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Orbiting spacecraft are subject to a variety of environments.

Knowledge of the orbit is required to quantify the solar, albedo and planetary (also called outgoing longwave 
radiation, or OLR) fluxes.

Some specific questions that might arise are:
• How close (or how far) does the planet/spacecraft pass from the sun?
• How close (or how far) does a spacecraft pass from a planet and how does it affect orbital heating to 

spacecraft surfaces?
• How long does the spacecraft spend in eclipse during each orbit?
• At what angle does the solar flux impinge on the orbit plane (𝛽 angle) and how does that affect the 

thermal environment?
• What path does a spacecraft take between planets and how does the solar flux change during that 

transfer?
• Why is one type of orbit used for some spacecraft and another type used for others (e.g., sun 

synchronous versus geostationary)?
• What factors can make an orbit change over time and how might that affect the thermal environment?
• What type of thermal environment extremes will the spacecraft experience? 
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Orbit information alone is insufficient to determine how the environment affects the spacecraft.

Spacecraft orientation (or “attitude”) and orbit information is required to determine which spacecraft surfaces 
experience a given thermal environment.

Spacecraft attitude and orbit information are required to determine the view factor to the central body which is 
required for planetary and albedo flux calculations to a spacecraft surface.

What are the effects on the heating fluxes experienced by a spacecraft due to the attitude reference frame (e.g., 
celestial inertial versus local vertical – local horizontal reference frames)?

What spacecraft orientation(s) provide favorable thermal conditions for spacecraft components?

Orbits and spacecraft attitudes must be considered together for a successful spacecraft and mission design.
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Orbits

Spacecraft attitudes

Governing differential equation.

Conservation of specific mechanical energy

Conservation of specific angular momentum

Kepler’s laws

Perturbations

Consequences for the thermal environment.
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Part 1 -- Review of Scalar, Vector, and Matrix 
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Part 1 -- Content
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Part 1 of this lesson is a review of mathematical operations we will need in our study 

of orbital mechanics and spacecraft attitudes.

We will begin with a review of scalars and vectors.

After a brief review of Cartesian and Polar coordinates, we’ll consider vector dot and 

cross products, units vectors, coordinate transformations with particular focus on the 

Euler angle sequence, forming transformation matrices and, finally, stacking 

transformations.



Scalars and Vectors
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A scalar has a magnitude whereas a vector has, both, a magnitude and a 
direction.

As an example, speed is a scalar and has a magnitude (e.g., 30 m/s) but 
velocity is a vector and has a magnitude and direction (e.g., 30 m/s in 
the 𝑥-direction).

We will use, both, scalars and vectors in our study of orbital mechanics 
and attitudes.



Cartesian Coordinates
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Consider the Cartesian coordinate system.

Each axis is orthogonal to the others.

Any point in the coordinate system may be 
described by three coordinates 𝑥, 𝑦, 𝑧 .

To aid in describing the amount of travel in 
each orthogonal direction, we specify unit 

vectors ( Ƹ𝒊, Ƹ𝒋, ෡𝒌).

Ƹ𝒊

Ƹ𝒋

෡𝒌

𝑥, 𝑦, 𝑧

𝑦

𝑧

𝑥
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Polar coordinates specify 
the location of a point using 
two points, a distance from 
the origin, 𝑟 and an angle, 𝜃.

Polar coordinates will be 
especially useful in our 
discussion of orbits.

𝑟

𝜃

0°

270°

180°

90°



Vectors
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The vector, ത𝒓 can be expressed in Cartesian 
coordinates as:

ത𝒓 = 𝑥 Ƹ𝒊 + 𝑦 Ƹ𝒋 + 𝑧෡𝒌

The magnitude of the vector, ത𝒓 is given by:

ത𝒓 = 𝑥2 + 𝑦2 + 𝑧2
Ƹ𝒊

Ƹ𝒋

෡𝒌

𝑥, 𝑦, 𝑧

𝑦

𝑧

𝑥

ത𝒓



Useful Vector Operations
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Consider the two vectors shown at the 
right…

ത𝒓 = 𝑥𝑟 − 0 Ƹ𝒊 + 𝑦𝑟 − 0 Ƹ𝒋 + 𝑧𝑟 − 0 ෡𝒌
= 𝑥𝑟 Ƹ𝒊 + 𝑦𝑟 Ƹ𝒋 + 𝑧𝑟෡𝒌

ത𝒔 = 𝑥𝑠 − 0 Ƹ𝒊 + 𝑦𝑠 − 0 Ƹ𝒋 + 𝑧𝑠 − 0 ෡𝒌
= 𝑥𝑠 Ƹ𝒊 + 𝑦𝑠 Ƹ𝒋 + 𝑧𝑠෡𝒌 Ƹ𝒊

Ƹ𝒋

෡𝒌

ത𝒓
𝑥𝑟, 𝑦𝑟 , 𝑧𝑟

ത𝒔
𝑥𝑠, 𝑦𝑠, 𝑧𝑠

0,0,0

𝜃



Vector Dot Product
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The dot product of two vectors, ത𝒓 and ത𝒔, is 
a scalar given by…

ത𝒓 ∙ ത𝒔 = ത𝒓 ത𝒔 cos 𝜃

For the vectors shown at the right…

ത𝒓 ∙ ത𝒔 = 𝑥𝑟𝑥𝑠 + 𝑦𝑟𝑦𝑠 + 𝑧𝑟𝑧𝑠 Ƹ𝒊

Ƹ𝒋

෡𝒌

ത𝒓
𝑥𝑟, 𝑦𝑟 , 𝑧𝑟

ത𝒔
𝑥𝑠, 𝑦𝑠, 𝑧𝑠

0,0,0

𝜃



Vector Cross Product
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The cross product of two vectors, ത𝒓 and ത𝒔, is a vector given by…

ത𝒓 × ത𝒔 =
Ƹ𝒊 Ƹ𝒋 ෡𝒌

𝑥𝑟 𝑦𝑟 𝑧𝑟
𝑥𝑠 𝑦𝑠 𝑧𝑠

For the vectors shown at the right…

ത𝒓 × ത𝒔 = 𝑦𝑟𝑧𝑠 − 𝑧𝑟𝑦𝑠 Ƹ𝒊 − 𝑥𝑟𝑧𝑠 − 𝑧𝑟𝑥𝑠 Ƹ𝒋 + 𝑥𝑟𝑦𝑠 − 𝑦𝑟𝑥𝑠 ෡𝒌

Ƹ𝒊

Ƹ𝒋

෡𝒌

ത𝒓
𝑥𝑟, 𝑦𝑟 , 𝑧𝑟

ത𝒔
𝑥𝑠, 𝑦𝑠, 𝑧𝑠

0,0,0

𝜃



Unit Vectors
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As the name implies, a unit vector is a 
vector with one unit of length;

To form a unit vector, ො𝒓 in the direction of 
ത𝒓…

ො𝒓 =
ത𝒓

ത𝒓
=

ത𝒓

𝑥𝑟 − 𝑥𝑠
2 + 𝑦𝑟 − 𝑦𝑠

2 + 𝑧𝑟 − 𝑧𝑠
2

Ƹ𝒊

Ƹ𝒋

෡𝒌

ത𝒓

𝑥𝑟, 𝑦𝑟 , 𝑧𝑟

ො𝒓

𝑥𝑠, 𝑦𝑠, 𝑧𝑠



Coordinate Transformations
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Analysis of spacecraft in orbit in a specified attitude requires an 
understanding of coordinate system transformations.

The position in orbit and the position with respect to heating sources 
and the eclipse is determined using coordinate system transformations.

Additional transformations are performed to orient the spacecraft as 
desired at any given point in orbit.

These transformations are performed as Euler angle sequences.



The Euler Angle Sequence
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An Euler angle sequence is a sequence of rotations of a rigid body with 
respect to a fixed coordinate system.

The sequence is order dependent – that is, changing the order of the 
rotations will affect the resulting transformation.

We will rely on Euler angle transformations considerably during this 
lesson.

They are easily executed using multiplication of 3 × 3 matrices.

Some info from:  https://en.wikipedia.org/wiki/Euler_angles



Rotation Sequences
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However, we need to be specific about the type of rotation we seek –
there are two possibilities:

Rotation of the axes, or
Rotation of an object relative to fixed axes.

We ultimately seek a rotation of an object relative to fixed axes.

From:  mathworld.wolfram.com/RotationMatrix.html



Rotation Sequences
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𝑥

𝑦

ഥ𝑷 (𝑥, 𝑦)

ഥ𝑷′ 𝑥′, 𝑦′

𝑟

𝑟

𝜃
𝜙

Consider the vector ഥ𝑷 which is at an 
angle, 𝜙 from the 𝑥-axis in the fixed 
coordinate system.

We wish to transform this vector into 
ഥ𝑷′ by rotating it through angle, 𝜃 in 
the same fixed coordinate system.

What are the coordinates of the tip of 
ഥ𝑷′, that is 𝑥′, 𝑦′, in terms of 𝑥 and 𝑦?



Rotation Sequences

26From:  https://www.youtube.com/watch?v=NNWeu3dNFWA

𝑥

𝑦

ഥ𝑷 (𝑥, 𝑦)

ഥ𝑷′ 𝑥′, 𝑦′

𝑟

𝑟

𝜃
𝜙

From the figure, we see…

𝑥 = 𝑟 cos𝜙
𝑦 = 𝑟 sin𝜙

And…

𝑥′ = 𝑟 cos 𝜙 + 𝜃
𝑦′ = 𝑟 sin 𝜙 + 𝜃



Rotation Sequences
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But, using trigonometric identities, we see that…

𝑥′ = 𝑟 cos 𝜙 + 𝜃 = 𝑟 cos𝜙 cos 𝜃 − 𝑟 sin𝜙 sin 𝜃
𝑦′ = 𝑟 sin 𝜙 + 𝜃 = 𝑟 cos𝜙 sin 𝜃 + 𝑟 sin𝜙 cos 𝜃

And since 𝑥 = 𝑟 cos𝜙 and 𝑦 = 𝑟 sin𝜙, we can substitute to obtain…

𝑥′ = 𝑟 cos 𝜙 + 𝜃 = 𝑥 cos 𝜃 − 𝑦 sin 𝜃
𝑦′ = 𝑟 sin 𝜙 + 𝜃 = 𝑥 sin 𝜃 + 𝑦 cos 𝜃

Or, in matrix form…

𝑥′

𝑦′
=

cos 𝜃 −sin 𝜃
sin 𝜃 cos 𝜃

𝑥
𝑦



Forming the Transformation Matrix
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We rotated the vector ഥ𝑷 in the 𝑥𝑦 plane about a vector coming out of 
the page.

This is a 𝑧-axis transformation and any 𝑧 coordinate would remain 
unchanged.  Hence, the 3 × 3 transformation matrix becomes…

cos 𝜃 −sin 𝜃 0
sin 𝜃 cos 𝜃 0
0 0 1

cos 𝜃 −sin 𝜃
sin 𝜃 cos 𝜃

3 × 32 × 2



Forming the Transformation Matrix
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Similar operations allow formation of rotation matrices about the 𝑥- and 
𝑦-axes.  The resulting transformation matrices are…

𝑥-axis:

𝑦-axis:

𝑧-axis:

𝑥′
𝑦′

𝑧′

=
1 0 0
0 cos 𝜃 − sin 𝜃
0 sin 𝜃 cos 𝜃

𝑥
𝑦
𝑧

𝑥′
𝑦′

𝑧′

=
cos 𝜃 0 sin 𝜃
0 1 0

− sin 𝜃 0 cos 𝜃

𝑥
𝑦
𝑧

𝑥′
𝑦′

𝑧′

=
cos 𝜃 −sin 𝜃 0
sin 𝜃 cos 𝜃 0
0 0 1

𝑥
𝑦
𝑧



Forming the Transformation Matrix
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We will employ the following shorthand to represent transformation of 
a vector, in this case ത𝒓 into ത𝒓′, about the 𝑥 −, 𝑦 −, and 𝑧 −axes, 
respectively…

ത𝒓′ = 𝑋 ത𝒓

ത𝒓′ = 𝑌 ത𝒓

ത𝒓′ = 𝑍 ത𝒓



Stacking the Transformations
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A series of rotations may be formed through multiplication of the 3 × 3
transformation matrices in the order which they are to occur.

For example, if we wish to transform ത𝒓 in to ത𝒓′ through an Euler angle 
rotation sequence first about the 𝑥 −axis, then about the 𝑦 −axis and 
finally about the 𝑧 −axis, the transformation is given by…

ത𝒓′ = 𝑋 𝑌 𝑍 ത𝒓



Part 1 Wrap Up
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In Part 1, we established that many facets of orbital mechanics and 
spacecraft attitudes are of interest to thermal engineers;

We reviewed key vector and matrix operations including Euler angle 
transformations that will serve as a tool kit for our study of orbital 
mechanics and attitudes.



Part 2 -- The Two Body Problem
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Aside:  Anatomy of an Orbit
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Inclination -- the tilt of 
the orbit plane with 
respect to the equator

Periapsis -- the location 
of minimum orbit 
altitude

Ascending Node -- the location 
where the orbit crosses the 
equator headed south to north

Apoapsis -- the location 
of maximum orbit 
altitude

True Anomaly -- angle 
from the periapsis
location to the 
spacecraft location

Focus
+

Focus
+

Semimajor Axis-- half 
the distance from 
apoapsis to periapsis

Argument of Periapsis --
the angle, measured in 
the orbit plane, from 
the ascending node to 
the periapsis

Right Ascension of the Ascending Node 
will be discussed in a subsequent section.

𝜈

𝜔

Ω

𝑖

𝑎



Aside:  History
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Image Credits:  https://en.wikipedia.org/wiki/Johannes_Kepler  and https://en.wikipedia.org/wiki/Tycho_Brahe
Other info from:  Bate, R. R., Mueller, D. D., and White, J. E., Fundamentals of Astrodynamics, Dover Publications, New York, 1971.

Brahe, 1546-1601 Kepler, 1571-1630

Tycho Brahe was an 
outstanding observational 
astronomer and meticulously 
recorded the positions of the 
planets.

Johannes Kepler used Brahe’s 
observational data to fit 
geometrical curves to explain 
the position of Mars.



Aside:  History
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Image Credit:  https://en.wikipedia.org/wiki/Johannes_Kepler
Other info from:  Bate, R. R., Mueller, D. D., and White, J. E., Fundamentals of Astrodynamics, Dover Publications, New York, 1971.

Kepler, 1571-1630

Kepler formulated his three laws of planetary 
motion:

Kepler’s 1st Law:  The orbit of each planet is an ellipse, with 
the sun as a focus.

Kepler’s 2nd Law: The line joining the planet to the sun 
sweeps out equal areas in equal times.

Kepler’s 3rd Law: The square of the period of a planet is 
proportional to the cube of its mean distance to the sun.

https://en.wikipedia.org/wiki/Johannes_Kepler


Aside:  History
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Image Credit: https://en.wikipedia.org/wiki/Isaac_Newton
Source:  https://en.wikipedia.org/wiki/Newton%27s_law_of_universal_gravitation

Newton, 1643 (1642 O.S.) - 1727

In the context of orbital mechanics, 
Newton’s 2nd Law and his Law of Universal 
Gravitation are pertinent:

Newton’s 2nd Law:  The sum of the forces is equal 
to mass times acceleration.

Gravitation:  Every particle attracts every other 
particle in the universe with a force which is 
directly proportional to the product of their 
masses and inversely proportional to the square of 
the distance between their centers.



Strategy
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We will derive the governing differential equation for two body motion for 
an unperturbed orbit.

We will also show that specific mechanical energy and specific angular 
momentum are conserved for the unperturbed orbit.

From this, we will derive Kepler’s Laws and apply them in examples.



Newton’s Laws
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The governing differential equation for two body astrodynamics is derived 
from two laws originated by Sir Isaac Newton.

Newton’s 2nd Law

ഥ𝑭 = 𝑚ഥ𝒂

Newton’s Law of Gravitation

ഥ𝑭 =
−𝐺𝑀𝑚

𝑟2
ത𝒓

𝑟



Relative Motion

40From:  Bate, R. R., Mueller, D. D., and White, J. E., Fundamentals of Astrodynamics, Dover Publications, New York, 1971.

We will need to define a reference frame for the 
calculations.  Consider the coordinate systems with masses 
𝑀 and 𝑚 at the right where…

𝑀 is the mass of the first body (assumed to be the larger 
mass)
𝑚 is the mass of the smaller body (assumed here 𝑚 ≪ 𝑀)
ത𝒓𝑴 is the vector from the origin of the reference 
coordinate system to the center of M
ത𝒓𝒎 is the vector from the origin of the reference 
coordinate system to the center of m
ത𝒓 is the vector between 𝑀 and 𝑚

𝑋’𝑌’𝑍’ is inertial and 𝑋𝑌𝑍 is non-rotating.

𝒁′

𝑀

𝑚ത𝒓

ത𝒓𝑴
ത𝒓𝒎

𝒀′

𝑿′

𝒁

𝒀

𝑿



Relative Motion
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From:  Bate, R. R., Mueller, D. D., and White, J. E., Fundamentals of Astrodynamics, Dover Publications, New York, 1971.

We see that:

ത𝒓 = ത𝒓𝑚 − ത𝒓𝑀

Recognize that since 𝑋𝑌𝑍 is non-rotating 
with respect to 𝑋’𝑌’𝑍’, the respective 
magnitudes of ത𝒓 and ሷത𝒓, will be equal in 
both systems.

ത𝒓 = ത𝒓𝑚 − ത𝒓𝑀 ⇒ ሷത𝒓 = ሷത𝒓𝑚 − ሷത𝒓𝑀

𝒁′

𝑀

𝑚ത𝒓

ത𝒓𝑴
ത𝒓𝒎

𝒀′

𝑿′

𝒁

𝒀

𝑿



Relative Motion
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From:  Bate, R. R., Mueller, D. D., and White, J. E., Fundamentals of Astrodynamics, Dover Publications, New York, 1971.

Applying Newton’s laws, we have:

𝑚 ሷത𝒓𝒎 = −
𝐺𝑀𝑚

𝑟2
ത𝒓

𝑟

𝑀 ሷത𝒓𝑴 =
𝐺𝑀𝑚

𝑟2
ത𝒓

𝑟

𝒁′

𝑀

𝑚ത𝒓

ത𝒓𝑴
ത𝒓𝒎

𝒀′

𝑿′

𝒁

𝒀

𝑿



Relative Motion
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From:  Bate, R. R., Mueller, D. D., and White, J. E., Fundamentals of Astrodynamics, Dover Publications, New York, 1971.

Combining the two previous expressions, 
we arrive at:

ሷത𝒓 = −
𝐺 𝑀 +𝑚

𝑟3
ത𝒓 𝒁′

𝑀

𝑚ത𝒓

ത𝒓𝑴
ത𝒓𝒎

𝒀′

𝑿′

𝒁

𝒀

𝑿



Relative Motion
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For a spacecraft orbiting a planet or the sun (or even planets or other 
bodies orbiting the sun), 𝑀 ≫ 𝑚 so the expression becomes:

ሷത𝒓 +
μ

𝑟3
ത𝒓 = 𝟎

Where 𝜇 = 𝐺𝑀, 𝑀 is the mass of the central body (i.e., the body being 
orbited) and 𝐺 = 6.67 × 10−11𝑁𝑚2𝑘𝑔−2.

From:  Bate, R. R., Mueller, D. D., and White, J. E., Fundamentals of Astrodynamics, Dover Publications, New York, 1971.



Aside:  Some Useful Expansions of Terms
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For an orbit, we have:

ത𝒓 = 𝑟ො𝒓

ഥ𝒗 = ሶത𝒓 =
𝑑𝑟

𝑑𝑡
ො𝒓 + 𝑟

𝑑𝜃

𝑑𝑡
෡𝜽

ഥ𝒂 = ሶഥ𝒗 = ሷത𝒓 =
𝑑2𝑟

𝑑𝑡2
− 𝑟

𝑑𝜃

𝑑𝑡

2

ො𝒓 +
1

𝑟

𝑑

𝑑𝑡
𝑟2
𝑑𝜃

𝑑𝑡
෡𝜽

From:  Battin, R. H., An Introduction to the Mathematics and Methods of Astrodynamics, New York, American Institute of Aeronautics and Astronautics, 1987.



Conservation of Specific Mechanical Energy
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To show conservation of specific mechanical energy, form the dot product of 
the governing differential equation with ሶത𝒓:

ሶത𝒓 ∙ ሷത𝒓 +
μ

𝑟3
ത𝒓 = ሶത𝒓 ∙ 𝟎

ሶത𝒓 ∙ ሷത𝒓 + ሶത𝒓 ∙
μ

𝑟3
ത𝒓 = 𝟎



Conservation of Specific Mechanical Energy
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Rearranging…

ሶത𝒓 ∙ ሷത𝒓 +
μ

𝑟3
ሶത𝒓 ∙ ത𝒓 = 𝟎

We note that…

2 ሶത𝒓 ∙ ሷത𝒓 =
𝑑

𝑑𝑡
ሶത𝒓 ∙ ሶത𝒓 ⇒ ሶത𝒓 ∙ ሷത𝒓 =

1

2

𝑑

𝑑𝑡
ഥ𝒗 ∙ ഥ𝒗

2 ሶത𝒓 ∙ ത𝒓 =
𝑑

𝑑𝑡
ത𝒓 ∙ ത𝒓 = 2𝑟

𝑑𝑟

𝑑𝑡



Conservation of Specific Mechanical Energy
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Substituting…

1

2

𝑑

𝑑𝑡
ഥ𝒗 ∙ ഥ𝒗 +

μ

𝑟3
1

2

𝑑

𝑑𝑡
ത𝒓 ∙ ത𝒓 = 𝟎

Which becomes…

1

2

𝑑 𝑣2

𝑑𝑡
+

μ

𝑟3
1

2

𝑑 𝑟2

𝑑𝑡
= 𝟎



Conservation of Specific Mechanical Energy
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This becomes…

1

2

𝑑 𝑣2

𝑑𝑡
+

μ

𝑟3
𝑟
𝑑𝑟

𝑑𝑡
= 𝟎

Rearranging and simplifying…

𝑑

𝑑𝑡

𝑣2

2
+
𝜇

𝑟2
𝑑𝑟

𝑑𝑡
= 𝟎



Conservation of Specific Mechanical Energy
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Integrating with respect to time…

𝑣2

2
−
𝜇

𝑟
= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

The first term is recognized as the kinetic energy per unit mass and the 
second term is gravitational potential energy per unit mass.  The quantity is 
constant and the specific mechanical energy is conserved.

Adapted from:  Bate, R. R., Mueller, D. D., and White, J. E., Fundamentals of Astrodynamics, Dover Publications, New York, 1971 and
http://docplayer.net/11209890-Orbital-mechanics-and-space-geometry.html



Conservation of Specific Angular Momentum
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Conversation of specific angular momentum (i.e., momentum per unit mass) 
may be shown taking the cross product of ത𝒓 and the governing differential 
equation…

ത𝒓 × ሷത𝒓 + ത𝒓 ×
μ

𝑟3
ത𝒓 = 𝟎

We note that a vector crossed with itself it is 𝟎.  The equation simplifies to…

ത𝒓 × ሷത𝒓 = 𝟎

From:  Bate, R. R., Mueller, D. D., and White, J. E., Fundamentals of Astrodynamics, Dover Publications, New York, 1971.



Conservation of Specific Angular Momentum
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We also note that…

𝑑

𝑑𝑡
ത𝒓 × ሶത𝒓 = ሶത𝒓 × ሶത𝒓 + ത𝒓 × ሷത𝒓

We note ሶത𝒓 × ሶത𝒓 = 𝟎.  The equation simplifies to…

𝑑

𝑑𝑡
ത𝒓 × ሶത𝒓 = ത𝒓 × ሷത𝒓 = 𝟎

From:  Bate, R. R., Mueller, D. D., and White, J. E., Fundamentals of Astrodynamics, Dover Publications, New York, 1971.



Conservation of Specific Angular Momentum
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Finally, we recognize that ሶത𝒓 = ഥ𝒗 so the equation becomes…

𝑑

𝑑𝑡
ത𝒓 × ഥ𝒗 = 𝟎

where ഥ𝒉 = ത𝒓 × ഥ𝒗 is recognized as the specific angular momentum and we 
have shown that this does not change with time…

ഥ𝒉 = ത𝒓 × ഥ𝒗 = 𝒄𝒐𝒏𝒔𝒕𝒂𝒏𝒕

From:  Bate, R. R., Mueller, D. D., and White, J. E., Fundamentals of Astrodynamics, Dover Publications, New York, 1971.



Derivation of Kepler’s Laws
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Now that we have the governing differential equation, the conservation of, 
both, specific mechanical energy and specific angular momentum, we are 
ready to derive Kepler’s laws.



Kepler’s First Law
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The orbit of each 
planet is an ellipse*, 
with the sun as a 
focus.

*Actually, other orbit 
shapes are possible 
and are described by 
the “conic sections.”

Orbits of the Inner Planets



Kepler’s First Law

But what is a “conic 
section”?

Take a cone and cut it with a 
plane at different angles

The shapes appearing at the 
cutting plane are also the 
shapes of the orbits.

56



Starting with the governing differential equation:

ሷത𝒓 +
μ

𝑟3
ത𝒓 = 𝟎

Re-arrange to get:

ሷത𝒓 = −
μ

𝑟3
ത𝒓

Form the cross product with the angular momentum vector:

ሷത𝒓 × ഥ𝒉 = −
μ

𝑟3
ത𝒓 × ഥ𝒉 =

μ

𝑟3
ഥ𝒉 × ത𝒓

Kepler’s First Law

57
From:  Bate, R. R., Mueller, D. D., and White, J. E., Fundamentals of Astrodynamics, Dover Publications, New York, 1971.



Let’s examine this equation in more detail:

ሷത𝒓 × ഥ𝒉 =
μ

𝑟3
ഥ𝒉 × ത𝒓

We see that:

ሷത𝒓 × ഥ𝒉 = ሷത𝒓 × ഥ𝒉 + ሶത𝒓 × ሶഥ𝒉 =
𝑑

𝑑𝑡
ሶത𝒓 × ഥ𝒉

μ

𝑟3
ഥ𝒉 × ത𝒓 =

μ

𝑟3
ത𝒓 × ഥ𝒗 × ത𝒓 =

μ

𝑟3
ഥ𝒗 ത𝒓 ∙ ത𝒓 − ത𝒓 ത𝒓 ∙ ഥ𝒗

Kepler’s First Law
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0

From:  Bate, R. R., Mueller, D. D., and White, J. E., Fundamentals of Astrodynamics, Dover Publications, New York, 1971.



And, within the triple vector triple product ത𝒓 × ഥ𝒗 × ത𝒓:

ത𝒓 × ഥ𝒗 × ത𝒓 = ഥ𝒗 ത𝒓 ∙ ത𝒓 − ത𝒓 ത𝒓 ∙ ഥ𝒗

We note that:

ത𝒓 ∙ ഥ𝒗 = ത𝒓 ∙ ሶത𝒓 = 𝑟ො𝒓 ∙
𝑑𝑟

𝑑𝑡
ො𝒓 + 𝑟

𝑑𝜃

𝑑𝑡
෡𝜽 = 𝑟 ሶ𝑟

We end up with:

μ

𝑟3
ഥ𝒉 × ത𝒓 =

𝜇

𝑟
ഥ𝒗 −

𝜇 ሶ𝑟

𝑟2
ത𝒓

Kepler’s First Law

59
From:  https://en.wikipedia.org/wiki/Vector_algebra_relations
From:  Bate, R. R., Mueller, D. D., and White, J. E., Fundamentals of Astrodynamics, Dover Publications, New York, 1971.



Further simplification yields:

𝜇

𝑟
ഥ𝒗 −

𝜇 ሶ𝑟

𝑟2
ത𝒓 = 𝜇

𝑑

𝑑𝑡

ത𝒓

𝑟

Our equation becomes:

𝑑

𝑑𝑡
ሶത𝒓 × ഥ𝒉 = 𝜇

𝑑

𝑑𝑡

ത𝒓

𝑟

Kepler’s First Law

60
From:  Bate, R. R., Mueller, D. D., and White, J. E., Fundamentals of Astrodynamics, Dover Publications, New York, 1971.



Repeating for convenience:

𝑑

𝑑𝑡
ሶത𝒓 × ഥ𝒉 = 𝜇

𝑑

𝑑𝑡

ത𝒓

𝑟

Integrating the above equation:

ሶത𝒓 × ഥ𝒉 = 𝜇
ത𝒓

𝑟
+ ഥ𝑩

Where ഥ𝑩 is a vector constant.

Kepler’s First Law

61
From:  Bate, R. R., Mueller, D. D., and White, J. E., Fundamentals of Astrodynamics, Dover Publications, New York, 1971.



Kepler’s First Law
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Dot both sides of the equation with ത𝒓:

ത𝒓 ∙ ሶത𝒓 × ഥ𝒉 = ത𝒓 ∙ 𝜇
ത𝒓

𝑟
+ ത𝒓 ∙ ഥ𝑩

And since:

ത𝒓 ∙ ሶത𝒓 × ഥ𝒉 = ത𝒓 × ሶത𝒓 ∙ ഥ𝒉 = ത𝒓 × ഥ𝒗 ∙ ഥ𝒉 = ℎ2

ത𝒓 ∙ 𝜇
ത𝒓

𝑟
= ത𝒓 ∙ 𝜇ො𝒓 = 𝑟ො𝒓 ∙ 𝜇ො𝒓 = 𝜇𝑟

ത𝒓 ∙ ഥ𝑩 = 𝑟𝐵 cos 𝜈
From:  Bate, R. R., Mueller, D. D., and White, J. E., Fundamentals of Astrodynamics, Dover Publications, New York, 1971.



The equation simplifies to:

ℎ2 = 𝜇𝑟 + 𝑟𝐵 cos 𝜈

Rearranging gives:

𝑟 =
ൗℎ2
𝜇

1 + ൗ𝐵 𝜇 cos 𝜈

Kepler’s First Law

63
From:  Bate, R. R., Mueller, D. D., and White, J. E., Fundamentals of Astrodynamics, Dover Publications, New York, 1971.



We see that the equation is in the same form as the general equation for a 
conic section in polar coordinates:

𝑟 =
ൗℎ2
𝜇

1 + ൗ𝐵 𝜇 cos 𝜈

𝑟 =
𝑝

1 + 𝑒 cos 𝜈
=

𝑎 1 − 𝑒2

1 + 𝑒 cos 𝜈

The parameter, 𝑎, is the semimajor axis and 𝑒 is the orbit eccentricity.

Kepler’s First Law

64
From:  Bate, R. R., Mueller, D. D., and White, J. E., Fundamentals of Astrodynamics, Dover Publications, New York, 1971.



The form of the equation confirms that orbits derived under these 
assumptions take the shape of the conic sections and is dependent upon the 
orbit eccentricity, 𝑒:

Let’s take a look at some orbits representing each orbit type.

Kepler’s First Law

65

Eccentricity Orbit Shape

𝑒 = 0 Circle

0 < 𝑒 < 1 Ellipse

𝑒 = 1 Parabola

𝑒 > 1 Hyperbola

From:  Bate, R. R., Mueller, D. D., and White, J. E., Fundamentals of Astrodynamics, Dover Publications, New York, 1971.



Circular Orbit
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Circular orbits maintain a 
constant distance from 
their central body.

Orbit eccentricity, 𝑒 = 0.

Many Earth satellites have 
circular orbits.

The International Space 
Station is in a circular orbit. Example:  International Space Station Orbit



Elliptical Orbit
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Orbit eccentricity, 0 < 𝑒 < 1.

An elliptical orbit traces out an 
ellipse with the central body at 
one focus.

Comets such as 103P/Hartley 2 
are in elliptical orbits with a 
period of 6.46 years (𝑒 = 0.694).

Example:  Comet Hartley 2 Orbit

Image Credit:  NASA/Steele Hill;  Inset Image Credit:  NASA/JPL-Caltech/UMD



Parabolic Orbit
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When orbit eccentricity, 𝑒 = 1, 
we have parabolic orbit.

“Within observational 
uncertainty, long term comets all 
seem to have parabolic orbits. 
That suggests they are not truly 
interstellar, but are loosely 
attached to the Sun. They are 
generally classified as belonging 
the Oort cloud on the fringes of 
the solar system, at distances 
estimated at 100,000 AU.”

Source:  https://www-spof.gsfc.nasa.gov/stargaze/Scomets.htm
Image Credit:  https://solarsystem.nasa.gov/resources/491/oort-cloud/

The Oort Cloud



Hyperbolic Orbit
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Orbit eccentricity, 𝑒 > 1;

For objects passing through 
the solar system, a 
hyperbolic orbit suggests 
an interstellar origin --
Asteroid Oumuamua was 
discovered in 2017 and is 
first known object of this 
type 𝑒 = 1.19951 .

Example:  Asteroid Oumuamua

Video Credit: https://solarsystem.nasa.gov/asteroids-comets-and-meteors/comets/oumuamua/in-depth/
Source:  https://en.wikipedia.org/wiki/%CA%BBOumuamua



We saw that the equation is in the same form as the general equation for a 
conic section in polar coordinates:

𝑟 =
𝑝

1 + 𝑒 cos 𝜈
=

𝑎 1 − 𝑒2

1 + 𝑒 cos 𝜈

where 𝑎 and 𝑒 are constants and 𝜈 is the true anomaly.  For a planet orbiting 
the sun, 𝑟 is a minimum (a.k.a, perihelion) when 𝜈 = 0° and 𝑟 is maximum 
(a.k.a., aphelion) when 𝜈 = 180°.

Example:  Determining Solar Flux Using 
Kepler’s First Law

70



At Earth’s mean distance from the sun (i.e., 1 𝑎𝑢), the measured solar flux is 
on the order of 1371 Τ𝑊 𝑚2.

We can determine the solar flux at any distance, 𝑟 (measured in 𝑎𝑢) from 
the sun by noting:

ሶ𝑞𝑠𝑜𝑙𝑎𝑟 𝑟 =
1371 Τ𝑊 𝑚2

𝑟2

Example:  Determining Solar Flux Using 
Kepler’s First Law
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Solar flux values for the planets are readily calculated:

Example:  Determining Solar Flux Using 
Kepler’s First Law

72

Planet Semimajor
Axis, 𝑎 (𝑎𝑢)

Orbit Eccentricity, 
𝑒

Perihelion
Distance (𝑎𝑢)

Aphelion 
Distance (𝑎𝑢)

Solar Flux at 
Perihelion

Τ𝑾 𝒎𝟐

Solar Flux at 
Aphelion 

Τ𝑾 𝒎𝟐

Mercury 0.3871 0.2056 0.3075 0.4667 14498.23 6294.87

Venus 0.7233 0.0067 0.7185 0.7282 2655.86 2585.63

Earth 1.0000 0.0167 0.9833 1.0167 1417.96 1326.33

Mars 1.5235 0.0935 1.3811 1.6660 718.79 493.97

Jupiter 5.2043 0.0489 4.9499 5.4588 55.96 46.01

Saturn 9.5824 0.0565 9.0410 10.1238 16.77 13.38

Uranus 19.2009 0.0457 18.3235 20.0784 4.08 3.40

Neptune 30.0472 0.0113 29.7077 30.3867 1.55 1.48

Semimajor axis and eccentricity data from: nssdc.gsfc.nasa.gov



Kepler’s Second Law
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The line joining the 
planet to the sun 
sweeps out equal 
areas, 𝐴 in equal 
times, ∆𝑡.

𝑨𝟏

𝑨𝟐

∆𝒕𝟏

∆𝒕𝟐
𝐴1 = 𝐴2

∆𝑡1= ∆𝑡2

Demonstration of Constant “Areal” Velocity



Kepler’s Second Law
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We begin with our previously derived expression for the angular momentum 
vector, ഥ𝒉:

ഥ𝒉 = ത𝒓 × ഥ𝒗

And recalling the expressions for vectors ത𝒓 and ഥ𝒗:

ത𝒓 = 𝑟ො𝒓

ഥ𝒗 =
𝑑𝑟

𝑑𝑡
ො𝒓 + 𝑟

𝑑𝜃

𝑑𝑡
෡𝜽



Kepler’s Second Law
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The expression for ഥ𝒉 is, then:

ഥ𝒉 = ത𝒓 × ഥ𝒗 =

ො𝒓 ෡𝜽 ෡𝒌
𝑟 0 0
𝑑𝑟

𝑑𝑡
𝑟
𝑑𝜃

𝑑𝑡
0

= 𝑟2
𝑑𝜃

𝑑𝑡
෡𝒌

The magnitude of this vector is:

ℎ = ഥ𝒉 = 𝑟2
𝑑𝜃

𝑑𝑡



Kepler’s Second Law
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We showed previously that the specific 
angular momentum is constant…

ℎ = 𝑟2
𝑑𝜃

𝑑𝑡
= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

We also recognize that the area swept out 
over time is simply one half of the specific 
angular momentum…

𝑑𝐴

𝑑𝑡
=
1

2
ℎ =

1

2
𝑟2
𝑑𝜃

𝑑𝑡
= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

𝜃
𝑟

𝑟𝑑𝜃



Kepler’s Second Law

77

Consider another approach…

𝑑𝐴 =
1

2
𝑟 𝑑𝑟 sin 𝛼

If we let the differential area, 𝑑𝐴 be 
represented as a vector, 𝒅𝑨 …

𝒅𝑨 =
1

2
ത𝒓 × 𝒅𝒓

From:  https://radio.astro.gla.ac.uk/a1dynamics/keplerproofs.pdf

𝑑𝐴

ത𝒓

𝒅𝒓𝛼



Kepler’s Second Law
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From:  https://radio.astro.gla.ac.uk/a1dynamics/keplerproofs.pdf

Differentiate with respect to time…

ሶഥ𝑨 =
𝒅𝑨

𝒅𝒕
=
1

2
ത𝒓 × ሶത𝒓

Differentiate again…

ሷഥ𝑨 =
ሶ𝒅𝑨

𝒅𝒕
=

1

2
ത𝒓 × ሶത𝒓 =

1

2
ሶത𝒓 × ሶത𝒓 + ത𝒓 × ሷത𝒓 =0

So 
𝒅𝑨

𝒅𝒕
= 𝒄𝒐𝒏𝒔𝒕𝒂𝒏𝒕

0 0

Vector 
crossed 
with itself

Vectors pointed 
in same 
direction

𝑑𝐴

ത𝒓

𝒅𝒓𝛼



Example:  Using Kepler’s Second Law to 
Determine How Solar Flux Varies with Time
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We saw that knowing the shape of a planet’s orbit (aphelion and perihelion 
distances) and the solar flux at 1 𝑎𝑢 could be used to determine the 
minimum and maximum solar flux.

In this example, we’ll calculate how the solar flux for Earth varies with time 
throughout the year.

In doing so, we’ll compare a simplified model with a more accurate 
representation accounting for Kepler’s Second Law.



Example:  Using Kepler’s Second Law to 
Determine How Solar Flux Varies with Time
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A consequence of Kepler’s Second Law is that to sweep out equal areas in 
equal times, a planet (or moon or spacecraft) orbiting a central body (i.e., 
the sun, a planet, moon, etc.) must move through its orbit faster at some 
locations and slower at others.

In other words, the angular rate at which the orbiting body moves around 
its orbit of the central body changes depending on where it is in its orbit.



Example:  Using Kepler’s Second Law to 
Determine How Solar Flux Varies with Time
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Consider Earth’s orbit around the sun.  We know Earth makes one circuit of 
the sun in ~365.25 days.

If Earth’s orbit about the sun were circular, the angular rate would be:

ሶ𝜈 =
360°

365.25 𝑑𝑎𝑦𝑠
≈ 0.986 Τ° 𝑑𝑎𝑦



Example:  Using Kepler’s Second Law to 
Determine How Solar Flux Varies with Time
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But, Earth’s orbit about the sun isn’t circular, it is slightly elliptical with an 
𝑒 = 0.0167.

This elliptical shape is what gives rise to the aphelion and perihelion 
distances and, hence, the variation in solar flux.

But because of Kepler’s Second Law, the angular rate will vary depending 
on Earth’s distance from the sun.



Example:  Using Kepler’s Second Law to 
Determine How Solar Flux Varies with Time
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We see that the assuming the 
mean motion for Earth’s orbit 
(𝑒 = 0.0167) about the sun 
is a reasonable approximation 
to the slightly elliptical orbit.  
This due to the very low 
eccentricity of Earth’s orbit.  

Such an approximation will 
not work as well for planets 
with more eccentric orbits.
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Example:  Using Kepler’s Second Law to 
Determine How Solar Flux Varies with Time
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Consider Mars with an 
eccentricity, 𝑒 = 0.09339.

The time variation of flux is 
more pronounced due to the 
effect of Kepler’s Second 
Law.
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Kepler’s Third Law
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The square of the period, 𝑇 of a 
planet is proportional to the 
cube of its mean distance, 𝑎 to 
the sun (or its central body).

Τ2 ∝ 𝑎3

For the orbits at the right:

Τ𝑜𝑢𝑡𝑒𝑟 𝑜𝑟𝑏𝑖𝑡 = 23 Τ𝑖𝑛𝑛𝑒𝑟 𝑜𝑟𝑏𝑖𝑡

𝑎

2𝑎

Orbits with Different Semimajor Axes



For an ellipse:

𝑎2 = 𝑏2 + 𝑐2

𝑒 =
𝑐

𝑎

𝑝 = 𝑎 1 − 𝑒2

𝑏 = 𝑎𝑝

𝐴 = 𝜋𝑎𝑏 = 2𝜋𝑎 Τ3 2 𝑝

𝑝 =
ℎ2

𝜇

Kepler’s Third Law

86

2𝑎

2𝑏

2𝑐

2𝑝

From:  Bate, Mueller and White, Fundamentals of Astrodynamics



We start with conservation of specific 
angular momentum:

ഥ𝒉 = ത𝒓 × ഥ𝒗

The magnitude of ഥ𝒉 is given by:

ℎ = 𝑟𝑣 sin 𝛾 = 𝑟𝑣 cos𝜙 = 𝑟𝑟 ሶ𝜈 = 𝑟2
𝑑𝜈

𝑑𝑡

Kepler’s Third Law
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𝜙
𝛾

ഥ𝒗

𝜈

Note:  𝑣 represents the velocity and 𝜈 is an angle – the true anomaly

From:  Bate, R. R., Mueller, D. D., and White, J. E., Fundamentals of Astrodynamics, Dover Publications, New York, 1971.



So the magnitude of the angular momentum becomes:

ℎ = 𝑟2
𝑑𝜈

𝑑𝑡

Rearranging:

𝑑𝑡 =
𝑟2

ℎ
𝑑𝜈

Kepler’s Third Law

88
From:  Bate, R. R., Mueller, D. D., and White, J. E., Fundamentals of Astrodynamics, Dover Publications, New York, 1971.



A differential area element in the ellipse is given by:

𝑑𝐴 =
1

2
𝑟2𝑑𝜈

So the expression becomes:

𝑑𝑡 =
2

ℎ
𝑑𝐴

Kepler’s Third Law

89
From:  Bate, R. R., Mueller, D. D., and White, J. E., Fundamentals of Astrodynamics, Dover Publications, New York, 1971.



Integrating and simplifying, we arrive at a mathematical expression for 
Kepler’s Third Law:

𝑇 =
2𝜋𝑎𝑏

ℎ
=
2𝜋𝑎 Τ3 2 𝑝

𝜇𝑝
= 2𝜋

𝑎3

𝜇

This law states:  The square of the period, 𝑇 of a planet (or spacecraft) is 
proportional to the cube of its mean distance, 𝑎 to the sun (or its central 
body).

𝑇2 =
4𝜋2

𝜇
𝑎3

Kepler’s Third Law

90
From:  Bate, R. R., Mueller, D. D., and White, J. E., Fundamentals of Astrodynamics, Dover Publications, New York, 1971.



Kepler’s Third Law
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As long as the 
semimajor axis, 𝑎 is 
the same, the orbit 
period will be the 
same;

At the right, each 
orbit has a different 
eccentricity, 𝑒 but 
both orbits have the 
same 𝑎.

2𝑎

2𝑎
𝑒 = 0.7

𝑒 = 0.0

Two Orbits with the Same Period



We see the orbital period is a function only of 𝑀 and 𝑎:

𝑇2 =
4𝜋2

𝜇
𝑎3 =

4𝜋2

𝐺𝑀
𝑎3

Where 𝑎 is the orbit semimajor axis, 𝐺 is Newton’s constant of gravitation, 
and 𝑀 is the mass of the central body, in this case, the Sun:

𝐺 = 6.67430 × 10−11 Τ𝑚3 𝑘𝑔 𝑠2

𝑀 = 1.988500 × 1030𝑘𝑔

Example:  Determining Planet Orbital Periods 
Using Kepler’s Third Law

92
Newton’s constant of gravitation from NIST.  Mass of Sun from NSSDC.



Calculating the orbit periods yields:

Example:  Determining Planet Orbital Periods 
Using Kepler’s Third Law

93

Planet Semimajor Axis, 
𝑎 (𝑎𝑢)

O𝐫𝐛𝐢𝐭𝐚𝐥 𝐏𝐞𝐫𝐢𝐨𝐝
∗

𝒀𝒆𝒂𝒓𝒔

Mercury 0.3871 0.24

Venus 0.7233 0.62

Earth 1.0000 1.00

Mars 1.5235 1.88

Jupiter 5.2043 11.88

Saturn 9.5824 29.68

Uranus 19.2009 84.20

Neptune 30.0472 164.82

From:  https://gea.esac.esa.int/archive/documentation/GDR2/Data_processing/chap_cu3ast/sec_cu3ast_prop/ssec_cu3ast_prop_ss.html
Semimajor axis data from nssdc.gsfc.nasa.gov

*Actual orbit period may differ slightly



Example:  Geostationary Orbit
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A geostationary orbit has a period of 
24 hours with an orbit inclination of 
0 degrees;

In this orbit, the spacecraft remains 
stationary over a specific location on 
Earth’s equator;

Geostationary orbits are used for 
communications satellites and 
weather satellites.

Animation Source:  https://www.star.nesdis.noaa.gov/GOES/fulldisk_band.php?sat=G16&band=GEOCOLOR&length=12

Earth as Seen from GOES 16



Example:  Geostationary Orbit
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At what altitude, 𝑑 must 
the satellite be positioned 
to be geostationary?

Τ = 2𝜋
𝑎3

𝜇

𝑎 =
3 𝜇Τ2

4𝜋2

𝑑 = 𝑎 − 𝑟𝑒 = ~35786 𝑘𝑚 (22,236 𝑚𝑖𝑙𝑒𝑠)

Geostationary Orbit

𝑎

Note: Earth’s radius, 𝑟𝑒 = ~6378.14 𝑘𝑚



Geostationary Orbit
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Since the location of a geostationary 
satellite is fixed, as the name implies, 
antennas on the ground need only 
point at a fixed point in space.

However, since the location of the 
spacecraft is somewhere in the 
equatorial plane, the angle at which 
the antenna points is dependent on 
the location on the ground as well as 
the spacecraft location.

Photos by author

~29.5 ° N Latitude ~59.9° N Latitude



In Part 2, we introduced the unperturbed two body problem and derived the 
governing differential equation.

We showed that the unperturbed two body problem obeys, both, 
conservation of specific mechanical energy as well as conservation of specific 
angular momentum.

We derived Kepler’s three laws of planetary motion and applied the laws to 
problems of interest to thermal engineers.

Part 2 – Wrap-Up

97



Part 3 -- Perturbed Orbits

98



Part 3 -- Contents
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In this section, we will consider the case of orbits where we account for 
effects of other forces acting on the orbit with focus on those arising from a 
non-spherical earth and we’ll see how these forces give rise to some effects 
that can be exploited to give the desired orbit.  

We’ll also see how these perturbations affect the thermal environment –
specifically the effect on the orbit beta angle and fraction of orbit in 
eclipse.  Numerous examples will be presented.  



Revisiting the Governing Differential Equation
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Recall our previous equation was derived for a body moving under the 
influence of only the gravity of a central body:

ሷത𝒓 +
μ

𝑟3
ത𝒓 = 𝟎

Some interesting things happen when there is a perturbing force such that:

ሷത𝒓 +
μ

𝑟3
ത𝒓 ≠ 𝟎



Perturbations
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There are many forces that can perturb an 
orbit including:

• Spherical harmonics
• Drag
• Radiation pressure
• Other celestial bodies
• Tidal forces
• Mass concentrations
• etc.

Lunar Gravity Anomalies Measured by 
NASA’s GRAIL Mission

Image Credits:  Earth 2014 Global Relief Model, C. Hirt, used with permission 
http://www.ngs.noaa.gov/PUBS_LIB/Geodesy4Layman/80003051.GIF
Image credit:  NASA/JPL-Caltech/CSM



Perturbations
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We will focus on two perturbations in this lesson, 
both arising from the non-spherical shape of the 
central body:

Precession of the Ascending Node – the orbit 
ascending node moves westward for orbits where 
𝑖 < 90° and eastward for orbits where 𝑖 > 90°
retrograde orbits.

Precession of the Periapsis – the orbit periapsis (i.e., 
the low point) moves in the direction of the orbiting 
spacecraft up to 𝑖 ≈ 63.4°and in the direction 
opposite the orbiting spacecraft for inclinations 
above this value.

Precession of the Orbit Ascending Node

Precession of the Orbit Periapsis



Perturbations
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Earth is not a perfect sphere.

The gravitational potential may be expressed as the summation 
of a number of terms more representative of the actual 
gravitational potential.

Each of these terms (harmonics) has an associated coefficient, 
𝐽𝑁 which multiplies a Legendre polynomial.

𝐽𝑁 are determined through experimental observation.

Even numbered harmonics are symmetric about the equator.

Odd numbered harmonics are antisymmetric.

Sectorial harmonics depend only on longitude.

Tesseral harmonics depend on, both, latitude and longitude.

From:  https://www.ngs.noaa.gov/PUBS_LIB/Geodesy4Layman/TR80003F.HTM
Other material adapted from: Bate, R. R., Mueller, D. D., and White, J. E., Fundamentals of Astrodynamics, Dover Publications, New York, 1971.



Perturbations
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Earth is not a perfect sphere -- it is oblate and has a slight bulge 
in the equatorial region and this imperfection gives rise to 
some major orbit perturbations;

Precession of the Ascending Node:

Precession of the Periapsis:

where 𝑛 = 2𝜋/𝑇 and 𝐽2 = 1.082626683 × 10−3 (for Earth)

Image Credit:  Earth 2014 Global Relief Model, C. Hirt, used with permission

𝑑Ω

𝑑𝑡
= ሶΩ =

−3𝐽2𝑛𝑟𝑒
2 cos 𝑖

2𝑎2 1 − 𝑒2 2

𝑑𝜔

𝑑𝑡
= ሶ𝜔 =

3𝐽2𝑛𝑟𝑒
2

4𝑎2 1 − 𝑒2 2
4 − 5 sin2 𝑖



Precession of the Ascending Node
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The oblateness perturbation 
causes the orbit ascending node 
to precess at the rate:

𝑑Ω

𝑑𝑡
= ሶΩ =

−3𝐽2𝑛𝑟𝑒
2 cos 𝑖

2𝑎2 1 − 𝑒2 2

For orbit inclinations, 𝑖 < 90°, 
precession is westward – when 
𝑖 > 90°, precession is eastward.

Precession of the Orbit Ascending Node

ሶ𝛀



Example:  Sun Synchronous Orbit
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Sun synchronous orbits 
are useful for Earth 
observation spacecraft 
because they are 
designed to pass over 
sunlit portions of the 
planet at the same “local 
solar” time – this results 
in consistent illumination 
conditions for 
observations;

Sun Synchronous Orbit



Example:  Sun Synchronous Orbit
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To achieve this, the orbit 
ascending node must maintain a 
consistent offset from the orbit 
subsolar point – this is 
accomplished by moving the orbit 
ascending node at the same rate 
the sun appears to move around 
the celestial sphere --to meet this 
condition :
ሶΩ ≈ 0.986 ൗ° 𝑑𝑎𝑦 𝐸𝐴𝑆𝑇𝑊𝐴𝑅𝐷

Daily Precession of the Ascending Node



Example:  Sun Synchronous Orbit
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Assuming a circular orbit 𝑒 = 0 ,
we see that combinations of 𝑖 and 𝑎
may be used to specify the desired 
orbit.

One such combination is 𝑖 = 98.2°
and 𝑎 = 7083 𝑘𝑚 (

)
𝑎𝑙𝑡𝑖𝑡𝑢𝑑𝑒 =

705 𝑘𝑚

ሶΩ =
−3𝐽2𝑛𝑟𝑒

2 cos 𝑖

2𝑎2 1 − 𝑒2 2

Daily Precession of the Ascending Node



Precession of the Periapsis
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The oblateness perturbation also 
causes the periapsis and apoapsis
to precess at the rate:

ሶ𝜔 =
3𝐽2𝑛𝑟𝑒

2

4𝑎2 1 − 𝑒2 2
4 − 5 sin2 𝑖

Precession is positive when    
4 − 5 sin2 𝑖 > 0 and negative 

when 4 − 5 sin2 𝑖 < 0 .

Precession of the Orbit Periapsis



Example:  Molniya Orbit
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Communication satellites in geostationary orbits over the equator are of little 
use to those living at higher latitudes because they appear low in the sky;

A satellite orbiting at a higher inclination is desired;

However, it won’t appear to remain over the same point on the ground;

A Molniya orbit may be used to cause the spacecraft to dwell at nearly the 
same point for long periods of time.



Example:  Molniya Orbit
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In order to “lock” the location of the apoapsis and periapsis in place, we 
desire an orbit where the rate of movement of the periapsis goes to zero:

𝑑𝜔

𝑑𝑡
= ሶ𝜔 =

3𝐽2𝑛𝑟𝑒
2

4𝑎2 1 − 𝑒2 2
4 − 5 sin2 𝑖 = 0

We see from the equation that this happens when:

4 − 5 sin2 𝑖 = 0

This is true when the inclination is 𝑖 = 63.4°



Example:  Molniya Orbit
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The spacecraft spends 
much of its orbit at high 
altitude, at high latitude, 
moving slowly -- appearing 
nearly stationary when 
near apoapsis;

Orbit is designed so that 
apoapsis stays “locked” 
into the same position 
over time. Molniya Type Orbit (Time points in red 

are 10 minutes apart)



The Effect of Orbit Perturbations on the 
Thermal Environment
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The precession of the ascending node changes the angle at which sunlight 
falls onto the orbit plane – this angle is referred to at the 𝛽 angle.  As 𝛽
changes, an orbiting spacecraft will experience a variety of thermal 
environments.

𝛽 angle is one parameter that affects how much environmental heating a 
spacecraft surface experiences.

𝛽 also affects how much time a spacecraft spends in eclipse.



The Beta Angle

114

The beta angle, 𝛽 is defined as the angle between the solar vector, ො𝒔 and its 
projection onto the orbit plane.

b

ො𝒔



The Celestial Inertial Coordinate System

115

Adapted from:  Space Station Reference Coordinate Systems, SSP 30219, Revision J, May 1, 2008  (found at: 
https://pims.grc.nasa.gov/plots/user/tibor/SSP%2030219J%20ISS%20Coord%20Systems.pdf )

In the celestial inertial coordinate 
system shown at the right, the 
𝑋𝐽2000 − 𝑌𝐽2000 plane is the mean 

Earth’s equator of epoch, the 
𝑋𝐽2000 axis is directed toward the 

mean vernal equinox of epoch, the 
𝑍𝐽2000 axis is directed along Earth’s 

mean rotational axis of epoch and 
is positive north, and the 𝑌𝐽2000 axis 

completes the right handed system.



The Beta Angle
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We define the 
solar vector, ො𝒔
as a unit vector 
in the celestial 
inertial 
coordinate 
system that 
points toward 
the sun.

g
(Vernal Equinox)

North

x

z

y

ො𝒔

𝜀 = 23.45°



The Beta Angle
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The apparent motion of the sun is 
constrained to the Ecliptic Plane 
and is governed by two 
parameters: Γ and 𝜀.

Γ is the Ecliptic True Solar 
Longitude and changes with date.  
Γ = 0° when the sun it at the 
Vernal Equinox.

𝜀 is the Obliquity of the Ecliptic
and, for Earth, is presently 23.45°

z

g
(Vernal Equinox)

North

x

y

Γ

ො𝒔

𝜀 = 23.45°



The Solar Vector
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We can form the solar vector via two Euler angle transformations:  first 
a rotation of the unit vector of e about the x-axis and then a rotation of 
G about the new z-axis.

Unit Vector,
No Rotation

First Rotation,
e about x-axis

z

Second Rotation,
G about new z-axis



The Solar Vector
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Mathematically, the transformation is expressed as:

ො𝒔 =
1 0 0
0 cos 𝜀 − sin 𝜀
0 sin 𝜀 cos 𝜀

cos Γ − sin Γ 0
sin Γ cos Γ 0
0 0 1

1
0
0

=
cos Γ

sin Γ cos 𝜀
sin Γ sin 𝜀



The Orbit Normal Vector
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x

y

g
(Vernal Equinox)

North

z

In the same celestial inertial coordinate system, we define the vector, ෝ𝒐, 
as a unit vector pointing normal to the orbit plane.

ෝ𝒐



The Orbit Normal Vector
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𝑖 is the Orbit Inclination --
a measure of angular tilt 
from the equatorial plane;

Ω is the Right Ascension of 
the Ascending Node -- a 
measure of angle between 
the x-axis at the point 
where the orbit cross the 
equatorial plane going 
from south to north.



The Orbit Normal Vector
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We can form the orbit normal vector via two Euler angle transformations:  
first a rotation of the unit vector of Ω about the z-axis and then a rotation 
of 𝑖 about the new x-axis.

Unit Vector,
No Rotation

First Rotation,
W about z-axis

Second Rotation, 
i about new x-axis



The Orbit Normal Vector
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Mathematically, the transformation is expressed as:

ෝ𝒐 =
cos Ω − sinΩ 0
sinΩ cos Ω 0
0 0 1

1 0 0
0 cos 𝑖 − sin 𝑖
0 sin 𝑖 cos 𝑖

0
0
1

=
sinΩ sin 𝑖
−cosΩ sin 𝑖

cos 𝑖



Calculating the Beta Angle
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To most calculate the angle 
between a vector, ො𝒔 and a plane, 
it is necessary to determine the 
angle between the vector and a 
vector normal to the plane, 
denoted here by 𝜑;

The angle between the vector of 
interest and the orbit plane, 

then, is β = 𝜑 −
𝜋

2
radians.

𝜑

𝛽

ො𝒔

Vector normal to the 
orbit plane



Calculating the Beta Angle
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The beta angle, β then, is given by:

cos𝜑 = ෝ𝒐 ∙ ො𝒔 =
𝑠𝑖𝑛 𝛺 𝑠𝑖𝑛 𝑖
−𝑐𝑜𝑠 𝛺 𝑠𝑖𝑛 𝑖

𝑐𝑜𝑠 𝑖

𝑇 𝑐𝑜𝑠 𝛤
𝑠𝑖𝑛 𝛤 𝑐𝑜𝑠 𝜀
𝑠𝑖𝑛 𝛤 𝑠𝑖𝑛 𝜀

cos𝜑 = cos Γ sinΩ sin 𝑖 − sin Γ cos 𝜀 cosΩ sin 𝑖 + sin Γ sin 𝜀 cos 𝑖

But, since β = 𝜑 −
𝜋

2
radians:

𝛽 = sin−1 cos Γ sinΩ sin 𝑖 − sin Γ cos 𝜀 cosΩ sin 𝑖 + sin Γ sin 𝜀 cos 𝑖



Calculating the Beta Angle
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We see that 𝛽 is limited by:

𝛽 = ± 𝜀 + 𝑖

over the range of −90° ≤ 𝛽 ≤ +90° −
𝜋

2
≤ 𝛽 ≤ +

𝜋

2

Beta angles where the sun is north of the orbit plane are considered 
positive and beta angles where the sun is south of the orbit are 
considered negative.



Variation of the Beta Angle Due to Seasonal 
Variation and Orbit Precession
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Representative Profile:
Altitude = 408 km, Circular
Inclination = 51.6 °

Number of Days Since Vernal Equinox

B
et

a 
A

n
gl

e
 (
°)

Note:  This is one of many possible profiles



Consequences of Beta Angle Variation

128

As 𝛽 changes, there are two consequences of interest to thermal 
engineers:

1)  The time spent in eclipse (i.e., planet shadow) varies;

2)  The intensity and direction of heating incident on spacecraft 
surfaces changes;

Let's explore each of these effects.



Eclipse: Umbra and Penumbra
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Umbral region - sunlight is completely obscured;

Penumbral region - sunlight is partially obscured.

Note:  Diagram not to scale



Orbital Sunset:  From Penumbra to Umbra
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Earth

Earth

Earth

Earth

EarthEarth

Earth

Earth Earth

NASA Photos



Eclipse: Umbra and Penumbra
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Umbral Shadow Cone
(Exaggerated ~4X)

Cylindrical Shadow Approximation

If time in penumbra is minimal (i.e., if it can be neglected), analysis may 
be simplified using a cylindrical shadow assumption.



Geometry for Eclipse Calculation 
(Low, Circular Orbit Only)
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We create a new coordinate system (subscripted with 𝛽) where the sun is 
always in the 𝑥𝑦-plane and the orbit is inclined b:

𝒚𝜷 is into the page

𝒛𝜷

𝒙𝜷
𝛽

𝑟𝑒



Geometry for Eclipse Calculation 
(Low, Circular Orbit Only)
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Looking down onto the orbit plane gives us this geometry (when b = 0°).

𝒛𝜷 is out of the page

𝒙𝜷

𝒚𝜷

𝑟𝑒

𝜃

ℎ

ത𝒓
ഥ𝒓′



Geometry for Eclipse Calculation 
(Low, Circular Orbit Only)
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We seek an expression for ഥ𝒓′ which is a projection of ത𝒓 onto the 𝑦𝛽𝑧𝛽 -

plane.

𝒛𝜷 is out of the page

𝒙𝜷

𝒚𝜷

𝑟𝑒

𝜃

ℎ

ത𝒓
ഥ𝒓′



Geometry for Eclipse Calculation 
(Low, Circular Orbit Only)
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When ഥ𝒓′ < 𝑟𝑒, the spacecraft is in the umbral shadow.

𝒛𝜷 is out of the page

𝒙𝜷

𝒚𝜷

𝑟𝑒

𝜃

ℎ

ത𝒓
ഥ𝒓′



Calculating Umbral Eclipse Entry
(Low, Circular Orbit Only)
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The spacecraft position vector, ത𝒓, can be expressed as a function of altitude 
above planet, ℎ, planet radius, 𝑟𝑒, angle from orbit noon, 𝜃, and beta angle, 
𝛽:

The projection of this vector onto the 𝑦𝛽𝑧𝛽 -plane is given by:



Calculating Umbral Eclipse Entry
(Low, Circular Orbit Only)
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And the magnitude is given by:

The onset of shadowing occurs when ഥ𝒓′ < 𝑟𝑒 :



Calculating Umbral Eclipse Entry/Exit
(Low, Circular Orbit Only)
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Now that the 𝜃 of eclipse onset is known, it is a simple matter to determine 
the entire eclipse period for a circular orbit by noting that the total angle 
shadowed is 2 𝜋 − 𝜃 :

2 𝜋 − 𝜃

𝜃

𝜃



Fraction of Orbit Spent in Sunlight/Eclipse
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The fraction of orbit spent in sunlight and eclipse for a circular orbit is clearly 
related to 𝛽:  

b Angle (°)

Fr
ac

ti
o

n
 o

f 
O

rb
it Fraction Spent 

in Sunlight

Fraction Spent 
in Eclipse

408 km (220 nm) Circular Orbit



Example:  Eclipse Season for a Geostationary 
Orbit
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Geostationary orbits, as we saw earlier, have an orbit inclination, 𝑖 = 0° with 
respect to the equator.

Since the orbit inclination is zero, the limits of  𝛽 are:

𝛽 = ± 𝜀 + 𝑖 = ± 23.45° + 0° = ±23.45°

Therefore, we expect to see only a seasonal variation in 𝛽 and, hence, 
spacecraft eclipse.

This gives rise to “eclipse seasons” for geostationary spacecraft.



Example:  Eclipse Season for a Geostationary 
Orbit

141Note:  Altitude adjusted slightly so as to produce an orbit period of 1 day.
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Example:  Eclipse Season for a Geostationary 
Orbit

142Note:  Altitude adjusted slightly so as to produce an orbit period of 1 day.
Screen shots from:  Thermal Desktop® by Cullimore and Ring Technologies, Inc. for visualization purposes only
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Example:  ISS Orbit
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Example:  Sun Synchronous Orbit
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Sun synchronous orbits are designed such that the orbit ascending node 
moves in the same direction and at the same average rate as the sun’s motion 
about the ecliptic plane.  

This can be accomplished by selecting the right combination of altitude, ℎ and 
inclination, 𝑖.  But note that in all cases, 𝑖 must be > 90°.

For our example:
ℎ = 705 𝑘𝑚
𝑖 = 98.2°



Example:  Sun Synchronous Orbit
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Example:  What if the Orbit Isn’t Quite Sun 
Synchronous
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Effect of Beta Angle on Flux Incident on 
Spacecraft Surfaces
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Note:  Side 3 not
shown

4
6

2 1
5

Note:  Side 1 is “Zenith” facing.  Side 2 is “Nadir” facing.

𝛽

𝛽



In Part 3, we considered the effect of orbit perturbations arising from Earth’s 
oblateness.  This led to our understanding of the precession of the orbit 
ascending node and the precession of the orbit periapsis.  These 
perturbations can be exploited to create useful orbits such as the sun 
synchronous and the Molniya orbits.

The effect of the perturbations on the beta angle and the consequences for 
spacecraft eclipse were discussed.

Part 3 – Wrap-Up
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Part 4 – Advanced Orbit Concepts
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In this lesson, we’ll briefly discuss a number of advanced orbit concepts 
including:

• Transfer Orbit
• Orbit Plane Change
• Aerobraking Orbit
• Gravity Assists
• The Restricted Three-Body Problem
• Halo Orbits
• Artemis I
• Gateway (Near Rectilinear Halo Orbit)
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Transfer Orbit
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Transfer orbits are used to raise a spacecraft orbit after launch.

They are also used for interplanetary trajectories.

Orbits are changed by changing the energy of the orbit.

It is useful to consider the minimum energy required to attain the desired 
orbit transfer.

This minimum energy trajectory is referred to as a Hohmann transfer.



Transfer Orbit
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We desire an interplanetary trajectory to take 
us from Planet 1 (shown at departure) to Planet 
2 (shown at arrival), in co-planar, circular orbits;

The lowest energy transfer orbit occurs when 
the speed change, ∆𝑣 is the lowest (and also 
takes the longest);

For the circular orbits, Planet 1 is traveling at 
velocity, 𝑣1 and Planet 2 is traveling at velocity, 
𝑣2.

From: Bate, R. R., Mueller, D. D., and White, J. E., Fundamentals of Astrodynamics, Dover Publications, New York, 1971.

𝑣1

𝑣2

Planet 1

Planet 2

𝑟1

𝑟2

Interplanetary
Trajectory



Transfer Orbit
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For a successful transfer, we need to 
ensure the extent of our new orbit 
reaches from one planet to the other;

We have constructed half an ellipse –
the semimajor axis of the transfer 
ellipse, 𝑎𝑡 is…

𝑎𝑡 =
𝑟1 + 𝑟2
2

From: Bate, R. R., Mueller, D. D., and White, J. E., Fundamentals of Astrodynamics, Dover Publications, New York, 1971.

𝑣1

𝑣2

Planet 1

Planet 2

𝑟1

𝑟2

Interplanetary
Trajectory



Transfer Orbit
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Recall, the total specific energy for an orbit is given by:  

𝐸 = −
𝜇

2𝑎

And note that the total specific energy of the orbit is the sum of the 
specific kinetic energy and specific gravitational potential energy:

𝐸 =
𝑣2

2
−
𝜇

𝑟

From:  https://en.wikipedia.org/wiki/Hohmann_transfer_orbit



Transfer Orbit
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Equating the two expressions for total specific energy…

−
𝜇

2𝑎
=
𝑣2

2
−
𝜇

𝑟

We can rearrange the equation to form an expression for the velocity, 𝑣…

𝑣 = 𝜇
2

𝑟
−
1

𝑎

Adapted from:  https://en.wikipedia.org/wiki/Hohmann_transfer_orbit



Transfer Orbit
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At Planet 1, we are already traveling at the circular orbit velocity, 𝑣1 …

𝑣1 = 𝜇
2

𝑟1
−
1

𝑟1
=

𝜇

𝑟1

But we need to be traveling at the transfer speed, 𝑣𝑡 at Planet 1 to be on 
the elliptical trajectory to Planet 2…

𝑣𝑡 = 𝜇
2

𝑟1
−

2

𝑟1 + 𝑟2
= 2𝜇

1

𝑟1
−

1

𝑟1 + 𝑟2
From:  https://en.wikipedia.org/wiki/Hohmann_transfer_orbit



Transfer Orbit
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So, the change in velocity, Δ𝑣 required to establish the transfer orbit from Planet 1 to 
Planet 2 is… 

∆𝑣 = 𝑣𝑡 − 𝑣1 = 2𝜇
1

𝑟1
−

1

𝑟1+𝑟2
−

𝜇

𝑟1
=

𝜇

𝑟1

2𝑟2

𝑟1+𝑟2
− 1

The time, 𝑇𝑡 it takes to travel from Planet 1 to Planet 2 is one half of the entire elliptical 
orbital period…

𝑇𝑡 =
1

2
2𝜋

𝑎𝑡
3

𝜇
= 𝜋

𝑟1 + 𝑟2
3

8𝜇

Adapted from:  https://en.wikipedia.org/wiki/Hohmann_transfer_orbit



Plane Change
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A plane change is used to change the inclination of 
a spacecraft’s orbit.

Consider the diagram at the right – the spacecraft is 
currently in the circular green orbit and the 
associated plane traveling at velocity , ҧ𝑣.

We wish to change the spacecraft orbit to the 
circular red orbit and its associated plane.

The difference in inclination between the orbit 
planes is an angle, 𝜃.

Note here, we are assuming 𝑣 = ഥ𝒗 = ഥ𝒗

𝜽

ഥ𝒗

ഥ𝒗

From: Bate, R. R., Mueller, D. D., and White, J. E., Fundamentals of Astrodynamics, Dover Publications, New York, 1971.



Plane Change
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Let’s examine the velocity vectors 
more closely.

We see to change the trajectory 
from the green velocity vector to 
the red velocity vector, a change in 
velocity by ∆𝒗 is required. 

∆𝑣 = ∆𝒗 = 2𝑣 sin
𝜃

2

𝜽

ഥ𝒗

ഥ𝒗

∆𝒗

From: Bate, R. R., Mueller, D. D., and White, J. E., Fundamentals of Astrodynamics, Dover Publications, New York, 1971.



Aerobraking Orbit
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Excerpt from:  https://mgs-mager.gsfc.nasa.gov/overview/aerobraking.html

Aerobraking is a technique used to reduce the 
amount of fuel required to slow down a 
spacecraft.

This was used for Mars Global Surveyor (MGS) 
spacecraft as it approached Mars. 

The MGS spacecraft used the drag of the Martian 
atmosphere on its solar panels to slow down as an 
alternative to using thrusters. 

The duration of the aerobraking phase is directly 
related to how fast Mars' relatively thin 
atmosphere reduces the spacecraft's velocity. 



Gravity Assist Orbit
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Image Credit:  NASA/JPL/Caltech
https://www.jpl.nasa.gov/images/juno/earthflyby/JunoCruiseTraj_20130815.jpg

Spacecraft orbits may be 
redirected using gravity assist 
maneuvers where a close fly-by 
of a planet is be used to change 
the direction of and orbit and 
add energy to it.

Juno Spacecraft Trajectory
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𝑳𝟒

𝑳𝟏
𝑳𝟐𝑳𝟑

𝑳𝟓

When two large masses, 𝑚1 and 
𝑚2, are orbiting one another, 
regions in space can serve as 
gravitational nodes where 
spacecraft or other celestial bodies 
can collect – these are called 
Lagrange points;

𝐿1, 𝐿2 and 𝐿3 and unstable.
𝐿4 and 𝐿5 are stable.

𝒎𝟏
𝒎𝟐

𝒎𝟏
𝒎𝟐

Dynamics of the Three-Body System

The Restricted Three Body Problem



Three Body Orbits
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Animation Credit:  CAS/Petr Scheirich.  Used with permission.
Source:  https://en.wikipedia.org/wiki/Jupiter_trojan

In 1772, using three-body 
assumptions, Joseph-Louis 
Lagrange believed asteroids 
might be trapped near the L4 
and L5 points because they are 
stable;

The first confirmed observation 
of a Jupiter Trojan was made by 
Max Wolf in 1906.

Jupiter’s Trojan Asteroids



Three Body Orbits
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Image Credit:  NASA
https://www.nasa.gov/images/content/463480main_lagrange_point_lg_1.jpg

Lagrange points are also 
used for spacecraft;

The James Webb Space 
Telescope (JWST) will be 
located at the Sun-Earth 
L2 point.

JWST Orbit at the Earth-Moon L2 Point



Three Body Orbits
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Image Credit:  NOAA
Video Credit:  DSCOVR: EPIC Team

The DSCOVR 
spacecraft is 
located at 
the Sun-
Earth L1 
point.

The Earth-Moon System as 
Seen from the DSCOVR 

Spacecraft

DSCOVR Spacecraft at the Sun-Earth L1 
Point



Halo Orbits

166Graphics from:  Farquhar, R. W., The Utilization of Halo Orbits in Advanced Lunar Operations, X-551-70-449, NASA Goddard Space Flight Center, December 1970

A halo orbit can 
be established 
about the Earth-
Moon L2 point to 
serve as a 
communication 
link between the 
lunar far side and 
Earth.

Lunar Far-Side Communications with a Halo Satellite

Halo orbit as seen from Earth



Artemis I

167https://www.nasa.gov/image-feature/artemis-i-map



Gateway

168https://www.nasa.gov/sites/default/files/atoms/files/cislunar-update-gerstenmaier-crusan-v5a_tagged_0.pdf



In Part 4, we considered some advanced orbit concepts. 

Transfer orbits are useful for changing from one orbit to another such as in interplanetary 
missions.

An orbit plane change can be used to change the inclination of an orbit.

Aerobraking orbits can be used to lower an orbit by using passes through an atmosphere 
to remove energy from the orbit.

Gravity assists can be employed in interplanetary missions to impart additional energy to a 
spacecraft.

Part 4 – Wrap-Up
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Study of the Restricted Three-Body Problem explains the existence of asteroids at Lagrange 
points. Solutions to the Three Body Problem are also useful for the placement of spacecraft 
such as the James Webb Space Telescope. 

Halo Orbits are useful for continuous communications with the lunar far side.

Upcoming missions such as Artemis I require more complex orbit solutions to 
accommodate mission requirements as it travels between the Earth and Moon.

The Gateway outpost is planned to use a Near Rectilinear Halo Orbit to allow easy access, 
provide the desired environment, meet communications requirements, serve as a science 
platform, and support surface operations.

Part 4 – Wrap-Up (Continued)
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Part 5 -- Spacecraft Attitudes
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In this fifth and final part of the lesson, we’ll focus on spacecraft attitudes.  We’ll 

discuss, both, the Local Vertical – Local Horizontal and Celestial Inertial reference frames 

and provide an attitude transformation strategy.

These transformations orient spacecraft surfaces with respect to the solar, albedo and 

planetary heating sources.  We’ll spend some time showing how to calculate the view 

factor to these sources.

Finally, we’ll tie it all together with an illustrative example.



Spacecraft Attitudes

Spacecraft attitude, in concert with the orbit is important to thermal 
engineers as these must be known to determine the on-orbit thermal 
environment required to determine spacecraft thermal response.

As we have seen, the orbit is used to determine the distance from the 
sun and, hence, the magnitude of the solar flux.  This, in turn, affects 
albedo and planetary heating components.  The evolution of the orbit 
over time affects periods of spacecraft eclipse and the orbit beta angle.

The attitude is required to determine where on the spacecraft the 
environment is applied.

173



Reference Frames
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A reference frame can be thought of as a basis or starting point for a 
subsequent series of rotations.

All axes of the coordinate system to be subsequently transformed are 
aligned with the principal axes of the reference frame coordinate 
system.

In other words, no rotations have yet taken place.



Reference Frames
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Consider the Euler rotation sequence shown below – the rotations must 
be referenced to some starting point which we will call the reference 
frame.

Ƹ𝒊

Ƹ𝒋

෡𝒌

Ƹ𝒊

Ƹ𝒋

෡𝒌

Ƹ𝒊′

Ƹ𝒋′

෡𝒌′

Ƹ𝒊

Ƹ𝒋

෡𝒌

Ƹ𝒊′

Ƹ𝒋′

෡𝒌′

Ƹ𝒊′′

Ƹ𝒋′′෡𝒌′′

Reference Frame After One Rotation (𝑥 −axis) After Two Rotations (𝑥 −axis, 
then 𝑦 −axis)



Vehicle Body Axes
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But if we want to 
transform a spacecraft 
within a reference frame, 
we must establish a 
meaningful coordinate 
system on the spacecraft.

As an example, consider 
the body axes designated 
for the Space Shuttle 
Orbiter.

From:  Davis, L. D., Coordinate Systems for the Space Shuttle Program, NASA Technical Memorandum, JSC-09084, NASA TM X-58153, October 1974



Vehicle Body Axes
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As another 
example, here 
is the 
coordinate 
system 
definition for 
the 
International 
Space Station.

From:  Space Station Reference Coordinate Systems, SSP 30219, Revision J, May 1, 2008  (found at: 
https://pims.grc.nasa.gov/plots/user/tibor/SSP%2030219J%20ISS%20Coord%20Systems.pdf )



Local Vertical-Local Horizontal (LVLH)
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From:  Space Station Reference Coordinate Systems, SSP 30219, Revision J, May 1, 2008  (found at: 
https://pims.grc.nasa.gov/plots/user/tibor/SSP%2030219J%20ISS%20Coord%20Systems.pdf )

In the local vertical-local 
horizontal frame shown at the 
right, the 𝑋𝐿𝑂 − 𝑍𝐿𝑂 plane is the 
instantaneous orbit plane at the 
time of interest, the 𝑌𝐿𝑂 axis is 
normal to the orbit plane, 
𝑍𝐿𝑂 points toward the center of 
the planet, and the 𝑋𝐿𝑂 axis 
completes the right handed 
system and is positive in the 
direction of motion.



Celestial Inertial (CI)
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Adapted from:  Space Station Reference Coordinate Systems, SSP 30219, Revision J, May 1, 2008  (found at: 
https://pims.grc.nasa.gov/plots/user/tibor/SSP%2030219J%20ISS%20Coord%20Systems.pdf )

In the celestial inertial coordinate 
system shown at the right, the 
𝑋𝐽2000 − 𝑌𝐽2000 plane is the mean 

Earth’s equator of epoch, the 
𝑋𝐽2000 axis is directed toward the 

mean vernal equinox of epoch, the 
𝑍𝐽2000 axis is directed along Earth’s 

mean rotational axis of epoch and 
is positive north, and the 𝑌𝐽2000 axis 

completes the right handed system.



Comparing LVLH and CI Reference Frames
(No Rotations)
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Images created using:  Thermal Desktop® by Cullimore and Ring Technologies, Inc.

LVLH Coordinate System Progression
Throughout Orbit

CI Coordinate System Progression
Throughout Orbit

In both images:
+𝒙 axis
+𝒚 axis
+𝒛 axis



Attitude Transformation Strategy
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Our ultimate strategy is to transform surface normals (representing 
spacecraft surfaces of interest) into the same coordinate system in which 
unit vectors describing the location of the sun and planet are expressed;

Once all vectors are transformed, angles between vectors of interest may 
be calculated and view factors to the sun and planet may be readily 
determined;

It is most convenient to transform all surface normal vectors into the 
celestial inertial system.



Transforming Attitudes in CI
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If a spacecraft is flying in a celestial inertial reference frame, then unit 
vectors representing surface normals are transformed as follows, 
assuming a pitch, yaw, roll sequence executed in the specified order: 

𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑑 𝑉𝑒𝑐𝑡𝑜𝑟𝑠 = 𝑃 𝑌 𝑅 𝑈𝑛𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑑 𝑉𝑒𝑐𝑡𝑜𝑟𝑠

where…
𝑃 is a 𝑦-axis transformation matrix
𝑌 is a 𝑧-axis transformation matrix
𝑅 is an 𝑥-axis transformation matrix



Transforming LVLH into CI
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For a spacecraft flying in the local vertical-local horizontal frame, then unit 
vectors representing surface normals are transformed as follows, 
assuming a pitch, yaw, roll sequence executed in the specified order: 

𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑑 𝑉𝑒𝑐𝑡𝑜𝑟𝑠 = Ω 𝑖 𝜔 𝜈 𝑅𝐸𝐹 𝑃 𝑌 𝑅 𝑈𝑛𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑑 𝑉𝑒𝑐𝑡𝑜𝑟𝑠

where…
Ω is a z-axis transformation matrix for orbit right ascension
𝑖 is an x-axis transformation matrix for orbit inclination
𝜔 is a z-axis transformation matrix for argument of periapsis
𝜈 is a z-axis transformation matrix for true anomaly
𝑅𝐸𝐹 is the reference change matrix
𝑃 is a y-axis transformation matrix
𝑌 is a z-axis transformation matrix
𝑅 is an x-axis transformation matrix



Transforming LVLH into CI
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The reference change 
matrix 𝑅𝐸𝐹 is used to 
flip the LVLH reference 
coordinate system into 
the CI coordinate system.

𝑅𝐸𝐹 =
0 0 −1
1 0 0
0 −1 0

𝑥𝐿𝑉𝐿𝐻

𝑦𝐿𝑉𝐿𝐻

𝑧𝐿𝑉𝐿𝐻 𝑧𝐶𝐼

𝑥𝐶𝐼

𝑦𝐶𝐼



Aside:  View Factor to Planet as a Function of 
Orbit and Attitude

185Adapted from:  http://www.thermalradiation.net/sectionb/B-43.html

To determine the view factor from a planar spacecraft surface 
to the planet, we will consider the following geometry.

ҧ𝑟 is the vector from the spacecraft surface to the center of the 
central body – its magnitude is 𝑟𝑝 + ℎ

Θ is the angle between the surface normal and the vector to the 
center of the central body

Φ is the angle half angle subtended by the central body as seen from 
the planar surface

𝑟𝑝 is the central body radius

ℎ is the altitude above the planet



Aside:  View Factor to Planet as a Function of 
Orbit and Attitude

186Adapted from:  http://www.thermalradiation.net/sectionb/B-43.html
Note that the parameter definition for ℎ, and subsequently, 𝐻 presented here is different than that in the reference.

The view factor (𝑉𝐹𝑝𝑙𝑎𝑛𝑒𝑡) from the plate to the central body (i.e., planet) is:

𝐻 =
𝑟𝑝+ℎ

𝑟𝑝
and     Φ = sin−1 Τ1 𝐻

For 
𝜋

2
−Φ ≤ Θ ≤

𝜋

2
+Φ:

𝑉𝐹𝑝𝑙𝑎𝑛𝑒𝑡 =
1

2
−
1

𝜋
sin−1

𝐻2 − 1 Τ1 2

𝐻 sinΘ
+

1

𝜋𝐻2 cosΘ cos−1 − 𝐻2 − 1 Τ1 2 cot Θ − 𝐻2 − 1 Τ1 2 1 − 𝐻2𝑐𝑜𝑠2Θ Τ1 2

For Θ ≤
𝜋

2
−Φ:

𝑉𝐹𝑝𝑙𝑎𝑛𝑒𝑡 =
cosΘ

𝐻2



Example:  Heating to Spacecraft Surfaces as a 
Function of Orbit and Attitude
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Using ℎ and 𝑟𝑝, , we can determine Φ. 

To determine Θ, we will also need the orientation of the spacecraft 
surface with respect to the planet and to do that, we will need to perform 
attitude transformations to determine the direction of the surface normal 
of interest.



Example:  Heating to Spacecraft Surfaces as a 
Function of Orbit and Attitude
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A cubical spacecraft circular Earth orbit is oriented 
in a 𝑃 = −45°, 𝑌 = 0°, 𝑅 = 0° Euler angle 
sequence in the local vertical/local horizontal 
reference frame.  

For the specified orbit and environment 
parameters, determine the solar, albedo and 
planetary heating flux on the surface pointing 45 
toward the nadir from the velocity vector (i.e., 
ram) direction as a function of time.

Also determine the beta angle profile over time 
assuming only the 𝐽2 oblateness perturbation and 
calculate the percent of time spent in eclipse.

Parameter Value

ℎ 500 𝑘𝑚

𝑒 0.0

𝑖 28.5°

Ω 270°

𝜔 𝑈𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑

Date/Time 𝑀𝑎𝑟𝑐ℎ 20, 2020 03: 49 𝑈𝑇𝐶

ሶ𝑞𝑠𝑜𝑙𝑎𝑟 1371 Τ𝑊 𝑚2

𝑎 0.3

ሶ𝑞𝑂𝐿𝑅 237 Τ𝑊 𝑚2

Date/Time info for 2020 vernal equinox from:  https://www.timeanddate.com/calendar/march-equinox.html



Example:  Heating to Spacecraft Surfaces as a 
Function of Orbit and Attitude
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𝑥 𝑦

𝑧

𝑅𝑜𝑙𝑙, 𝑅

𝑃𝑖𝑡𝑐ℎ, 𝑃

𝑌𝑎𝑤, 𝑌

Box in LVLH Reference Position Box Pitched -45 deg

𝒙

𝒚

𝒛

Images created using:  Thermal Desktop® by Cullimore and Ring Technologies, Inc.



Example:  Heating to Spacecraft Surfaces as a 
Function of Orbit and Attitude

190

We form the unit vector for the surface 
normal facing in the +𝑥 direction in the 
spacecraft body coordinate system.

𝒏 =
1
0
0

We will be calculating heating for this 
surface once it is tilted 45 degrees 
toward nadir.

𝑥 𝑦

𝑧

ෝ𝒏



Example:  Heating to Spacecraft Surfaces as a 
Function of Orbit and Attitude
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Next, we form the Euler angle sequence to transform the +𝑥 facing 
unit vector through the prescribed pitch, yaw and roll formation.  
Executing the rotation sequence in this order requires first, a 𝑦 −axis 
rotation, then a z-axis rotation, and finally, an 𝑥 −axis rotation.

𝑃 𝑌 𝑅 =
cos 𝑃 0 sin 𝑃
0 1 0

− sin𝑃 0 cos 𝑃

cos 𝑌 −sin𝑌 0
sin 𝑌 cos 𝑌 0
0 0 1

1 0 0
0 cos 𝑅 − sin𝑅
0 sin𝑅 cos 𝑅

1
0
0

𝒙 − 𝒂𝒙𝒊𝒔𝒚 − 𝒂𝒙𝒊𝒔 𝒛 − 𝒂𝒙𝒊𝒔



Example:  Heating to Spacecraft Surfaces as a 
Function of Orbit and Attitude
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We must also form the Euler angle sequence to position the spacecraft within 
the reference frame.  Remember, we ultimately aim to express everything in the 
celestial inertial (CI) coordinate system so these transformations transform from 
LVLH to CI.

Ω 𝑖 𝜔 𝜈 =
cosΩ −sinΩ 0
sinΩ cosΩ 0
0 0 1

cos 𝑖 0 sin 𝑖
0 1 0

− sin 𝑖 0 cos 𝑖

cos𝜔 −sin𝜔 0
sin𝜔 cos𝜔 0
0 0 1

cos 𝜈 −sin 𝜈 0
sin 𝜈 cos 𝜈 0
0 0 1

Note:  For circular orbits, the argument of periapsis is undefined so a value of 
𝜔 = 0° is used and the corresponding matrix 𝝎 becomes the identity matrix.

𝒚 − 𝒂𝒙𝒊𝒔 𝒛 − 𝒂𝒙𝒊𝒔 𝒛 − 𝒂𝒙𝒊𝒔𝒛 − 𝒂𝒙𝒊𝒔
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Remember, to complete the transformation from LVLH to CI coordinates, 
the reference change matrix must be applied.

𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑑 𝑉𝑒𝑐𝑡𝑜𝑟𝑠 = Ω 𝑖 𝜔 𝜈
0 0 −1
1 0 0
0 −1 0

𝑃 𝑌 𝑅 𝑈𝑛𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑑 𝑉𝑒𝑐𝑡𝑜𝑟𝑠
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To calculate the angle between the transformed surface normal and the center of the 
Earth, we see that a unit vector that points from the center of the Earth to the 
spacecraft location is given by

ො𝒓 = Ω 𝑖 𝜔 𝜈
1
0
0

But we need a vector that points from the spacecraft to the Earth which is given by:

−ො𝒓 = Ω 𝑖 𝜔 𝜈
−1
0
0



Example:  Heating to Spacecraft Surfaces as a 
Function of Orbit and Attitude

195

To calculate the angle between a transformed surface normal and the center of the 
Earth (COE):

cos 𝐴𝑛𝑔𝑙𝑒 𝑡𝑜 𝐶𝑂𝐸 = Ω 𝑖 𝜔 𝜈
−1
0
0

∙ 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑑 𝑆𝑢𝑟𝑓𝑎𝑐𝑒 𝑁𝑜𝑟𝑚𝑎𝑙
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To calculate the angle between the transformed surface normal and the sun, we can 
use our previously derived expression for the solar vector

ො𝒔 =
1 0 0
0 cos 𝜀 − sin 𝜀
0 sin 𝜀 cos 𝜀

cos Γ − sin Γ 0
sin Γ cos Γ 0
0 0 1

1
0
0

=
cos Γ

sin Γ cos 𝜀
sin Γ sin 𝜀

The angle between the solar vector and a transformed surface normal is:

cos 𝐴𝑛𝑔𝑙𝑒 𝑡𝑜 𝑆𝑢𝑛 =
cos Γ

sin Γ cos 𝜀
sin Γ sin 𝜀

∙ 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑑 𝑆𝑢𝑟𝑓𝑎𝑐𝑒 𝑁𝑜𝑟𝑚𝑎𝑙

For a flat surface, the view factor to the sun, 𝑉𝐹𝑠𝑜𝑙𝑎𝑟 = cos 𝐴𝑛𝑔𝑙𝑒 𝑡𝑜 𝑆𝑢𝑛 when the 
𝐴𝑛𝑔𝑙𝑒 𝑡𝑜 𝑡ℎ𝑒 𝑆𝑢𝑛 < 90°.
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We calculate the angle from the 
unit normal to the center of the 
Earth (COE) and to the sun.

From this, we can calculate the 
view factor to the planet (if 
altitude is known) as well as the 
sun.
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Once the view factors are known, the solar, albedo and 
planetary (OLR) fluxes incident on the plate are calculated using:

ሶ𝑞𝑠𝑜𝑙𝑎𝑟,𝑛𝑜𝑑𝑒 𝑡 = ሶ𝑞𝑠𝑜𝑙𝑎𝑟𝑉𝐹𝑠𝑜𝑙𝑎𝑟 𝑡

ሶ𝑞𝑎𝑙𝑏𝑒𝑑𝑜,𝑛𝑜𝑑𝑒 𝑡 = 𝑎 ሶ𝑞𝑠𝑜𝑙𝑎𝑟𝑉𝐹𝑝𝑙𝑎𝑛𝑒𝑡 𝑡 cos 𝜃 𝑡

ሶ𝑞𝑂𝐿𝑅,𝑛𝑜𝑑𝑒 𝑡 = ሶ𝑞𝑂𝐿𝑅𝑉𝐹𝑝𝑙𝑎𝑛𝑒𝑡 𝑡

where…

𝜃 𝑡 = cos−1 ෢𝒓 𝒕 ∙ ෢𝒔 𝒕 is the angle between the solar vector 

and the vector from the center of the Earth to the spacecraft 
and applies only when cos 𝜃 > 0

The plot also includes calculation of eclipse entry and exit.

Note:  The albedo model is highly simplified and is used for illustrative purposes only.
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We can calculate the 
progression of the 
angle throughout the 
year* as well as the 
time spent in 
sunlight/shadow.

*Note:  This example is for illustrative purposes only as it considers perturbation from the 𝐽2 term only.  Other 
perturbations would likely change this profile.
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In this fifth and final part of the lesson, we focused on spacecraft attitudes.  

We discussed, both, the Local Vertical – Local Horizontal and Celestial Inertial 
reference frames and demonstrated an attitude transformation strategy.

These transformations were used to orient spacecraft surfaces with respect to 
the solar, albedo and planetary heating sources.  View factors to the sun and 
planet were calculated and used to calculate heating to a spacecraft surface.

Part 5 – Wrap-Up

200



Conclusion
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To fully understand on orbit thermal environments, knowledge of orbital mechanics 
and spacecraft attitudes is required.

An introduction to orbital mechanics with focus on the two-body problem has been 
presented.

Numerous examples demonstrating the effect of orbital parameters and progression 
on parameters of interest to thermal engineers has been demonstrated.

Spacecraft attitudes and reference frames were introduced and their effect on 
thermal environments experienced by orbiting spacecraft was examined.
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