
rv)={F-r)=rr-(Zr+r—0)|=17

We end up with:

wo— _ ur_
T—B(hxr)z;v—r—zr

From: https://en.wikipedia.org/wiki/Vector_algebra_relations
From: Bate, R. R., Mueller, D. D., and White, J. E., Fundamentals of Astrodynamics, Dover Publications, New York, 1971.
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Kepler’s First Law

Further simplification yields:

=
|
=
<.
I
Q
S | =l

Our equation becomes:

U
U
= | NI

From: Bate, R. R., Mueller, D. D., and White, J. E., Fundamentals of Astrodynamics, Dover Publications, New York, 1971.
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Kepler’s First Law

Repeating for convenience:

d (; y ’_l) d (T
—I\Tr —_— —_ —
dt Hac\r
Integrating the above equation:
. — T _
rxXh=yu " + B

Where B is a vector constant.

From: Bate, R. R., Mueller, D. D., and White, J. E., Fundamentals of Astrodynamics, Dover Publications, New York, 1971.
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Kepler’s First Law

Dot both sides of the equation with 1:

- (rxh)=7-u ; +7-B
And since:
7-(rxh)=(Fx7)-h=(FXx7?)-h=h?
r-u ; =T -ur =rr-ur =ur

r-B =1rBcosv

From: Bate, R. R., Mueller, D. D., and White, J. E., Fundamentals of Astrodynamics, Dover Publications, New York, 1971. 62



Kepler’s First Law

The equation simplifies to:
h? = ur + rB cosv

Rearranging gives:

From: Bate, R. R., Mueller, D. D., and White, J. E., Fundamentals of Astrodynamics, Dover Publications, New York, 1971.
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Kepler’s First Law

We see that the equation is in the same form as the general equation for a
conic section in polar coordinates:

T 1+ (B/“) COSV

T = —
14+ecosv 14+ ecosv

The parameter, a, is the semimajor axis and e is the orbit eccentricity.

From: Bate, R. R., Mueller, D. D., and White, J. E., Fundamentals of Astrodynamics, Dover Publications, New York, 1971.
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Kepler’s First Law

The form of the equation confirms that orbits derived under these
assumptions take the shape of the conic sections and is dependent upon the

orbit eccentricity, e:
Orbit Shape

e=0 Circle
0<e<l1 Ellipse

e=1 Parabola

e>1 Hyperbola

Let’s take a look at some orbits representing each orbit type.

From: Bate, R. R., Mueller, D. D., and White, J. E., Fundamentals of Astrodynamics, Dover Publications, New York, 1971. 65



Circular Orbit

Circular orbits maintain a
constant distance from
their central body.

Orbit eccentricity, e = 0.

Many Earth satellites have
circular orbits.

The International Space
Station is in a circular orbit. Example: International Space Station Orbit
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Elliptical Orbit
Orbit eccentricity, 0 < e < 1.

An elliptical orbit traces out an
ellipse with the central body at
Comet 103P/Hartley 2
one focus. |
Comets such as 103P/Hartley 2

are in elliptical orbits with a
period of 6.46 years (e = 0.694).

Example: Comet Hartley 2 Orbit

Image Credit: NASA/Steele Hill; Inset Image Credit: NASA/JPL-Caltech/UMD



Parabolic Orbit

When orbit eccentricity, e = 1,
we have parabolic orbit. i e s

el

The orange track represents a typical KBO orbit. Pluto’s orbit is

“Within observational [epreseitied by the yellowfing.
uncertainty, long term comets all
seem to have parabolic orbits.
That suggests they are not truly
interstellar, but are loosely
attached to the Sun. They are
generally classified as belonging
the Oort cloud on the fringes of Oort Cloud
the solar system, at distances
estimated at 100,000 AU.”

The Oort Cloud

Image Credit: https://solarsystem.nasa.gov/resources/491/oort-cloud/ 68

Source: https://www-spof.gsfc.nasa.gov/stargaze/Scomets.htm



Hyperbolic Orbit
Orbit eccentricity, e > 1;

For objects passing through
the solar system, a
hyperbolic orbit suggests
an interstellar origin --
Asteroid Oumuamua was
discovered in 2017 and is |
first known object of this Example: Asteroid Oumuamua
type (e = 1.19951).

Video Credit: https://solarsystem.nasa.gov/asteroids-comets-and-meteors/comets/oumuamua/in-depth/
Source: https://en.wikipedia.org/wiki/%CA%BBOumuamua




Example: Determining Solar Flux Using
Kepler’s First Law

We saw that the equation is in the same form as the general equation for a
conic section in polar coordinates:

B p ~a(l1-e?)
r_1+ecosv_1+ecosv

where a and e are constants and v is the true anomaly. For a planet orbiting
the sun, r is a minimum (a.k.a, perihelion) when v = 0° and 7 is maximum
(a.k.a., aphelion) when v = 180°.
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Example: Determining Solar Flux Using
Kepler’s First Law

At Earth’s mean distance from the sun (i.e., 1 au), the measured solar flux is
on the order of 1371 W /m?*.

We can determine the solar flux at any distance, r (measured in au) from
the sun by noting:

1371 W /m?*

72

Isolar (r) =
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Example: Determining Solar Flux Using
Kepler’s First Law

Solar flux values for the planets are readily calculated:

Semimajor Orbit Eccentricity, Perihelion Aphelion Solar Flux at Solar Flux at
Axis, a (au) e Distance (au) | Distance (au) Perihelion Aphelion
(w/m?) (W/m?)
Mercury 0.3871 0.2056 0.3075 0.4667 14498.23 6294.87
Venus 0.7233 0.0067 0.7185 0.7282 2655.86 2585.63
Earth 1.0000 0.0167 0.9833 1.0167 1417.96 1326.33
Mars 1.5235 0.0935 1.3811 1.6660 718.79 493.97
Jupiter 5.2043 0.0489 4.9499 5.4588 55.96 46.01
Saturn 9.5824 0.0565 9.0410 10.1238 16.77 13.38
Uranus 19.2009 0.0457 18.3235 20.0784 4.08 3.40
Neptune 30.0472 0.0113 29.7077 30.3867 1.55 1.48

Semimajor axis and eccentricity data from: nssdc.gsfc.nasa.gov
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The line joining the
planet to the sun
sweeps out equal
areas, A in equal

times, At.
At]_: Atz
Al — AZ

Kepler’s Second Law

Demonstration of Constant “Areal” Velocity



Kepler’s Second Law

We begin with our previously derived expression for the angular momentum
vector, h:

h=7rx7v

And recalling the expressions for vectors r and v:
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Kepler’s Second Law

The expression for h is, then:

# 0 k o
. = — | Tr 0 0 — 2 "1
h=rxv= Ir  do . =7 dtk
dt ' dt
The magnitude of this vector is:
_ db
h=|h|=1%—

75



Kepler’s Second Law

We showed previously that the specific
angular momentum is constant...

do

h = r?2 — = constant

dt S

We also recognize that the area swept out
over time is simply one half of the specific
angular momentum...

dA 1 1 ,d6b

— =—h =—1r%— = constant

dt 2 2 dt
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Kepler’s Second Law

Consider another approach...

1
dA = Er dr sin «

If we let the differential area, dA be
represented as a vector, dA ...

=l

1 _
dA=ET_‘XdT

From: https://radio.astro.gla.ac.uk/aldynamics/keplerproofs.pdf 77



Kepler’s Second Law

Differentiate with respect to time...

v di 1 .
=— == XT
d 2
Differentiate again... o Vectors pointed
er.‘i‘?i?elf direction =

= dA 1. .
y PSRN YE

2 =37 XT =5 (XL +Tx)=0

dA
So o = constant

From: https://radio.astro.gla.ac.uk/aldynamics/keplerproofs.pdf 73



Example: Using Kepler’s Second Law to
Determine How Solar Flux Varies with Time

We saw that knowing the shape of a planet’s orbit (aphelion and perihelion

distances) and the solar flux at 1 au could be used to determine the
minimum and maximum solar flux.

In this example, we’ll calculate how the solar flux for Earth varies with time
throughout the year.

In doing so, we’ll compare a simplified model with a more accurate
representation accounting for Kepler’s Second Law.
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Example: Using Kepler’s Second Law to
Determine How Solar Flux Varies with Time

A consequence of Kepler’s Second Law is that to sweep out equal areas in
equal times, a planet (or moon or spacecraft) orbiting a central body (i.e.,

the sun, a planet, moon, etc.) must move through its orbit faster at some
locations and slower at others.

In other words, the angular rate at which the orbiting body moves around
its orbit of the central body changes depending on where it is in its orbit.
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Example: Using Kepler’s Second Law to
Determine How Solar Flux Varies with Time

Consider Earth’s orbit around the sun. We know Earth makes one circuit of
the sun in ~365.25 days.

If Earth’s orbit about the sun were circular, the angular rate would be:

B 360°
~ 365.25 days

1% ~ 0.986 °/day
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Example: Using Kepler’s Second Law to
Determine How Solar Flux Varies with Time

But, Earth’s orbit about the sun isn’t circular, it is slightly elliptical with an
e = 0.0167.

This elliptical shape is what gives rise to the aphelion and perihelion
distances and, hence, the variation in solar flux.

But because of Kepler’s Second Law, the angular rate will vary depending
on Earth’s distance from the sun.
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Example: Using Kepler’s Second Law to

Determine How Solar Flux Varies with Time

We see that the assuming the
mean motion for Earth’s orbit

Comparison of Earth’s Solar Flux versus Date Based on Mean
and True Progression

S 1430 -
(e = 0.0167) about thesun g 1420 1
is a reasonable approximation § ﬁ;g '
to the slightly elliptical orbit. £ 1300 -
This due to the very low z "§ 1380 -
eccentricity of Earth’s orbit. £ “7°]
O 1360 1 ——Solar Flux Based on True
E 1350 - Progression of Earth's Orbit
Such an approximation will 2 1340 | ST il Based on Mean
E 1330 - Progression of Earth's Orbit
not work as well for planets [ (W/m2)
° - - 1320 I I I 1
with more eccentric orbits. 7/1/20 10/9/20 1/17/21 4/27/21 8/5/21
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Example: Using Kepler’s Second Law to

Determine How Solar Flux Varies with Time

Consider Mars with an
eccentricity, e = 0.09339.

The time variation of flux is
more pronounced due to the
effect of Kepler’s Second
Law.

750

700

650

o))
-
o

550

500

450

Solar Flux at Earth’s Distance from the Sun
(W/m?)

Comparison of Mars’ Solar Flux versus Date Based on Mean
and True Progression

——Solar Flux Based on
True Progression of
Mars' Orbit (W/m2)

—Solar Flux Based on
Mean Progression of
Mars' Orbit (W/m2)

100 200 300 400 500 600 700
Time Since Perihelion (days)
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Kepler’s Third Law

The square of the period, T of a
planet is proportional to the
cube of its mean distance, a to
the sun (or its central body).

T? « a3

For the orbits at the right:

— / 3
Touter orbit — 2 Tinner orbit

Orbits with Different Semimajor Axes



Kepler’s Third Law

For an ellipse:

a? = b?% + ¢*

C
e =—
a
p=a(l—e?)
b = \/ap

A = mab = 2ma®/%\p

hZ
p=—
U

From: Bate, Mueller and White, Fundamentals of Astrodynamics 86



Kepler’s Third Law

We start with conservation of specific
angular momentum:

h=7X7v

The magnitude of h is given by:

dv
h=rvsiny =rvcos¢ ='rr1'/=r2%

Note: v represents the velocity and v is an angle — the true anomaly

From: Bate, R. R., Mueller, D. D., and White, J. E., Fundamentals of Astrodynamics, Dover Publications, New York, 1971.
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Kepler’s Third Law

So the magnitude of the angular momentum becomes:

Rearranging:

dt = —dv

From: Bate, R. R., Mueller, D. D., and White, J. E., Fundamentals of Astrodynamics, Dover Publications, New York, 1971.
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Kepler’s Third Law

A differential area element in the ellipse is given by:

dA = L 2d
= ZT v
So the expression becomes:
dt = - dA
~h

From: Bate, R. R., Mueller, D. D., and White, J. E., Fundamentals of Astrodynamics, Dover Publications, New York, 1971.
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Kepler’s Third Law

Integrating and simplifying, we arrive at a mathematical expression for
Kepler’s Third Law:

2mab  2ma®/?\p a3
T = = = 2T |—
h VHP \ H

This law states: The square of the period, T of a planet (or spacecraft) is
proportional to the cube of its mean distance, a to the sun (or its central

body).

2
T? = 4% a’

From: Bate, R. R., Mueller, D. D., and White, J. E., Fundamentals of Astrodynamics, Dover Publications, New York, 1971. 90



As long as the
semimajor axis, a is
the same, the orbit
period will be the
same;

At the right, each
orbit has a different
eccentricity, e but
both orbits have the
same da.

Kepler’s Third Law

Two Orbits with the Same Period
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Example: Determining Planet Orbital Periods
Using Kepler’s Third Law

We see the orbital period is a function only of M and a:

2 2
2 _ 41 23 41 3
u GM
Where a is the orbit semimajor axis, G is Newton’s constant of gravitation,
and M is the mass of the central body, in this case, the Sun:

G = 6.67430 x 1071t m3/kg s
M = 1.988500 x 103%kg

Newton’s constant of gravitation from NIST. Mass of Sun from NSSDC.
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Example: Determining Planet Orbital Periods
Using Kepler’s Third Law

Calculating the orbit periods yields:

Semimajor Axis, | Orbital Period -
a (au) (Years)

Mercury 0.3871 0.24
Venus 0.7233 0.62
Earth 1.0000 1.00
Mars 1.5235 1.88
Jupiter 5.2043 11.88
Saturn 9.5824 29.68
Uranus 19.2009 84.20
Neptune 30.0472 164.82

*Actual orbit period may differ slightly

From: https://gea.esac.esa.int/archive/documentation/GDR2/Data_processing/chap_cu3ast/sec_cu3ast_prop/ssec_cu3ast_prop_ss.html
Semimajor axis data from nssdc.gsfc.nasa.gov
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Example: Geostationary Orbit

A geostationary orbit has a period of
24 hours with an orbit inclination of
O degrees;

In this orbit, the spacecraft remains
stationary over a specific location on
Earth’s equator;

Geostationary orbits are used for
communications satellites and . o N
Weather Satellltes- 15 Mar 2019 10:00 UTC GOEs-Easté : 7

Earth as Seen from GOES 16

Animation Source: https://www.star.nesdis.noaa.gov/GOES/fulldisk_band.php?sat=G16&band=GEOCOLOR&length=12 94



Example: Geostationary Orbit

At what altitude, d must
the satellite be positioned
to be geostationary?

Cl3

T =21 [—
\J.u
S#TZ
= |am?

Geostationary Orbit

d=a—71, =~35786 km (22,236 miles)

Note: Earth’s radius, r, = ~6378.14 km 95



Geostationary Orbit

Since the location of a geostationary
satellite is fixed, as the name implies,
antennas on the ground need only
point at a fixed point in space.

However, since the location of the
spacecraft is somewhere in the
equatorial plane, the angle at which
the antenna points is dependent on
the location on the ground as well as
the spacecraft location.

~29.5 ° N Latitude ~59.9° N Latitude

Photos by author 96



Part 2 — Wrap-Up
In Part 2, we introduced the unperturbed two body problem and derived the

governing differential equation.

We showed that the unperturbed two body problem obeys, both,
conservation of specific mechanical energy as well as conservation of specific
angular momentum.

We derived Kepler’s three laws of planetary motion and applied the laws to
problems of interest to thermal engineers.
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Part 3 -- Perturbed Orbits
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Part 3 -- Contents

In this section, we will consider the case of orbits where we account for
effects of other forces acting on the orbit with focus on those arising from a
non-spherical earth and we’ll see how these forces give rise to some effects
that can be exploited to give the desired orbit.

We'll also see how these perturbations affect the thermal environment —
specifically the effect on the orbit beta angle and fraction of orbit in
eclipse. Numerous examples will be presented.
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Revisiting the Governing Differential Equation

Recall our previous equation was derived for a body moving under the
influence of only the gravity of a central body:

?+%?=0

=

Some interesting things happen when there is a perturbing force such that:

?+%?¢0

=

100



Perturbations

There are many forces that can perturb an
orbit including:

* Spherical harmonics
* Drag

* Radiation pressure

* Other celestial bodies
* Tidal forces

 Mass concentrations

data from
the Earth2014
global relief model

e etc.
Image Credits: Earth 2014 Global Relief Model, C. Hirt, used with permission Lunar Gravity Anomalies Measured by
http://www.ngs.noaa.gov/PUBS_LIB/Geodesy4Layman/80003051.GIF NASA’s GRAIL Mission

Image credit: NASA/JPL-Caltech/CSM 101



Perturbations

We will focus on two perturbations in this lesson,
both arising from the non-spherical shape of the
central body:

Precession of the Ascending Node — the orbit
ascending node moves westward for orbits where
[ < 90° and eastward for orbits where i > 90°
retrograde orbits.

Precession of the Periapsis — the orbit periapsis (i.e.,
the low point) moves in the direction of the orbiting
spacecraftup toi = 63.4°and in the direction
opposite the orbiting spacecraft for inclinations
above this value.

Precession of the Orbit Ascending Node

@

Precession of the Orbit Periapsis
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Perturbations

Earth is not a perfect sphere.
The gravitational potential may be expressed as the summation
of a number of terms more representative of the actual

gravitational potential.

Each of these terms (harmonics) has an associated coefficient,
Jn which multiplies a Legendre polynomial.

Jn are determined through experimental observation.

Even numbered harmonics are symmetric about the equator. S

AR

iy
ﬁ‘@“\:‘ W -\\\31

TESSERAL

Po. 6 (€08 8) sin 6A

SECTORIAL

\\h\

\i‘x\ B
R

Odd numbered harmonics are antisymmetric. A

¥ \\\‘b\t\\ \\“Q\‘\\ {‘b

k\.t\\.\‘w. -

O

Sectorial harmonics depend only on longitude. N

Tesseral harmonics depend on, both, latitude and longitude.

From: https://www.ngs.noaa.gov/PUBS_LIB/Geodesy4Layman/TR80003F.HTM

a

.~

.

\\ T

TR o

b R
>

Py g (C0E 8)

s A
gin T

Other material adapted from: Bate, R. R., Mueller, D. D., and White, J. E., Fundamentals of Astrodynamics, Dover Publications, New York, 1971. 103



Perturbations

Earth is not a perfect sphere -- it is oblate and has a slight bulge
in the equatorial region and this imperfection gives rise to
some major orbit perturbations;

6381

Precession of the Ascending Node:

6376

dQ o - —3/,nr? cosi
dt —  2a?(1—e?)?
Precession of the Periapsis:

6371

6366

data from

dw 3J,nrs S,

|
.
|

dt 4a?(1 — e?)? (4 = 5sin® 1)

wheren = 2w /T and J, = 1.082626683 x 1073 (for Earth)

Image Credit: Earth 2014 Global Relief Model, C. Hirt, used with permission 104



Precession of the Ascending Node

The oblateness perturbation ‘ -
causes the orbit ascending node
to precess at the rate:

dQ & — —3/J,nr2 cos i
dt —  2a%2(1 —e?)?2

For orbit inclinations, i < 90°,
precession is westward — when
I > 90°, precession is eastward.

Precession of the Orbit Ascending Node

105



Sun synchronous orbits
are useful for Earth
observation spacecraft
because they are
designed to pass over
sunlit portions of the
planet at the same “local
solar” time — this results
in consistent illumination
conditions for
observations;

Sun Synchronous Orbit

106



Example: Sun Synchronous Orbit

To achieve this, the orbit
ascending node must maintain a
consistent offset from the orbit
subsolar point — this is
accomplished by moving the orbit
ascending node at the same rate
the sun appears to move around

the celestial sphere --to meet this
con d |t|0 n: Daily Precession of the Ascending Node

(L~ 0986 /;,, EASTWARD
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Example: Sun Synchronous Orbit

Assuming a circular orbit (e = 0),
we see that combinations of i and a
may be used to specify the desired
orbit.

~ —3J,nrf cosi
- 2a?%(1 — e?)2

Q)

One SUCh Combination iS l — 98.20 Daily Precession of the Ascending Node
and a = 7083 km (altitude =
705 km)
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Precession of the Periapsis

The oblateness perturbation also
causes the periapsis and apoapsis
to precess at the rate:

. 3]2nr€2 . D .
a)=4a2(1_62)2(4—551n i)

Precession is positive when
(4 — 5sin? i) > 0 and negative
when (4 — 5sin?i) < 0.

@

Precession of the Orbit Periapsis
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Example: Molniya Orbit

Communication satellites in geostationary orbits over the equator are of little
use to those living at higher latitudes because they appear low in the sky;

A satellite orbiting at a higher inclination is desired;
However, it won’t appear to remain over the same point on the ground,;

A Molniya orbit may be used to cause the spacecraft to dwell at nearly the
same point for long periods of time.
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Example: Molniya Orbit

In order to “lock” the location of the apoapsis and periapsis in place, we
desire an orbit where the rate of movement of the periapsis goes to zero:

do . 3fnrg
dt 7 2a2(1— e2)?

(4 —5sin?i) =0

We see from the equation that this happens when:
(4 —5sin?i) =0

This is true when the inclinationisi = 63.4°
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Example: Molniya Orbit

The spacecraft spends
much of its orbit at high
altitude, at high latitude,
moving slowly -- appearing
nearly stationary when
near apoapsis;

Orbit is designed so that
apoapsis stays “locked”

into the same position

over tl me. Molniya Type Orbit (Time points in red
are 10 minutes apart)



The Effect of Orbit Perturbations on the
Thermal Environment

The precession of the ascending node changes the angle at which sunlight
falls onto the orbit plane — this angle is referred to at the [ angle. As [
changes, an orbiting spacecraft will experience a variety of thermal
environments.

f angle is one parameter that affects how much environmental heating a
spacecraft surface experiences.

f also affects how much time a spacecraft spends in eclipse.
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The Beta Angle

The beta angle, [ is defined as the angle between the solar vector, § and its
projection onto the orbit plane.
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The Celestial Inertial Coordinate System

In the celestial inertial coordinate z

system shown at the right, the S
X712000 — Yj2000 Plane is the mean
Earth’s equator of epoch, the
Xj2000 axis is directed toward the
mean vernal equinox of epoch, the
Z12000 aXis is directed along Earth’s
mean rotational axis of epoch and L MEEDEQUATOR
is positive north, and the V)09 axis =
completes the right handed system.

L]
*
CENTER OF EARTH

Adapted from: Space Station Reference Coordinate Systems, SSP 30219, Revision J, May 1, 2008 (found at:
https://pims.grc.nasa.gov/plots/user/tibor/SSP%2030219)%2015S5%20Coord%20Systems.pdf ) 115



We define the
solar vector, §
as a unit vector
in the celestial
inertial
coordinate
system that
points toward
the sun.

The Beta Angle

(Vernal Equinox)
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The Beta Angle

The apparent motion of the sun is
constrained to the Ecliptic Plane
and is governed by two
parameters: [ and ¢.

["is the Ecliptic True Solar
Longitude and changes with date.
[' = 0° when the sun it at the
Vernal Equinox. X

(Vernal Equinox)

£ is the Obliquity of the Ecliptic
and, for Earth, is presently 23.45°
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The Solar Vector

We can form the solar vector via two Euler angle transformations: first
a rotation of the unit vector of £ about the x-axis and then a rotation of
I about the new z-axis.

A A (\
z z z z
....... S N 2% T - l;:;:—i::" v,
’ - s - _ ol s -7 =14 = r\.--/' ‘_,—""“"~|s:23.45°
________________ &= & == 4
X X
Unit Vector, First Rotation, Second Rotation,
No Rotation € about x-axis " about new z-axis
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The Solar Vector

Mathematically, the transformation is expressed as:

1 cosI' —sinl’ 0](1 cos
S=|0 cose -—sine smF CosF 0[{40¢ = 3sinl cos ¢
0O sine cose¢ 11\0 sinl' sin €

(Vernal Equinox)
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The Orbit Normal Vector

In the same celestial inertial coordinate system, we define the vector, 0,
as a unit vector pointing normal to the orbit plane.

,// (Vernal Equinox)
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The Orbit Normal Vector

[ is the Orbit Inclination --
a measure of angular tilt
from the equatorial plane;

() is the Right Ascension of
the Ascending Node -- a
measure of angle between
the x-axis at the point
where the orbit cross the
equatorial plane going
from south to north.

0

North

(Vernal Equinox)
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The Orbit Normal Vector

We can form the orbit normal vector via two Euler angle transformations:
first a rotation of the unit vector of () about the z-axis and then a rotation
of i about the new x-axis.

A
1
I

A -7
0 z7 \
z z R 1
< ]
o] (o] p I
Vi )
--------- - _ .--"'"__"""--..___ !
- - :-..“‘ - - *-..“ r. /
,/ x\ /" ""\ ! / Y
/ —>
f/ \l ‘f_’ f, \I V_’ i
\ | \ y y Q /5!
N\ 7 hS Q rs ¥ / I - .
\"‘-._. z/ \"".._. o z’ I v -
--.._____ —————— ___.—-" ""‘-___ ______ --"'-‘ i
I X *
X X 1 /f
\ ”
\___.—’
Unit Vector, First Rotation, Second Rotation,

No Rotation Q about z-axis i about new x-axis
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The Orbit Normal Vector

Mathematically, the transformation is expressed as:

cos{) —sinQ) O7[1 0 0 0 sin ) sin i
0= |sinQ) cosQ O0||0 cosi —sini|{0;y=1{—cosQsini
0 0 1110 sini cosi 1\1 COS i

0

North O,

(Vernal Equinox)
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Calculating the Beta Angle

Vector normal to the

To most calculate the angle
rbit plane

between a vector, S and a plane, 3
it is necessary to determine the \
angle between the vector and a
vector normal to the plane,
denoted here by ¢;

The angle between the vector of
interest and the orbit plane,

then,isf = @ — g radians.

124



Calculating the Beta Angle

The beta angle, [3 then, is given by:

sinsini \! cos T’
CoOSQ =0-S=3—cos2siniy isinl cos¢
CoS 1 sinl sin &€

cos@ = cosI'sin)sini —sinI cosecos{)sini + sinI'siné&cosi

But, since p = ¢ — % radians:

f = sin"(cosTsinQsini — sinT cos € cos Qsini + sinT sin € cos i)
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Calculating the Beta Angle
We see that [ is limited by:

B ==x(e+|i])

over the range of —90° < 8 < 4+90° (_g <B< _|_§)

Beta angles where the sun is north of the orbit plane are considered

positive and beta angles where the sun is south of the orbit are
considered negative.
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Beta Angle (°)

380

60

40

20

Variation of the Beta Angle Due to Seasonal
Variation and Orbit Precession

| | |
/\ Representative Profile:
Inclination = 51.6 °

. / Altitude = 408 km, Circular -
// \\ [\

VA
SR 100 50 200 250/ 3[10\ 35?/
\/

VERUVERW

1 Note: This is one of many possible profiles \/

Number of Days Since Vernal Equinox
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Consequences of Beta Angle Variation

As [ changes, there are two consequences of interest to thermal
engineers:

1) The time spent in eclipse (i.e., planet shadow) varies;

2) The intensity and direction of heating incident on spacecraft
surfaces changes;

Let's explore each of these effects.
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Eclipse: Umbra and Penumbra

Umbral region - sunlight is completely obscured;

Penumbral region - sunlight is partially obscured.

Planet Sun

Note: Diagram not to scale
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Orbital Sunset: From Penumbra to Umbra

NASA Photos



Eclipse: Umbra and Penumbra

If time in penumbra is minimal (i.e., if it can be neglected), analysis may
be simplified using a cylindrical shadow assumption.

Cylindrical Shadow Approximation

e e e o e o e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e o= s e e e

Umbral Shadow Cone
(Exaggerated ~4X)
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Geometry for Eclipse Calculation
(Low, Circular Orbit Only)

We create a new coordinate system (subscripted with ) where the sun is

always in the xy-plane and the orbitZis inclined f3:
B

>xﬁ

Y is into the page
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Geometry for Eclipse Calculation
(Low, Circular Orbit Only)

Looking down onto the orbit plane gives us this geometry (when [3 = 0°).

Yp
A

Zg is out of the page
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Geometry for Eclipse Calculation
(Low, Circular Orbit Only)

We seek an expression for 1’ which is a projection of r onto the VBZg -

plane. Yg
A

Zg is out of the page
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Geometry for Eclipse Calculation
(Low, Circular Orbit Only)

When |17" < 1., the spacecraft is in the umbral shadow.

Yp
A

Zg is out of the page
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Calculating Umbral Eclipse Entry
(Low, Circular Orbit Only)

The spacecraft position vector, 7, can be expressed as a function of altitude
above planet, h, planet radius, 7, angle from orbit noon, 8, and beta angle,

S

7 = (r, + h)|cos @ cos Bi + sin@ j + cos 0 sin fk|

The projection of this vector onto the yzzg -plane is given by:

7' = (r,+ h)|sin 6 j + cos @ sin B k|
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Calculating Umbral Eclipse Entry
(Low, Circular Orbit Only)

And the magnitude is given by:

#'| = (r, + h)4/sin% 6 + cos? @ sin2 f

The onset of shadowing occurs when ‘17" <T,:

(TQ?— h)2 - sin® B]

1
cos? f3

sin 8 =
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Calculating Umbral Eclipse Entry/Exit
(Low, Circular Orbit Only)
Now that the 6 of eclipse onset is known, it is a simple matter to determine

the entire eclipse period for a circular orbit by noting that the total angle
shadowed is 2(r — 0):
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Fraction of Orbit Spent in Sunlight/Eclipse

The fraction of orbit spent in sunlight and eclipse for a circular orbit is clearly
related to :

1 | | | | |
09 | 408 km (220 nm) Circular Orbit //
0.8
/
2 07 __—"N_ Fraction Spent —
-Q __________....---"'"——’- . .
S 0.6 in Sunlight
[T
g 0.5
o
s 0.4
o D )
w 0.3 “‘*k\\{ Fractl.on Spent |
0.2 \m Eclipse
0.1
0
0 10 20 30 40 50 60 70 80 20

B Angle (°)
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Example: Eclipse Season for a Geostationary

Orbit
Geostationary orbits, as we saw earlier, have an orbit inclination, i = 0° with

respect to the equator.
Since the orbit inclination is zero, the limits of [ are:
B ==+(e+|i]) =+(23.45° + 0°) = +23.45°

Therefore, we expect to see only a seasonal variation in f and, hence,
spacecraft eclipse.

This gives rise to “eclipse seasons” for geostationary spacecraft.
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Example: Eclipse Season for a Geostationary
Orbit
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Beta Angle (°)
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Example: Sun Synchronous Orbit

Sun synchronous orbits are designed such that the orbit ascending node

moves in the same direction and at the same average rate as the sun’s motion
about the ecliptic plane.

This can be accomplished by selecting the right combination of altitude, h and
inclination, i. But note that in all cases, i must be > 90°.

For our example:

h =705 km
[ = 98.2°
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Beta Angle (deg)
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Example: Sun Synchronous Orbit
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Example: What if the Orbit Isn’t Quite Sun

Synchronous

Beta Angle (deg)

% of Orbit Period Spent in Sunlight
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Effect of Beta Angle on Flux Incident on
Spacecraft Surfaces

Note: Side 3 not

. shown
)
A
- H"._.'- i
5 \
1\'3 ----- 2[4]1 _
B >
~e. 5 77
26@\7

Note: Side 1is “Zenith” facing. Side 2 is “Nadir” facing.
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Part 3 — Wrap-Up

In Part 3, we considered the effect of orbit perturbations arising from Earth’s
oblateness. This led to our understanding of the precession of the orbit
ascending node and the precession of the orbit periapsis. These
perturbations can be exploited to create useful orbits such as the sun

synchronous and the Molniya orbits.

The effect of the perturbations on the beta angle and the consequences for
spacecraft eclipse were discussed.
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Part 4 — Advanced Orbit Concepts
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Part 4 -- Contents

In this lesson, we’ll briefly discuss a number of advanced orbit concepts
including:

* Transfer Orbit

 Orbit Plane Change

 Aerobraking Orbit

* Gravity Assists

* The Restricted Three-Body Problem
 Halo Orbits

* Artemis |

 Gateway (Near Rectilinear Halo Orbit)

150



Transfer Orbit

Transfer orbits are used to raise a spacecraft orbit after launch.
They are also used for interplanetary trajectories.
Orbits are changed by changing the energy of the orbit.

It is useful to consider the minimum energy required to attain the desired
orbit transfer.

This minimum energy trajectory is referred to as a Hohmann transfer.
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Transfer Orbit

We desire an interplanetary trajectory to take
us from Planet 1 (shown at departure) to Planet
2 (shown at arrival), in co-planar, circular orbits;

The lowest energy transfer orbit occurs when
the speed change, Av is the lowest (and also
takes the longest);

For the circular orbits, Planet 1 is traveling at
velocity, v, and Planet 2 is traveling at velocity,
V,.

From: Bate, R. R., Mueller, D. D., and White, J. E., Fundamentals of Astrodynamics, Dover Publications, New York, 1971.

Intefplanetary
Trajectory
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Transfer Orbit

For a successful transfer, we need to
ensure the extent of our new orbit
reaches from one planet to the other;

We have constructed half an ellipse —
the semimajor axis of the transfer

ellipse, a; is...

T+
at — 2

From: Bate, R. R., Mueller, D. D., and White, J. E., Fundamentals of Astrodynamics, Dover Publications, New York, 1971.

Intefplanetary
Trajectory
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Transfer Orbit

Recall, the total specific energy for an orbit is given by:

u

E=——
2a

And note that the total specific energy of the orbit is the sum of the
specific kinetic energy and specific gravitational potential energy:

E—v2
2

QTS

From: https://en.wikipedia.org/wiki/Hohmann_transfer_orbit 154



Transfer Orbit

Equating the two expressions for total specific energy...

2

_v K
2 r

We can rearrange the equation to form an expression for the velocity, v...

2 1
roa

Adapted from: https://en.wikipedia.org/wiki/Hohmann_transfer_orbit 155



Transfer Orbit

V4 = ‘Ll —_— | = —
' \ rn n 1

But we need to be traveling at the transfer speed, v; at Planet 1 to be on
the elliptical trajectory to Planet 2...

2 2 5 1 1
Ve = —_—— — —_—
¢ \l,u rn T+ a rn Tt

From: https://en.wikipedia.org/wiki/Hohmann_transfer_orbit 156




Transfer Orbit

So, the change in velocity, Av required to establish the transfer orbit from Planet 1 to
Planet 2 is...

— 1, — 1, — I D L 22 _
Av - vt vl - \/ZM (7"1 7"1+T'2) \/:1 - \/:1( r1+7> 1)

The time, T it takes to travel from Planet 1 to Planet 2 is one half of the entire elliptical
orbital period...

1 a’ r+1r)3
Tt=<—)27'[ —t=T[ (18 2)

Adapted from: https://en.wikipedia.org/wiki/Hohmann_transfer_orbit 157



Plane Change

A plane change is used to change the inclination of
a spacecraft’s orbit.

Consider the diagram at the right — the spacecraft is
currently in the circular green orbit and the
associated plane traveling at velocity, v.

We wish to change the spacecraft orbit to the
circular red orbit and its associated plane.

The difference in inclination between the orbit
planesis an angle, ©.

Note here, we are assuming v = |v| = |V]

From: Bate, R. R., Mueller, D. D., and White, J. E., Fundamentals of Astrodynamics, Dover Publications, New York, 1971. 158



Plane Change

Let’s examine the velocity vectors
more closely.

We see to change the trajectory
from the green velocity vector to
the red velocity vector, a change in
velocity by Av is required.

Av = |Av| = 2v sin >

From: Bate, R. R., Mueller, D. D., and White, J. E., Fundamentals of Astrodynamics, Dover Publications, New York, 1971. 159



Aerobraking Orbit

Aerobraking is a technique used to reduce the
amount of fuel required to slow down a
spacecraft.

Mars Global Survayor Project

MGS Aerobrake

This was used for Mars Global Surveyor (MGS) Sesetine Proflle
spacecraft as it approached Mars. %:i?ﬁ.:;i‘iﬂ:g’:rE,}:AEEL”J‘?f:.fi‘ S

The MGS spacecraft used the drag of the Martian R L Lo e
atmosphere on its solar panels to slow down as an [ EE NP XS
alternative to using thrusters. R R T o

Late Main Phase
|period = & haurs)

Ilr
Inltial Capture Qrhlt III
Walk-In Phase »h

{parlod = 48 hours)

The duration of the aerobraking phase is directly
related to how fast Mars' relatively thin
atmosphere reduces the spacecraft's velocity.

Excerpt from: https://mgs-mager.gsfc.nasa.gov/overview/aerobraking.html



Gravity Assist Orbit

Spacecraft orbits may be
redirected using gravity assist
maneuvers where a close fly-by
of a planet is be used to change
the direction of and orbit and
add energy to it.

Image Credit: NASA/JPL/Caltech
https://www.jpl.nasa.gov/images/juno/earthflyby/JunoCruiseTraj_20130815.jpg

Earth Flyby

Oct. 9, 2013
B Launch

1~ 8/5/2011

Deep Space
Maneuvers

'-".,H Aug. 30 & Sept. 14, 2012

Jupiter Orbit Insertion
T T~ July 4, 2018

———.e_

Juno Spacecraft Trajectory



The Restricted Three Body Problem

When two large masses, m1 and

m?2, are orbiting one another,

regions in space can serve as
gravitational nodes where

spacecraft or other celestial bodies L3
can collect — these are called

Lagrange points;

L1, L2 and L3 and unstable.
L4 and L5 are stable.

Dynamics of the Three-Body System
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Three Body Orbits

In 1772, using three-body
assumptions, Joseph-Louis
Lagrange believed asteroids
might be trapped near the L4
and L5 points because they are
stable;

The first confirmed observation
of a Jupiter Trojan was made by
Max Wolf in 1906.

Animation Credit: CAS/Petr Scheirich. Used with permission.
Source: https://en.wikipedia.org/wiki/Jupiter_trojan

Jupiter’s Trojan Asteroids



Three Body Orbits

Lagrange points are also
used for spacecraft;

The James Webb Space
Telescope (JWST) will be
located at the Sun-Earth
L2 point.

JWST Orbit at the Earth-Moon L2 Point

Image Credit: NASA
https://www.nasa.gov/images/content/463480main_lagrange_point_lg_1.jpg



Three Body Orbits

The DSCOVR
spacecraft is
located at
the Sun-
Earth L1
point.

DSCOVR Spacecraft at the Sun-Earth L1 The Earth-Moon System as
Point Seen from the DSCOVR
Spacecraft

Image Credit: NOAA

Video Credit: DSCOVR: EPIC Team 165



Halo Orbits

A halo orbit can fe

be esta b|iShed MISSION & TRAECTORY ANALYSIS DIVISION RELAY SATELLITE

(33 A . W. Farqubar PLOT 80, 1360

y X

about the Earth- vl

MOON'S ORBIT ) :
Moon L2 point to = ?aa\“‘)ﬁa ‘é

serve asS a ﬁw\ ot HALO ORBIT
[ ] [ ] “
communication - A voon
I \\\. RELAY SATELLITE ‘ *
link between the =y y
-

lunar far side and

Py ~ N
Earth. t‘t’ EARTH /<

Halo orbit as seen from Earth

Lunar Far-Side Communications with a Halo Satellite

Graphics from: Farquhar, R. W., The Utilization of Halo Orbits in Advanced Lunar Operations, X-551-70-449, NASA Goddard Space Flight Center, December 1970 166



Artemis |

AJTEMIS 1

The first uncrewed, integrated flight test of NASA’s Orion spacecraft and Space Launch System rocket, launching from a modernized Kennedy spaceport

1" LAUNCH ENTRY INTERFACE (El) @ ouTBOUND TRAJECTORY OUTBOUND POWERED FLYBY (OPF)

SLS and Orion lift SPLASHDOWN CORRECTION (OTC) BURNS ' ;
off from pad 39B at Pacific Ocean landing within view Enter Earth’s atmosphere o ON { ) 62 miles from the Moon;

of the U.S. Navy recovery ships As necessary adjust frajectory _ targets DRO insertion

Kennedy Space Center for Lunar flyby to DRO "
/ )
JETTISON ROCKET 47 FINAL RETURN TRAJECTORY

. / ¥ Heliocentric Disposal
BOOSTERS CORRECTION (RTC) BURN & e precludes re-contact
Solid rocket boosters Precision targeting for » " ; .
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longer needed, v p X - - ‘ DISTANT
Orion could L . o= p - 4 £ &
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) g - surface of the Moon

ENTER EARTH 1 V
ORBIT A BC D -3
> \ 44 DRO DEPARTURE
, 16 Leave DRO and start
return to Earth
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raise maneuver
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EARTH ORBIT
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INJECTION (TLI) BURN The ICPS has committed Orion to TLI burns: a8 neacessary to alm for Egrth's
atmosphere; travel time 3-11 days
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20 minutes ( h >

AQTEMIS ’ Launch Earth Orbit - Trans Lunar = Lunar Orbit Trans Earth — Earth Re-entry --- Payload Orbit/Disposal AITEMIS l

Total distance traveled: 1.3 million miles - Mission duration: 26-42 days - Re-entry speed: 24,500 mph (Mach 32) - 13 CubeSats deployed

https://www.nasa.gov/image-feature/artemis-i-map




GATEWAY ORBIT

Cislunar space offers innumerable orbits for consideration, each with merit for a variety of operations. The gateway will support missions to
the lunar surface and serve as a staging area for exploration farther into the solar system, including Mars.

ORBIT TYPES NEAR-RECTILINEAR HALO ORBIT (NRHO)

1,500 km (932 miles) at its closest to the lunar surface, 70,000 km (43,495 miles) at its farthest.

LOW LUNAR ORBITS
Circular or elliptical orbits
close to the surface.

Excellent for remote ACCESS ° &

A\ Favorable vantage point for Earth, sun
and deep space observations.

sensing, difficult to maintain

. ; Easy to access from Earth
in gravity well.

orbit with many current launch
vehicles. Staging point for both
lunar surface and deep space 1 Py
DISTANT RETRO- destinations. 1 —° "9 COMMUNICATIONS
Provides continuous view of Earth
GRADE DBBITS and communication relay for lunar
Very Iar_ge. circular, stable N farside.

orhits. Easy to reach from # ENVIRONMENT

Earth, but far from lunar * Deep space environment
surface. useful for radiation testing and

s
g— SURFACE OPERATIONS
experiments in preparation for © % Supports surface telerobotics,
missions to the lunar surface including lunar farside. Provides a
staging point for planetary sample

HALO ORBITS el el return missions
Fuel-efficient orbits a2t ssions.
revolving around Earth-

Moon neutral-gravity points.

https://www.nasa.gov/sites/default/files/atoms/files/cislunar-update-gerstenmaier-crusan-v5a_tagged_0.pdf




Part 4 — Wrap-Up

In Part 4, we considered some advanced orbit concepts.

Transfer orbits are useful for changing from one orbit to another such as in interplanetary
missions.

An orbit plane change can be used to change the inclination of an orbit.

Aerobraking orbits can be used to lower an orbit by using passes through an atmosphere
to remove energy from the orbit.

Gravity assists can be employed in interplanetary missions to impart additional energy to a
spacecraft.
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Part 4 — Wrap-Up (Continued)

Study of the Restricted Three-Body Problem explains the existence of asteroids at Lagrange
points. Solutions to the Three Body Problem are also useful for the placement of spacecraft
such as the James Webb Space Telescope.

Halo Orbits are useful for continuous communications with the lunar far side.

Upcoming missions such as Artemis | require more complex orbit solutions to
accommodate mission requirements as it travels between the Earth and Moon.

The Gateway outpost is planned to use a Near Rectilinear Halo Orbit to allow easy access,
provide the desired environment, meet communications requirements, serve as a science
platform, and support surface operations.
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Part 5 -- Spacecraft Attitudes
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Part 5 -- Contents

In this fifth and final part of the lesson, we’ll focus on spacecraft attitudes. We'll
discuss, both, the Local Vertical — Local Horizontal and Celestial Inertial reference frames

and provide an attitude transformation strategy.

These transformations orient spacecraft surfaces with respect to the solar, albedo and
planetary heating sources. We'll spend some time showing how to calculate the view

factor to these sources.

Finally, we'll tie it all together with an illustrative example.
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Spacecraft Attitudes

Spacecraft attitude, in concert with the orbit is important to thermal
engineers as these must be known to determine the on-orbit thermal
environment required to determine spacecraft thermal response.

As we have seen, the orbit is used to determine the distance from the
sun and, hence, the magnitude of the solar flux. This, in turn, affects
albedo and planetary heating components. The evolution of the orbit
over time affects periods of spacecraft eclipse and the orbit beta angle.

The attitude is required to determine where on the spacecraft the
environment is applied.
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Reference Frames

A reference frame can be thought of as a basis or starting point for a
subsequent series of rotations.

All axes of the coordinate system to be subsequently transformed are
aligned with the principal axes of the reference frame coordinate
system.

In other words, no rotations have yet taken place.
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Reference Frames

Consider the Euler rotation sequence shown below — the rotations must

be referenced to some starting point which we will call the reference
frame.

k k
A ”E/ A
j, ’IEII j,j,,
> ] > j
i it i’
ill
Reference Frame After One Rotation (x —axis) After Two Rotations (x —axis,

then y —axis)
175



Vehicle Body Axes

But if we want to
transform a spacecraft
within a reference frame,
we must establish a
meaningful coordinate
system on the spacecraft.

of gravity

As an example, consider ) , c9+‘i"aw
the body axes designated BY p T
for the Space Shuttle !
Orbiter. Zgy

From: Dauvis, L. D., Coordinate Systems for the Space Shuttle Program, NASA Technical Memorandum, JSC-09084, NASA TM X-58153, October 1974 176



Vehicle Body Axes

As another
example, here
is the
coordinate
system
definition for
the
International
Space Station.

From: Space Station Reference Coordinate Systems, SSP 30219, Revision J, May 1, 2008 (found at:
https://pims.grc.nasa.gov/plots/user/tibor/SSP%2030219)%20155%20Coord%20Systems.pdf ) 177



Local Vertical-Local Horizontal (LVLH)

In the local vertical-local
horizontal frame shown at the

S MOTION
right, the X; o — Z;p plane is the
instantaneous orbit plane at the GEOCENTRIC RADIUS
VECTOR OF VEHICLE
time of interest, the Y; 5 axis is
normal to the orbit plane, : Ao

Z;o points toward the center of
the planet, and the X;, axis
completes the right handed e e o
system and is positive in the

direction of motion.

From: Space Station Reference Coordinate Systems, SSP 30219, Revision J, May 1, 2008 (found at:
https://pims.grc.nasa.gov/plots/user/tibor/SSP%2030219)%20155%20Coord%20Systems.pdf ) 178




Celestial Inertial (Cl)

In the celestial inertial coordinate 2
system shown at the right, the
X;12000 — Y2000 Plane is the mean
Earth’s equator of epoch, the
Xj2000 axis is directed toward the
mean vernal equinox of epoch, the
Z12000 aXis is directed along Earth’s
mean rotational axis of epoch and . M ERATOR
is positive north, and the Yj,qq¢ axis =T i
completes the right handed system.

EARTH'S MEAN ROTATIONAL AXIS
OF EPOCH

CENTER OF EARTH

Adapted from: Space Station Reference Coordinate Systems, SSP 30219, Revision J, May 1, 2008 (found at:
https://pims.grc.nasa.gov/plots/user/tibor/SSP%2030219)%2015S5%20Coord%20Systems.pdf ) 179



Comparing LVLH and Cl Reference Frames
(No Rotations)

Cl Coordinate System Progression
Throughout Orbit

LVLH Coordinate System Progression
Throughout Orbit

In both images:
+Xx axis

+z axis

Images created using: Thermal Desktop® by Cullimore and Ring Technologies, Inc. 180



Attitude Transformation Strategy

Our ultimate strategy is to transform surface normals (representing
spacecraft surfaces of interest) into the same coordinate system in which
unit vectors describing the location of the sun and planet are expressed;

Once all vectors are transformed, angles between vectors of interest may
be calculated and view factors to the sun and planet may be readily

determined;

It is most convenient to transform all surface normal vectors into the
celestial inertial system.
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Transforming Attitudes in CI

If a spacecraft is flying in a celestial inertial reference frame, then unit
vectors representing surface normals are transformed as follows,
assuming a pitch, yaw, roll sequence executed in the specified order:

|Transformed Vectors| = |P||Y]||R|[Untransformed Vectors]

where...
P| is a y-axis transformation matrix

Y] is a z-axis transformation matrix
R| is an x-axis transformation matrix
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Transforming LVLH into ClI

For a spacecraft flying in the local vertical-local horizontal frame, then unit
vectors representing surface normals are transformed as follows,
assuming a pitch, yaw, roll sequence executed in the specified order:

|Transformed Vectors]| = [Q]|i]|w][V][REF]|P||Y]|R|[Untransformed Vectors]

Nere...

is @ z-axis transformation matrix for orbit right ascension
is an x-axis transformation matrix for orbit inclination

| is a z-axis transformation matrix for argument of periapsis
V] is a z-axis transformation matrix for true anomaly

REF] is the reference change matrix

P| is a y-axis transformation matrix

Y] is a z-axis transformation matrix

R | is an x-axis transformation matrix

g =0
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Transforming LVLH into ClI

The reference change
matrix [REF |is used to
flip the LVLH reference
coordinate system into
the Cl coordinate system.

“ZLVLH} Zer

0
|IREF] =1 0 0
0
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Aside: View Factor to Planet as a Function of
Orbit and Attitude

To determine the view factor from a planar spacecraft surface
to the planet, we will consider the following geometry.

7 is the vector from the spacecraft surface to the center of the surface Central Body

central body — its magnitude is 7;, + h

® is the angle between the surface normal and the vector to the
center of the central body

Spacecraft — ‘
Surface \NUC Tvo-e- K

@ is the angle half angle subtended by the central body as seen from
the planar surface

1, is the central body radius
h is the altitude above the planet

Adapted from: http://www.thermalradiation.net/sectionb/B-43.html 185



Aside: View Factor to Planet as a Function of
Orbit and Attitude

The view factor (VFpanet) from the plate to the central body (i.e., planet) is:

rp+h

H = and @ =sin"!(1/H)

Tp

For%—¢§®§§+cb:

1 1. 1(1_12_1)1/2 1 1 2 1/2 2 1/2 2. .2a11/2
VE ianet = 5~ ;sm‘ TG + m{cos@cos‘ [—(H -1V cot@] — [H? — 1]Y/2[1 — H?cos%0]Y/ }
For ® < % — &
cos ®
VFplanet = gz
Adapted from: http://www.thermalradiation.net/sectionb/B-43.html 186

Note that the parameter definition for h, and subsequently, H presented here is different than that in the reference.



Example: Heating to Spacecraft Surfaces as a
Function of Orbit and Attitude

Using h and 7;,, , we can determine ©.

To determine 0, we will also need the orientation of the spacecraft
surface with respect to the planet and to do that, we will need to perform
attitude transformations to determine the direction of the surface normal

of interest.
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Example: Heating to Spacecraft Surfaces as a
Function of Orbit and Attitude

A cubical spacecraft circular Earth orbit is oriented
inaP = —450’ Y = OO,R = 0° Euler angle e —

sequence in the local vertical/local horizontal h 500 km
reference frame. e 0.0

[ 28.5°
For the specified orbit and environment Q 270°
parameters, determine the solar, albedo and ,

w Undefined

planetary heating flux on the surface pointing 45

toward the nadir from the velocity vector (i.e., Date/Time ~ March 20,2020 03:49 UTC

ram) direction as a function of time. Jsolar 1371 W /m?
a 0.3
Also determine the beta angle profile over time doin 237 W /m?

assuming only the J, oblateness perturbation and
calculate the percent of time spent in eclipse.

Date/Time info for 2020 vernal equinox from: https://www.timeanddate.com/calendar/march-equinox.html 188



Example: Heating to Spacecraft Surfaces as a
Function of Orbit and Attitude

Pitch, P

Box in LVLH Reference Position Box Pitched -45 deg

Images created using: Thermal Desktop® by Cullimore and Ring Technologies, Inc. 189



Example: Heating to Spacecraft Surfaces as a
Function of Orbit and Attitude

We form the unit vector for the surface A
normal facing in the +x direction in the .
spacecraft body coordinate system.

(1
m} = 0 /

0 n

We will be calculating heating for this
surface once it is tilted 45 degrees
toward nadir.
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Example: Heating to Spacecraft Surfaces as a
Function of Orbit and Attitude

Next, we form the Euler angle sequence to transform the +x facing
unit vector through the prescribed pitch, yaw and roll formation.
Executing the rotation sequence in this order requires first, a y —axis
rotation, then a z-axis rotation, and finally, an x —axis rotation.
1
8
0

cosP (0 sinP
0 1 0
—sinP 0 cosP

O cosR —sinR
0O sinR CoS R

sinY cosY O
0 0 1

y — axis Z — axis X — axis

cosY —sinY O
[PIY]IR] = l

ll 0 0
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Example: Heating to Spacecraft Surfaces as a
Function of Orbit and Attitude

We must also form the Euler angle sequence to position the spacecraft within
the reference frame. Remember, we ultimately aim to express everything in the

celestial inertial (Cl) coordinate system so these transformations transform from
LVLH to CI.

cos{) —sinQ) O

cosi 0 sini][cosw —sinw O0][cosv —sinv 0
[Q][i][w][v] = |sinQ cosQ 0 0 1 0 ||sihw cosw Of|sinv cosv 0
0 0 1fl—sini 0 cosi 0 0 1 0 0 1

Z — axis y — axis Z — axis Z — axis

Note: For circular orbits, the argument of periapsis is undefined so a value of
w = 0°is used and the corresponding matrix [w| becomes the identity matrix.

192



Example: Heating to Spacecraft Surfaces as a
Function of Orbit and Attitude

Remember, to complete the transformation from LVLH to ClI coordinates,
the reference change matrix must be applied.

o 0 -1
|Transformed Vectors]| = [Q][i][w][v] ll 0 0
O -1 O

|\P]IY]IR][Untransformed Vectors]
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Example: Heating to Spacecraft Surfaces as a
Function of Orbit and Attitude

To calculate the angle between the transformed surface normal and the center of the

Earth, we see that a unit vector that points from the center of the Earth to the
spacecraft location is given by

1
'} = [Q][i][w][V] {0}
0

But we need a vector that points from the spacecraft to the Earth which is given by:

~1
=7} = [Q][i] [w][V]{ 0 }
0
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Example: Heating to Spacecraft Surfaces as a
Function of Orbit and Attitude

To calculate the angle between a transformed surface normal and the center of the
Earth (COE):

—1
cos(Angle to COE) = [Q][i]|w][V] { 0 } -{Transformed Surface Normal}
0

195



Example: Heating to Spacecraft Surfaces as a
Function of Orbit and Attitude

To calculate the angle between the transformed surface normal and the sun, we can
use our previously derived expression for the solar vector

1 cosI' —sin' O07(1 cos T
{s} =10 cose —sinegl|sin F CoS F 0[40¢ =4sinT cose
0 sine cose 11\0 sinl'sin €

The angle between the solar vector and a transformed surface normal is:

cosT
cos(Angle to Sun) = {sin I cos e} -{Transformed Surface Normal}
sinl'sin¢

For a flat surface, the view factor to the sun, VF,,;, = cos(Angle to Sun) when the
Angle to the Sun < 90°. 196



Example: Heating to Spacecraft Surfaces as a
Function of Orbit and Attitude

Angle Between Surface Normal and Sun and Planet vs Time

We calculate the angle from the

unit normal to the center of the w0
Earth (COE) and to the sun. 8
< 0 /
‘2‘3 N——
From this, we can calculate the T e e n e o
view factor to the planet (if et |
Solar and Planetary View Factors vs Time

altitude is known) as well as the 1

sun.

View Factors
o o

: N
N/

0 1000 2000 3000 4000 5000 6000
Time (s)
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Example: Heating to Spacecraft Surfaces as a
Function of Orbit and Attitude

Once the view factors are known, the solar, albedo and Incident Flux on Flat Plate
planetary (OLR) fluxes incident on the plate are calculated using: 1200 1
c.1501617‘,710de (t) — éIsolarVFsolar (t) 1000 1

Qalbedo,node (t) = aCIsolarVFplanet (t) COS(Q(t))
QOLR,node (t) = QOLRVFplanet(t)

800 A

where... °%

o(t) = cos‘l(r/(?) - s@)) is the angle between the solar vector
and the vector from the center of the Earth to the spacecraft
and applies only when cos(8) > 0

Flux (W/sqm)

400 A

200 A /\
The plot also includes calculation of eclipse entry and exit. \ V2
O Ll Ll T T T 1
0 1000 2000 3000 4000 5000 6000
Time (s)
Solar Flux on Plate Albedo Flux on Plate ——— Planetary IR Flux on Plate

Note: The albedo model is highly simplified and is used for illustrative purposes only. 198



Example: Heating to Spacecraft Surfaces as a
Function of Orbit and Attitude

We can CalCUIate the 60 - Beta Angle vs Time (J2 Perturbation ONLY)
1 40
progression of the ,a
3 20 A //f\\\
angle throughout the R A N W/ W A AN '
< q o o o o o o o o N N N
i Y 4 4 4 v \4 Y v \ \ ¢ v
year* as well as the R b VAN GO AR A R &’\Z\»@ &7/ W&"
-40 -
time spent In
sun | |ght/5hadOW. . Percent of Orbit Time in Sunlight/Shadow
70 A
65 +
- 60 -
§ 23 : =% TIME IN SUNLIGHT % TIME IN SHADOW
g 45 -
40 A
35 +
30 A
25 T T
SR O O\ O OO SRS ORI N RN v
0)\’19 b‘\\? (o\'\o’ ‘o\'& ,\\'\tfb %\'\/,\ o)\'\/b @\'\‘o R N\'\?’ \:\,\'\?’ N\'\?‘ q,\'\:b ,b\'\?’

Date

*Note: This example is for illustrative purposes only as it considers perturbation from the J, term only. Other
perturbations would likely change this profile. 199



Part 5 — Wrap-Up

In this fifth and final part of the lesson, we focused on spacecraft attitudes.

We discussed, both, the Local Vertical — Local Horizontal and Celestial Inertial
reference frames and demonstrated an attitude transformation strategy.

These transformations were used to orient spacecraft surfaces with respect to

the solar, albedo and planetary heating sources. View factors to the sun and
planet were calculated and used to calculate heating to a spacecraft surface.
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Conclusion

To fully understand on orbit thermal environments, knowledge of orbital mechanics
and spacecraft attitudes is required.

An introduction to orbital mechanics with focus on the two-body problem has been
presented.

Numerous examples demonstrating the effect of orbital parameters and progression
on parameters of interest to thermal engineers has been demonstrated.

Spacecraft attitudes and reference frames were introduced and their effect on
thermal environments experienced by orbiting spacecraft was examined.
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