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ARTICLE INFO ABSTRACT

Air quality monitoring (AQM) is crucial for cities to develop management plans supporting population health.
However, there is a dearth of measurements due to the high cost of standard reference instruments. Mobile AQM
using low-cost sensors deployed on routine fleets of vehicles can enable the continuous detection of fine-scale
pollutant variations in cities at a lower cost. New methods need to be developed to interpret these measure-
ments. This paper presents three such methods. First, we propose a technique to identify aerosol hotspots.
Second, we employ techniques published previously to assess the generalizable map of fine and coarse particle
number concentrations, to understand qualitatively the contribution of local and regional sources across the
region sampled. By using the raw number concentration of differently sized particles from the Optical Particle
Counters (OPCs) instead of the noisier mass concentrations, we obtain more robust results. Third, in order to
evaluate source signatures in cities, we propose another technique, in which we cluster the entire range of
aerosol size-distribution measurements acquired. The properties of each cluster provide insight into the aerosol
source characteristics in the sampling environment. We test these methods using a dataset we collected by
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mounting OPCs on two trash-trucks in Cambridge, Massachusetts.

1. Introduction

Poor air quality is a major environmental health risk in cities. Air
quality monitoring is crucial for developing informed air quality man-
agement plans. However, setting up and maintaining air quality
monitors is expensive. Even in the United States, resource constraints
dictate that the regulatory air quality monitoring network is sparse,
with only 2-5 regulatory monitors per 1 million people or 1000 km? in
60 % of US census urban areas (Apte et al., 2017).

Furthermore, air pollutant concentrations in complex urban en-
vironments display high variability and sharp gradients over distances
as small as 10 m (Brantley et al., 2013; Van den Bossche et al., 2015).
To characterize the reactive-pollutant spatial variation in situ, even a
dense (but realistic) network of fixed air quality monitors cannot cap-
ture this variability. Mobile air quality monitoring can be used to obtain
air pollution concentrations at high spatial resolution with a smaller
number of monitors over a fixed period of time.
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The difficulty of working with mobile air quality monitoring data
arises from the combination of complex spatiotemporal sampling and
temporal air quality variability in different locations, related to traffic
dynamics, street topology, meteorology, background source strength,
etc. (Goel & Kumar, 2015; Van den Bossche et al., 2015). As mobile
sensors capture only a snapshot of air pollution at a given location and
time, this temporal variability makes it difficult to characterize the air
pollution at a given location based on these measurements alone. In
order to produce detailed, representative aggregate air quality maps,
large amounts of data over different meteorological and traffic condi-
tions would be required (Apte et al., 2017; Brantley et al., 2013).

‘Purpose-built’ mobile air quality monitoring labs often require
dedicated vehicles and trained research staff as drivers. For this reason,
most mobile air quality monitoring studies to date have been relatively
short-term campaigns and provide insufficient repetitive frequency to
reveal long-term spatial air quality trends in a city (Bukowiecki et al.,
2002; Kolb et al., 2004; Pirjola et al., 2012, 2004). Apte et al. (2017)
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conducted one of the first long-term mobile air quality monitoring
studies with a routine fleet of vehicles. Their study used high-quality
reference PM air quality monitors on Google Street View cars to re-
peatedly sample every street in Oakland, CA, over the course of a year.

On the other end of the spectrum of air quality monitors, the use of
low-cost monitors (costing less than USD $3000) is increasing (Kumar
et al., 2015; Morawska et al., 2018; Snyder et al., 2013), and several
community-based mobile monitoring studies have used these low-cost
instruments (Dutta et al., 2009; Elen et al., 2013). Mahajan and Kumar
(2020) have evaluated the use of low-cost sensors for quantifying per-
sonal exposure. Low-cost monitors offer the possibility of systematic air
quality monitoring even for resource-limited cities.

We add to this literature by developing new techniques to analyse
measurements from mobile low-cost sensors deployed on another rou-
tine fleet of vehicles: trash-trucks, which are deployed in nearly all
major cities globally. Specifically, we show how data from mobile, low-
cost sensors can be used: 1) to detect pollution hot spots from major,
fixed, possibly intermittent sources in the built environment, 2) to de-
velop a qualitative understanding of where local versus regional sources
dominate in a city, and 3) to identify pollutant source signatures on
different street segments. Such insights about air pollution can help city
managers develop effective air quality management plans.

Anjomshoaa et al. (2018) compared the utility scheduled vehicles,
such as trash-trucks, with non-scheduled vehicles, such as taxis, as
urban air quality sensing platforms in cities. Although taxis operate
24 h a day and potentially sample at a higher rate the busiest streets in a
city, there is no guarantee that they cover all streets. On the other hand,
although trash-trucks operate for short periods during the day, and
have a lower sampling frequency of most streets, they provide complete
spatial coverage of city streets. Therefore, using trash-trucks as a scal-
able sampling platform is worth investigating.

We test our techniques using measurements made in Cambridge,
Massachusetts, between April 21, 2017 and August 14, 2017, where we
deployed low-cost Optical Particle Counters (OPC-N2s) on two trash-
trucks as a pilot experiment.

The rest of this paper is organized as follows: Section 2 describes the
data used, the collection strategy, and the analysis methods. Section 3
presents the results obtained from applying the three methods sketched
out above to our Cambridge dataset. Lessons learned and practical
implications for future deployments are given in Section 4.

2. Materials
2.1. Low-cost particulate matter monitors

We use the data collected by Alphasense OPC-N2 monitors' de-
ployed on two trash-trucks in the City of Cambridge for a total of 27
days between April and August 2019, to gain qualitative insights into
potential sources of PM in this urban environment. The Alphasense
OPC-N2 sensor measures particle counts (Ng3g.17.5) in 16 size bins
ranging from 0.38 to 17.5 um (Table S1, Supplementary Information).
The OPC works by illuminating one particle at a time with focused laser
light and measuring the intensity of light scattered. The amount of
scattering from a particle is a function of the particle size. The instru-
ment is calibrated using monodisperse particles of known size to derive
counts for particles of different sizes.

The number and volume concentrations of particles can be obtained
by dividing the particle counts by the flow rate and sampling time. The
log-normal size distribution of particles at the midpoint of each dia-
meter bin can be calculated using Eq. (1):

L http://www.alphasense.com/index.php/products/optical-particle-counter/
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dN per volume of air at Dyigpoint = aN
din(D) " I (Dupper) — 1n(Diower)
1
flow rate X sampling time (@))]

where N is the number concentration of PM within a size bin
(#/mL), D is the diameter of the particles, Dypper, Diower @Nd Djdpoint
are the upper, lower and midpoint diameters of the OPC-N2 bins in
units of (um), AN is the number of particle-counts in each bin.

The particle counts agree well with reference instrument measure-
ments for coarser particles (> 0.78 pm), providing detection efficiency
ranging from 83 %-108 %, but the particle counts for finer particles
(< 0.78 um) are underestimated (detection efficiency ~78 % for mono-
disperse polystyrene spheres (Sousan, Koehler, Hallett, & Peters, 2016).
Despite the greater noise in the detection of particles in the lower bins,
the OPC measurements still provide useful information of the amount of
finer aerosol in the atmosphere, and we retain these bins in this ana-
lysis.

A partly proprietary Alphasense data reduction algorithm makes
assumptions about particle density and the number of particles with
diameters smaller than 0.38 um, to report PM;, PM, s and PM;,. These
assumptions create uncertainty in the PM values that vary based on the
ambient aerosol size distribution and density at the time of measure-
ment.

Although the Alphasense OPC-N2 monitors are thus of lower quality
than reference instruments, the particle number concentration mea-
surements in 16 size bins represent much better constraints on the true
values than the derived, size-resolved particle mass, as exemplified by
the work of Sousan et al. (2016). Such information can constrain the
aerosol size distribution over space, which can indicate local/regional
pollution sources, as we demonstrate in the current study. It must be
noted that If the aerosol is hygroscopic, under conditions of high hu-
midity (RH > 85 %) the OPC interprets the hydrated particles as larger
“dry” particles, and the reported number concentrations will have er-
rors (Crilley et al.,, 2018). The RH during times of measurement in
Cambridge was between 60-70 %, and therefore particle hydration is
unlikely to be a major concern during our experiment.

In addition to characterizing the variation of PM;, PM, 5 and PM;,
across our sampling route, we also aggregate the spatial variation of
particle number concentrations in different size bins derived from the
raw OPC-N2 measurements: N1 (Ng3g3, comprising particles with
diameters between 0.38 um and 1 um), and coarser particles: N12 (Nj.
12, covering particles with diameters between 1 pm and 12 pm).

For more information about the experiment design, the study area
and sampling protocol and the days on which sampling runs occurred in
Cambridge, MA, please refer to Section S1 in Supplementary
Information.

3. Methods

In this section we present three techniques designed to identify and
characterize PM, s hotspots, to estimate the generalised air pollution
over the sampled routes, and to analyze aerosol size distribution from
the OPC-N2s, yielding estimates of PM source signatures in different
parts of the sampling route.

3.1. Identification and characterization of PM s hotspots

We identified all measurements where PM, 5 > 100 ug/m?, that we
arbitrarily selected to be much higher than the EPA daily average
standard of 35 ug/m®. Such high measurements are substantially above
the background values in the study region, as presented subsequently,
and could either be 1) noise from the OPC-N2, or 2) an indicator of a
strong local source of pollution.

In order to identify measurements that were products of local
sources rather than noise, we used hierarchical clustering (Johnson,
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1967; Langfelder & Horvath, 2012) to cluster measurements made in
the same spatial area using a distance cut off of 100 m.

We calculated the number of measurements in each cluster, as well
as the number of unique days over which the measurements in each
cluster were made. Most clusters contained only a few measurements,
indicating that they could represent measurement noise. We thus only
focused on clusters that contained > 30 measurements, or those for
which the number of unique measurement days was greater than 1. We
characterized each cluster by calculating the average properties (PM;,
PM, 5, PMjo, N1, N12) of each cluster. The temporal nature of these
hotspots and their average properties allow us to deduce potentially
important local fixed sources that contribute to the hotspot formation.
This information is useful for planners in developing air pollution
management plans.

Even in locations where we see pollution hotspots, it is possible that
the source involved only operates for short periods of time, so typical
pollutant concentrations might be low. In the next subsection, we de-
scribe how we obtain the relative distribution of typical pollutant
concentrations across the trash-truck sampling route.

3.2. Methodology for estimating generalized air pollution over the sampled
routes

3.2.1. Pre-processing: background correction

To compare measurements made at the same location but on dif-
ferent days and at different times, we need to account for possible bias
created by diurnal variation in background aerosol number con-
centration and PM concentrations over the study region. We assume
that the background value varies temporally but not spatially over the
region.

We assessed the background contribution using three different
methods. The first method involves applying an hourly multiplicative
factor derived from concentrations reported by a reference air quality
monitor at a designated background site (Hagler et al., 2012; Van
Poppel, Peters, & Bleux, 2013). In our case, this requires using the
regulatory monitor at Boston’s North End (N:42.363, E:-71.055, 4 km
southeast of the center of the study region). Unfortunately, here is no
reference air quality monitor in Cambridge, the site of our experiment.
This technique involves uncertainties, in part because the OPC optical
measurements are not directly comparable to the reference monitor’s
gravimetric ones.

The second method, following (Bukowiecki et al., 2002), takes the
lowest 10th percentile of the pollutant concentrations for a given hour
during the run as the fixed background value for that run.

The third method uses a time-series, spline-of-minimums approach,
presented by Brantley et al. (2013), to estimate the background number
concentrations of finer particles: N1, N12, as well as PM, 5 for each day.
We did this by (a) applying a rolling 30-second mean to smooth the
measurements, (b) dividing the time series into discrete 10-minute
segments and locating the minimum concentration in each segment,
and (c) fitting a smooth, thin-plate regression spline through the
minimum concentrations. Note that on nine days the two OPCs were
operating simultaneously. We consider the total observations made for
a given day in this methodology, consistent with our assumption that
the background is temporally varying but spatially uniform.

We compared each of the three proposed methods to choose a
background pollution value, and found that they produced similar
corrected values. Specifically, the mean differences in the corrected N1,
N12 and PM, 5 values using the different methods were less than 5%.
The differences between the corrected values and the raw N1, N12 and
PM,s measurements were also less than 5% (Table S2 in
Supplementary Information). Given the minimal differences in back-
ground-corrected number concentrations and PM, 5 values vis a vis the
raw measurements using the different methods, we chose the splines-of-
minimum approach to obtain background concentrations for all pollu-
tants. This is supported by Brantley et al. (2013), who found this
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approach to be an effective way to account for background con-
centrations for a range of pollutants in their North Carolina study over a
variety of meteorological conditions and sampling routes.

Once the method for evaluating background air pollution was se-
lected, we performed a background time-of-day correction using
Equations 2 and 3 to account for the period during which the trucks
operated:

PMz 5,n0rm i= PMas,0pc, i X PMass, bkg,median / PMa2.5,bkg,i (2

where PM; 5 opc,; is the OPC measurement for event i, PMj 5 pig, ; is the
contemporaneous background value of pollution over the entire region,
and PMy 5, pikgmedian iS the median of the PMj s 1y values on the day of
measurement for the time period 07:00 to 14:00 h (local time).

However, Cambridge is a city with relatively clean air, so the
background PM, 5 is often very low. As a result, we apply an additive
rather than a multiplicative background-correction factor:

PMz 5norm i= PMasopc i - PMass, bkg,i + PMas, bkg,median 3

By subtracting the time-of-day-resolved regional background from
the pollution measurement, we can now compare local air pollution
over space. Note that, conversely, PM, s in Equations 2 and 3 can be
replaced with particle number concentrations (N1 or N12) to estimate
background-corrected aerosol number concentrations.

3.2.2. Estimating generalizable pollutant values across the sampling route

Given our large dataset (> 500,000 observations), we applied a
series of steps to convert the data into estimates of median concentra-
tions for individual road segments over all sampling runs. We con-
structed these road segment estimates by dividing the Cambridge street
network into segments of fixed lengths, using the ‘Locate Points Along
Lines’ QGIS Python Plugin (https://plugins.qgis.org/plugins/
LocatePoints/). We adopted a process for aggregating these data and
deriving sampling error from previous work (e.g., Apte et al. (2017)).

First, we spatially-aggregated all our mobile (1) background-ad-
justed PM,s, and (2) background-adjusted number-concentration
measurements for 0.38 um-17.5 pum particles from the OPC-N2s, by
snapping them to the road segment on which they were acquired. This
allows measurements made in the same segment to be analysed as a
group. This distance is small enough to capture pollutant-concentration
gradients, but is not so finely sliced that GPS errors overwhelm the
results. Therefore, we also use segment lengths of 30 m.

Second, we selected the median as an outlier-resistant metric of PM
and number concentration central tendency, as others have done (Apte
et al., 2017; Hankey & Marshall, 2015). We chose not to remove peak
concentrations caused by encounters with vehicle exhaust plumes, as
such plumes contribute to the particle concentration at a given location.
For comparison, we also calculated the mean values, with the under-
standing that individual outliers can significantly skew those results.

Third, we used a set of bootstrap resampling procedures to quantify
the effect of sample-to-sample variability and of sampling error on the
median concentrations. As a metric of precision, we used the ratio of
standard error of the median (mean) concentration to the median
(mean) concentration itself. In general, the average skew of the median
PM, 5 concentrations for the 30 m segments is ~0.9. This indicates that
the distributions are close to central tendency, with the mean slightly
greater than the median.

3.3. Working with the aerosol size distribution from the OPC-N2s

It is challenging to analyse the aerosol size distribution at each point
in time, because for each measurement Eq. (1) allows us to calculate the
size distribution at the midpoint of each of the 16 bins. We thus have 16
data points for each time-step. Pey et al. (2008) showed that aerosol
number and mass concentrations can be affected by multiple sources
and atmospheric processes.
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To simplify the analysis of the OPC size distributions systematically,
we clustered the size-bin observations (without background-correction)
using the k-means technique. The final cluster centres reflect particle
number size distributions representative of each cluster, thereby redu-
cing the complexity of the dataset (Beddows, Dall’Osto, & Harrison,
2009). This technique allows us to identify a small number of typical
aerosol size distributions that can be compared across space and time,
which can give us insights into the kinds of sources responsible for
measurements within a cluster.

Without access to the size distribution of the background aerosol, it
is impossible to perform a background correction on the aerosol size
distribution. However, by applying the k-means clustering technique on
the complete range of raw size distribution data, we are able to gain a
better understanding of the source attribution of aerosols in the sam-
pling route environment.

In order to choose the number of clusters, we examined the within-
group sum-of-squares error for cluster sizes ranging from 2 to 30 to
determine an optimum number of clusters. Fig. S3 in Supplementary
Information shows that the error in representing the full dataset de-
creases sharply between 1 and 4 or 5 clusters. When we applied k-
means clustering with more than 5 groups, the average size distribu-
tions of the newly created clusters had a similar shape to that of pre-
viously identified clusters, albeit with different total number con-
centrations. Normalizing the size distribution by the number
concentration of aerosols per measurement might have led to better
results. Unfortunately, because the OPC doesn’t detect particles with
diameters < 0.38 um, the total aerosol number concentration at each
measurement is unknown, and we were thus unable to normalize the
measured size distribution.

To avoid over-interpreting the data, we cluster the data into five
groups. We evaluated the average size distribution and the spatial and
temporal variation of each cluster to infer source characteristics and
assess the aerosol dynamics at work in our dataset.

4. Results and Discussion of the application of these techniques in
Cambridge

4.1. Hotspot identification

Fig. 1 shows the results of performing hierarchical clustering on
PM, 5 measurements > 100 ug/m> as described in Section 3.1. Forty-
four distinct clusters were identified. Thirty-seven of the clusters con-
tained fewer than 10 measurements made over the course of a unique
day, indicating that these spikes could be artefacts. We highlight in
Fig. 1 four of the seven other clusters of PM, 5 values recorded by the
OPC, where the number of measurements is > 30, or the number of
unique days over which the measurements are made are > 1.

Table S3 in Supplementary Information reports the number of
measurements that comprise each cluster and the number of unique
days over which measurements in each cluster were made. Table S3
also provides a google maps image of the location at which each cluster
was made. All of these clusters were only detected on a handful of days,
indicating the temporal intermittency of the local sources responsible
for these hotspots that we now explore. In addition, Fig. S4 in the
Supplementary Information depicts the average particle size distribu-
tion for each cluster. The Table associated with Fig. S4 reports the
average PM;, PM, s, N1, N12 for each cluster and the time at which the
measurements in each cluster were observed.

We now explore each of the four robust hotspots in detail:

1) Cluster 1 comprises 30 measurements of high PM, 5 values that were
made at the site marked ‘1’ in Fig. 1, which is an organic farm in
Rocky Hill Farm, in the city of Saugus, Massachusetts, also a site of
waste disposal. A smaller cluster comprising 11 measurements is
nearby. However, it is worth noting that on only one of the 27 days
of sampling a trash-truck travelled north to the Saugus dumping
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zone. (See Fig. S2 in Supplemental Information, which displays the
number of unique days over which each street along the trash-truck
routes was sampled.)

2) The location of cluster 2 is at the Department of Public Works,
where the trash-trucks are housed. This is the largest hotspot,
with > 1,800 PM, 5 measurements exceeding 100 ug/m?>. Although
the trash-trucks travelled to and from this location on every day of
their operation, such high PM, 5 values were seen on only three days
during the experiment.

3) The third cluster is located at a waste collection site in Roxbury,
Boston, MA. The number of unique days over which measurements
comprising this cluster were made is ten. This indicates that there is
likely a major, fairly consistent source of particulate matter at this
site.

4) The last PM, 5 cluster is on Hamlin Street, in Cambridge, close to a
large parking area and a park. It consists of 34 measurements made
over a span of two unique days.

The modal diameter of the aerosol distribution on Hamlin Street and
one of the clusters at Saugus (the smaller cluster, comprising 11 mea-
surements) is > 1 um, as seen in Table associated with Fig. S4. As most
combustion pollution particles tend to be well below 0.5um in dia-
meter, this suggests that local soil or dust particles make a large con-
tribution to pollution at these sites. From the Table associated with Fig.
S4, the high ratios of PM;o/PM, s for these clusters bolsters this hy-
pothesis. The shape of the average aerosol size distribution of the other
cluster at Saugus indicates a massive number concentration of fine
particles at this site, which is borne out by the low PM;,/PM, s, high N1
and low N12 concentrations. At Roxbury, the shape of the aerosol
distribution indicates a complex environment, with high concentrations
of fine as well as coarser particles. A massive number concentration of
coarse particles is found at the Cambridge Public Works Department.

Three of the four hotspot locations identified above are at waste
disposal sites, and the Cambridge Public Works Department con-
centration is likely due to the indoor housing of trash-trucks. In both
cases, it indicates that personnel, such as the trash-truck drivers, are
exposed to high pollution values at these locations. Stationary mon-
itoring would be required to measure air quality at the sites when the
trash-trucks are not present, to interpret these air pollution values
generally.

In the next subsection, we highlight the general values of pollution
across the sampling routes, taking into consideration all measurements
made over the period of study. This gives us information about the
‘typical’ sources that contribute to pollution at each location.

4.2. Spatial patterns

The median background-corrected concentration of PM,s, fine
particles (N1), and coarse particles (N12) are depicted in Fig. 2a, b and
c respectively. Fig. S5a (Supplementary Information) shows the median
PM, s on road segments where the normalised error in the median
PM, 5 derived from bootstrapping is <20 %, and the number of unique
days on which a road segment was sampled exceeds unity. Fig. S5b and
c are similar plots for N1, and N12. Fig. S5 thus shows us pollutant
values at locations along the sampling route for which we are reason-
ably confident to have estimated the ‘typical’ value of pollution during
the period of study.

Fig. 2a indicates that on average, PM, 5 in Cambridge is likely low
and uniform across the city for weekdays between 07:00 to 14:00 local
time, when and where the trash-trucks operate. Some of the locations
where high PM, 5 values are observed coincide with previously iden-
tified hotspots, such as at the Roxbury waste disposal/transfer site,
whereas at the Cambridge Public Depot and Hamlin Street, we see
PM, s observed are only moderately high, indicating that hotspots of
pollution in the latter locations are sporadic or atypical.

High values of PM, 5 over the period of study were also observed on
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Fig. 1. Locations of the centroid of clusters produced via hierarchical clustering described in Section 3.1. The color of the cluster represents the number of data points
in each cluster. The size of the cluster corresponds to the number of unique days of measurement corresponding to each cluster. Four large hotspots/clusters (number
of points in the cluster are > 10 and number of unique days of measurement > 1) are identified and numbered.

Prospect Street (close to the trash-truck depot), as well as on Broadway
across the Malden Bridge, near the Everett Casino construction site. As
the normalised error in the median is > 20 % (Fig. S5a), further gen-
eralizable statements about levels of pollution at these locations would
require more measurements. The sites with the highest PM, 5 values in
Fig. 2a also appear as hot spots for N1 (Fig. 2b) and N12 (Fig. 2c),
indicating high concentrations of both sub-micron and super-micron
particles. However, from Fig. S5b and c, as for PM, s, only the calcu-
lated ‘generalizable’ N1 and N12 concentrations at the Roxbury waste
transfer/disposal site is stable. More measurements need to be made at
the other locations to gain confidence in the ‘typical’ pollutant con-
centration levels at these locations. Other than these sites, the PM, 5
values observed during the sampling are much lower than the EPA daily
averaged standard of 35pug/m® overall, as well as the EPA annual
standard of 12 ug/m?>.

There are at least two reasons why the distribution of larger parti-
cles is likely to be more localized than that of fine particles: 1) Larger
particles tend to travel shorter distances than finer particles under si-
milar wind conditions (Wilson, Kingham, Pearce, & Sturman, 2005),
and 2) There are additional sources of fine particles. This is indeed the
case: Fig. S5c shows high local concentrations of N12 along Cambridge
Street, where we observed many construction projects going on during
the period of sampling. N1 is more dispersed along Cambridge Street
and its surrounding environs (Fig. S5b). In addition, high fine particle
concentrations on main roads, such as Brattle Street and Cambridge
Street, indicate that vehicular traffic in these areas are additional
sources of fine particulate matter.

4.3. Analysis of the size distribution of particulates monitored

As discussed in Section 3.3, we used K-means clustering to interpret
the OPC particle size-concentration data, and identified five clusters in
the optimal grouping. Unlike the hierarchical clustering method pre-
sented in Section 3.1, where similar measurements located within a
radius of 100 m of each other were grouped, we use the k-means ana-
lysis to identify signatures of similar sources across time and space. The
average size distribution of each cluster is shown in Fig. 3. Table 1 gives
the average pollutant concentrations and trash-truck velocity corre-
sponding to each cluster, as well as the number of days on which
measurements corresponding to each cluster were made.

Fig. 3 shows that the aerosol concentration mode values for clusters
3 and 5 occur at ~0.78 um diameter. Modes for clusters 1, 2, and 4
occur at diameters < 0.38 um. This indicates that the sources con-
tributing to the measurements in the different clusters are likely dis-
tinct. Fig. S6 in Supplementary Information is a map of the most fre-
quent cluster present on each 30-meter road segment in Cambridge.

Clusters 1 and 4, having the lowest contributions from particles
larger than 0.38 um, dominate in most parts of Cambridge. Cluster 4 is
dominant on main roads/major intersections on the sampling routes,
with high concentrations of background-corrected N1 (Fig. 2b). Al-
though from Table 1 the background concentration of PM, 5 makes up a
large fraction of the PM, s measured, it appears that measurements
corresponding cluster 1 are almost entirely due to background/regional
PM sources. Cluster 4, on the other hand, is composed of measurements
where vehicular traffic contributes noticeably to the aerosol load.

After clusters 1 and 4, cluster 2 is the most prevalent, with high
values of pollutants (though lower than that in clusters 3 and 5).
Observations corresponding to this cluster are observed on all 27 days.
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This could indicate that these observations were likely due to vehicles.
The number concentration of fine particles corresponding to cluster 2
are higher than for cluster 4, suggesting that these measurements might
be due to passing vehicular emission plumes.

From Fig. S7c and e, we see that clusters 3 and 5 correspond to a
small number of measurements made along the sampling route.
Measurements within cluster 3 were made in six different locations on
seven different days (Table 1). These locations correspond to the
smaller clusters of PM, s hotspots depicted in Fig. 1. Cluster 5 corre-
sponds only to observations at two locations made on two different days
(Table 1).

There is a spatial overlap between measurements in cluster 3 and 5.
Although the aerosol size distribution of clusters 3 and 5 appear to be
similar, the number concentration of measurements corresponding to
cluster 5 are higher. This could indicate that the sources contributing to
both clusters are the same, but due to either temporal variations of the
source characteristics, or via the mediation of the built environment,
different aerosol number concentrations were observed. From Table 1,
we see that both clusters 3 and 5 correspond to very low trash-truck
velocities. This could indicate that the trash-trucks were stationary or
idling when observations corresponding to these clusters were made.

5. Conclusions and practical implications

Our results indicate that the city of Cambridge air is relatively clean
and spatially uniform (PMysis < 10 pg/m3). Using low-cost OPCs, we
found that fine particles tended to concentrate along heavily trafficked
roads, and we identified several coarse-mode particle hotspots in close
proximity to likely sources, such as a waste transfer site and the
Cambridge Public Works depot. We recommend a future experiment to
validate these results, by co-locating the mobile low-cost monitors with
at least one high-quality instrument to calibrate and/or validate the
OPC measurements.

As background pollution appears to comprise a major fraction of the

Table 1

aerosol concentrations measured by the trash-trucks, in future deploy-
ments it is important to ensure that background pollution concentration
is well characterized, probably using measurements from nearby fixed
monitors located in areas away from local sources. We also note the
need to record when a stopped truck is idling and when it is at a halt
with the engine off, to better characterize self-emissions. We further
propose the development of a standard protocol that can be used by
different mobile air quality monitoring studies for other cities.

Our insights result from the deployment of low-cost monitors on
trash-trucks, which run from 07:00 to 14:00 on weekdays. Thus, in
future studies these measurements need to be supplemented by other
scheduled or non-scheduled vehicles that operate at different hours to
obtain truly representative pollution values over the region. Scheduled
vehicles, such as buses, have the advantage of traversing the same street
segments several times per day, whereas with unscheduled vehicles,
such as taxis, we can still use a relatively small fleet (if compared with
the total fleet of the city) to collect data in more randomly distributed
street segments not covered by buses.

Despite the limitations of the case study in Cambridge,
Massachusetts, this paper demonstrates that insights into the spatial
and temporal nature of sources and their impact in the urban en-
vironment can be obtained via low-cost monitors. Importantly, this
paper argues that the oft-discarded aerosol size distribution data from
the Alphasense OPC-N2 within the range of detection can yield in-
formation about air pollution in urban areas that have important im-
plications for air pollution management plans. Combining the deploy-
ment and analytical tools, we believe that mobile air quality monitoring
using existing urban vehicles can be done more extensively and rela-
tively inexpensively.
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