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Abstract52

Recent progress in computing and model development has initiated the era53

of global storm-resolving modeling and with it the potential to transform54

weather and climate prediction. Within the general theme of vetting this55

new class of models, the present study evaluates nine global-storm resolving56

models in their ability to simulate tropical cyclones. Results show that,57

broadly speaking, the models produce realistic tropical cyclones and remove58

longstanding issues known from global models such as the deficiency to59

accurately simulate TC intensity. However, TCs are strongly affected by60

model formulation, and all models suffer from unique biases regarding the61

number of cyclones, intensity, size, and structure. Some models simulated62

TCs better than others, but no single model was superior in every way. The63

overall results indicate that global storm-resolving models are able to open64

a new chapter in tropical cyclone prediction, but they need to be improved65

to unleash their full potential.66
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1. Introduction70

Tropical cyclones (TCs) are among the most destructive natural haz-71

ards, and predicting TCs is an important task of weather and climate72

models. Moreover, TCs are optimal testbeds for assessing the quality of73

numerical models, because their unique dynamics reveal deficiencies in the74

model formulation through artifacts such as unrealistic structure. The over-75

all purpose of the present study is to evaluate a new class of atmosphere76

models—global storm-resolving models (Satoh et al. 2019)—in their ability77

to simulate TCs. Specifically, we report on TC-related achievements, defi-78

ciencies, and biases in nine global storm-resolving models, and we hope that79

our findings will pave the way for improving the next generation of weather80

and climate models.81

Global models have been a vital instrument in TC prediction although82

they have not been able to accurately predict TC intensity. A decade ago,83

Hamill et al. (2011) reported that global weather models, which at that84

time had mesh spacings between 50–150 km, were plagued by wind speed85

biases of down to -30 m s−1. Even though some progress has been made,86
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the most recent model with mesh spacings of 10–25 km still fail to capture87

the high winds of TCs (e.g., Magnusson et al. 2019; Hodges and Klingaman88

2019; Roberts et al. 2020). One of the main reasons for this shortcoming is89

insufficient horizontal resolution (Davis 2018). In fact, years of research with90

regional models have documented that storm-resolving resolution, here de-91

fined as <5 km, is necessary to accurately simulate the inner-core structure92

of TCs (e.g., Chen et al. 2007; Gentry and Lackmann 2010), which in turn93

is necessary to predict TC intensity (e.g., Davis et al. 2008; Gopalakrishnan94

et al. 2012; Fox and Judt 2018).95

The preceding arguments suggest that global storm-resolving models96

are ideal tools for TC prediction, because they combine the advantages97

of current-generation global and regional models, that is, they offer global98

coverage and storm-resolving horizontal resolution. Indeed, there has been99

some qualitative evidence that global storm-resolving models capture the100

inner-core structure of TCs quite realistically (e.g., Fudeyasu et al. 2008;101

Zhou et al. 2019). Other studies have demonstrated that models with 7–102

10 km mesh spacings reduce some of the biases found in coarser-resolution103

models (Manganello et al. 2012; Nakano et al. 2017). However, the immense104

computational resources needed to run global models with mesh spacings105

of ≤5 km have so far precluded a detailed, TC-focused evaluation of those106

models. The present study attempts to fill this gap by evaluating the models107
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that participated in the DYAMOND initiative (Stevens et al. 2019), and108

it expands on the brief overview of TCs already presented in Stevens et al.109

(2019).110

Given computational limitations and the general purpose of DYAMOND,111

each participating model provided only one 40-day simulation. This means112

that it was not possible to evaluate the models as usually done in the weather113

prediction community, i.e., by computing errors of metrics such as maximum114

wind speed from a large number of short-range forecasts (e.g., DeMaria et al.115

2014; Nakano et al. 2017). It was also not possible to evaluate long-term116

TC climatologies as in climate studies (e.g., Camargo et al. 2005; Bengts-117

son et al. 2007; Manganello et al. 2012; Roberts et al. 2020). Instead, we118

focused on answering the following questions:119

• What are the biases in TC number, tracks, intensity, and size over120

those 40 days?121

• Do the models produce TCs with a realistic structure?122

• Do the models have similar biases, or does each model have its own?123

The validity of the study rests on three important assumptions, namely124

(i) the 40-day period of DYAMOND is sufficient to draw general conclusions125

about the TC characteristics in each model, (ii) objects identified as TCs126

by the tracking software (see section 2) would also be identified as TCs127
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by human forecasters (and vice versa), and (iii) the observations used to128

evaluate the models are sufficiently accurate.129

We are confident that (i) holds true because the discrepancies between130

the models were substantial and almost certainly caused by different model131

formulations. Furthermore, even though 40 days is relatively short, we have132

global statistics, and the sampling is not as sparse as one might intuit. It is133

more difficult to judge the validity of (ii) and (iii), but given the amount of134

past studies that relied on those assumptions, we assumed they would hold135

for this work, too.136

Lastly, we emphasize that high horizontal resolution is necessary but not137

sufficient for accurately simulating TC structure and intensity. Advances in138

ocean coupling and model physics are critical as well (e.g., Lee and Chen139

2014; Mogensen et al. 2017; Magnusson et al. 2019). One area that seems140

to be particularly important is the parameterization of the boundary layer141

(Kanada et al. 2012; Kepert 2012; Zhang et al. 2015) and the surface layer,142

especially the drag (Zeng et al. 2010; Green and Zhang 2013; Magnusson143

et al. 2019).144

The remainder of the paper is structured as follows: in section 2, we145

present the data and methods. Section 3 contains the results, organized146

into subsections on (i) TC number and tracks, (ii) intensity, (iii) size, (iv)147

structure, and (v) the sensitivity of TCs on resolution and parameterized148
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convection. The findings are discussed in section 4 and the paper ends with149

a summary and conclusions in section 5.150

2. Data and Methods151

This study leverages the vast data repository of DYAMOND, which152

contains the output from the following nine global models: ARPEGE, FV3,153

GEOS, ICON, IFS1, MPAS, NICAM, SAM, and UM. For details about154

the DYAMOND experiment and the participating models see Stevens et155

al. (2019) and references therein. The models were run on meshes with156

maximum spacings between 2.5 km (ARPEGE, ICON) and 7.8 km (UM).157

All models except GEOS were initialized with the 00 UTC 1 August 2016158

analysis from the European Centre for Medium-Range Weather Forecasts159

(ECMWF) and integrated for 40 days (1 August–10 September 2016). The160

sea surface temperature and sea ice fields were prescribed using 7-day run-161

ning mean analyses from ECMWF.162

To identify TCs in the model output, we employed the GFDL vortex163

tracker (Marchok 2002; Biswas et al. 2018). This software searches for TCs164

based on spatial minima and maxima in the following fields: (i) relative165

vorticity at 10 m, (ii) sea-level pressure, (iii) wind speed at 10 m, 850166

1The IFS model considered here is an experimental version of the operational IFS

model with 4-km mesh spacing and explicitly simulated deep convection
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hPa, and 700 hPa, and (iv) layer-mean temperature between 300-500 hPa167

(Marchok 2002). The tracker produces track files with 6-hourly records168

that contain TC location (latitude/longitude), maximum 10-m wind speed169

(vmax), minimum sea-level pressure (pmin), and wind radii r17, r25, and r32,170

i.e., the maximum radial extent of 17 m s−1, 25 m s−1, and 32 m s−1 winds171

in each compass quadrant (northeast, southeast, southwest, and northwest).172

To evaluate the models, we used best track data from the International173

Best Track Archive for Climate Stewardship [IBTrACS version 4; Knapp174

et al. (2010, 2018)]. Specifically, we used the data from the WMO agency175

responsible for a given storm, and we accounted for wind speed reporting176

differences by converting all vmax values to 1-min sustained winds following177

Harper et al. (2008). Note that the IBTrACS data does not contain di-178

rect observations or objective analyses, but subjective analyses from human179

forecasters based on available but limited observations. For simplicity, we180

will nevertheless refer to the IBTrACS data as “observations”.181

For a number of reasons, the workflow was not trivial. For example, some182

groups provided the output on their native model mesh, which rendered the183

data unreadable for the tracker. Furthermore, the high-resolution output184

caused the tracker to falsely identify hundreds of convective objects as TCs.185

To overcome those issues, we carried out the following three-step process:186

1. Interpolate the output from each model to a common longitude/latitude187
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grid with 0.5◦ resolution.188

2. Run the tracker on the interpolated grids. Keep in mind that the189

track files contain information from the smoothed data.190

3. Use the storm center information from step 2 to search for the actual191

vmax, pmin, and r17, r25, r32 in the native model files, and overwrite192

the data in the track files with these new values.193

Even after this process, the software tracked objects that human meteo-194

rologists would not identify as TCs, such as disorganized convective systems195

and heat lows over the deserts of Iran and central Asia. To reduce the num-196

ber of falsely-identified objects as much as possible, the track files were197

quality-controlled using the following critera:198

• drop all storms that form inland over Arabia and Iran,199

• drop all storms with lifetimes under 48 h,200

• drop all storms that never achieved a vmax of 7.5 m s−1,201

• drop all records poleward of ±40◦ latitude (i.e., remove storms that202

become extratropical).203

The IBTrACS data were quality-controlled using the same criteria to ho-204

mogenize model data and observations.205
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3. Results206

3.1 Number of Tropical Cyclones and Tracks207

Fig. 1

Fig. 2Meteorological services observed a global total of 24 TCs during the 40-208

day DYAMOND period, while the models simulated between 12–31 TCs,209

i.e., 50–140% of the observed value (Fig. 1). Most of the models simulated210

fewer TCs than observed; specifically, six of the nine models simulated less211

than 24 TCs (ARPEGE, FV3, ICON, IFS, MPAS, SAM; Figs. 1b,c,e,f,g,i),212

and only NICAM and UM simulated more TCs than observed (Figs. 1h,j).213

GEOS simulated exactly 24 TCs (Fig. 1d), however, given the limited214

sample size and the likelihood that a different tracker may have yielded215

slightly different numbers, we do not wish to emphasize the exact number216

of TCs each model produced.217

According to the observations, the Western Pacific was the most active218

basin during the DYAMOND time period, followed by the Eastern Pacific,219

Atlantic, and Indian Ocean. All models agreed that the Western Pacific was220

going to be the most active basin , and the simulated tracks were generally221

oriented from south to north like in the observations (Fig. 1). A plausible222

reason for the track agreement is that all models were able to capture the223

large-scale steering flow over the Western Pacific. However, the models were224

not as successful in the other basins. For example, in the Eastern Pacific,225
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all models except MPAS (Fig. 1g) simulated fewer TCs than observed, and226

there was less agreement between observed and simulated tracks. FV3 seems227

to have done best in terms of tracks in this basin (Fig. 1c). TC activity228

in the Atlantic proved to be particularly difficult to capture, and some229

models simulated a very active basin while others simulated a very quiet230

one. Specifically, NICAM produced 11 Atlantic TCs (Fig. 1h), whereas231

FV3 and IFS only produced one (Figs. 1c,f).232

TC formation events during the DYAMOND period were not spread out233

uniformly over time but occurred in more or less well-defined periods (Fig.234

2). The models simulated the temporal modulation of activity in rough235

agreement with the observations. For example, in the Western Pacific, most236

models correctly simulated a greater number of formation events before237

22 August than after that date (Fig. 2a). In the Eastern Pacific, the238

models missed some of the formation events in early August, but they agreed239

with the observations on a second round of activity in late August/early240

September (Fig. 2b). In the Atlantic, about half of the models suggested241

a relatively active period in mid/late August, around the same time four242

formation events were observed (Fig. 2c). On the other hand, the models243

struggled with capturing the timing of TC formation in the Indian Ocean244

(Fig. 2d); however, with only two observed events, this basin is likely not245

representative.246
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At this point we can only speculate why the models were able to capture247

the temporal modulation of activity beyond the typical predictability limit248

of weather prediction, which is around two weeks. One possible reason is249

that the models were able to capture the modulating effect of intraseasonal250

variability as previously shown by Nakano et al. (2015). Another possible251

reason is that the pre-scribed sea-surface temperatures artificially impart252

longer predictability on the atmopshere.253

Perhaps most importantly, Figure 2 demonstrates that no model suffered254

from a climate drift, that is, no model showed the number of TC formation255

events to unrealistically increase or decrease over the 40-day period. This256

highlights the quality of the DYAMOND models, which were not tuned for257

the experiment.258

As a final remark, we note that UM produced three ensemble members259

in addition to the official 40-day DYAMOND run. The differences in TC260

numbers and tracks within that ensemble were as large as (or at times larger261

than) than inter-model differences (not shown). This indicates that more262

simulations and ensemble runs are needed to properly assess the predictive263

skill of each model beyond the broad statements made above.264
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3.2 Tropical Cyclone Intensity265

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Timeseries of vmax in Fig. 3 provide a broad overview of the intensity of266

the TCs and allow for a cursory model evaluation. Some biases are clearly267

evident; for example, ICON and SAM produced storms that were generally268

too weak (Figs. 3e,i), whereas ARPEGE produced a few storms that were269

much too strong. In fact, ARPEGE produced storms with unrealistically270

high vmax of >100 m s−1 (Fig. 3b), most likely because the evaporation271

coefficient was set to a wrong value (Stevens et al. 2019).272

According to the observations, the TCs during the first two weeks of273

August remained relatively weak with only two storms reaching hurricane274

intensity (vmax ≥33 m s−1; Fig. 3a). On the other hand, some of the275

TCs that formed in the second half of August became quite intense with276

four storms reaching major hurricane intensity (vmax ≥ 50 m s−1). Most277

models had issues with capturing this pattern. Specifically, a number of278

models similated storms in the first half of August that were too intense279

(ARPEGE, GEOS, NICAM, UM; Figs. 3b,d,h,j). From all models, MPAS280

seems to have best captured the overall pattern (Fig. 3g).281

To evaluate the models regarding intensity in more depth, we compared282

the observed and modeled frequency distributions of vmax (Fig. 4) and pmin283

(Fig. 5). We chose to compare frequency distributions instead of vmax and284

pmin errors, because the models did not simulate all observed TCs and not285
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all simulated TCs were observed. We present the frequency distributions286

by way of kernel density estimates (Silverman 2018), because this method287

yields smooth curves that make a comparison easier. The kernel density288

estimates were implemented using the python seaborn library.289

The observed vmax distribution has a broad primary peak centered near290

20 m s−1, a secondary peak near 50 m s−1, and a fat tail towards higher291

values (Fig. 4). All models were able to produce this bi-modal distribution292

to some degree, but certain models deviated more from the observations293

than others. ICON and SAM deviated most dramatically: both models294

produced a narrow primary peak, mainly because they were not able to295

simulate high intensities (Figs. 4d,h). FV3 and GEOS shifted the secondary296

peak to higher values (Figs. 4b,c), whereas IFS and MPAS shifted it to lower297

values (Figs. 4e,f). ARPEGE produced a very broad distribution, partly298

related to its over-intensification issue (Fig. 4a). NICAM reproduced the299

observed distribution for vmax > 25 m s−1 better than the other models,300

but missed some of the weaker intensities with vmax < 20 m s−1 (Fig. 4g).301

The observed pmin distribution has a well-defined primary peak around302

1000 hPa, and a fat tail extending towards lower pressures with hint of303

a secondary maximum near 950 hPa (Fig. 5). All models were able to304

capture the general shape of the observed distribution, with MPAS and305

UM matching the observations best (Figs. 5f,i). Most of the other models306
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produced storms that were too deep, although in different ways. In FV3,307

the distribution showed the same shape as the observation but shifted to308

deeper values (Figs. 5b); in IFS, the secondary maximum was much more309

pronounced than in the observations (Figs. 5f); and GEOS was somewhere310

in between FV3 and IFS (Figs. 5c). In ARPEGE and NICAM, some311

storms were much deeper than the observations, causing the tail to stretch312

too far to the left (Figs. 5a,g). SAM is unique in that the main peak was313

shifted to much higher values. We shall note here that SAM’s pmin values314

are ambiguous, because SAM uses the anelastic equations and the quantity315

pressure can only be determined to within a function proportional to the316

base-state density field with arbitrary amplitude (Bannon et al. 2006).317

Lastly, we evaluated the overall TC activity by means of accumulated318

cyclone energy (ACE), a quantity that estimates the wind energy produced319

by one or multiple TCs over their lifetime. It is computed according to320

ACE = 10−4 ∑
v2max, where vmax is in units of knots (1 knot = 0.51 m321

s−1). According to the observations, the ACE during the DYAMOND pe-322

riod was 169 (Fig. 6). Since the wind speed enters the ACE calculation323

as a squared value, ACE is quite sensitive to uncertainty in the analyzed324

vmax values. We therefore estimated a lower and upper bound by assum-325

ing that all observed vmax records have an error of ±5 m s−1, an estimate326

based on Torn and Snyder (2012) and Landsea and Franklin (2013). This327
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assumption yielded a lower bound of 118 ACE units and an upper bound328

of 230 ACE units. Most models were within these uncertainty bounds or329

slightly above, indicating that the DYAMOND models produced realistic330

amounts of ACE, even without tuning. Only three models were outside the331

uncertainty bounds: GEOS overestimated ACE, whereas ICON and SAM332

produced less ACE than observed.333

3.3 Tropical Cyclone Size334

Fig. 7

Size is an important TC parameter because it correlates with the risk335

for storm surge, but it is often neglected and infrequently used for model336

validations. We examined the radius of gale-force winds (r17) and present337

the median of all r17 records as our metric of choice (Fig. 7). Results for r25338

and r32 were qualitatively similar (not shown), indicating that the results339

are not sensitive to a particular wind speed threshold. The observational340

error bars were computed by increasing/decreasing each r17 record by 50%341

(Landsea and Franklin 2013).342

In general, the models overestimated TC size. TCs in ARPEGE, FV3,343

ICON, and NICAM were substantially larger than observed (Figs. 7a,b,d,g).344

In fact, ARPEGE and ICON produced very expansive wind fields, and345

their median r17 reached radially outward to 300 km (more than double346

the observations). In contrast, the median size of TCs in GEOS matched347
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the observations remarkably well (Fig. 7c), and UM came in as a clear348

second (Fig. 7i). Storms in IFS and SAM were somewhat smaller than349

observed, but still within the uncertainty estimates (Figs. 7e,h). A common350

bias in the models was associated with the asymmetry of the wind field.351

Concretely, the observed r17 was largest in the northeast quadrant, but in352

FV3, ICON, MPAS, and NICAM, it was largest in the southeast quadrant353

(Figs. 7b,d,f,g). This result suggests that the models are deficient in their354

representation of TC structure; the prospect of which will be examined in355

the next section.356

3.4 Tropical Cyclone Structure357

Fig. 8

Fig. 9

Fig. 10

Fig. 11

Fig. 12

The TC wind-pressure relationship, i.e., the function that relates pmin358

to vmax, is often used to inform whether models simulate TC structure re-359

alistically. The DYAMOND models produced a variety of wind pressure360

relationships, with some models being closer to the observation than others361

(Fig. 8). FV3 and GEOS stand out for reproducing the observed rela-362

tionship remarkably well (Fig. 8b, c). Most other models have a tendency363

to produce a relationship that drops off too fast, or in other words, for a364

given pmin, the vmax is too low. This behavior was most pronounced in365

ICON (Fig. 8d), and less noticeable in ARPEGE and MPAS (Fig. 8a,f). A366

possible explanation for this behavior will be discussed in section 4. SAM367

16



was unique and had an unrealistic wind-pressure relationship that bended368

upward (Fig. 8h). This phenomenon was not due to a single outlier but369

likely related to the the surface pressure field being an ambigous quantity370

in this model (see also section 3.2).371

Since the 10-m winds in a TC and therefore vmax are strongly affected372

by the surface layer parameterization, we also investigated the relationship373

between pmin and 850-hPa vmax. The graphs were qualitatively similar to374

Fig. 8 (not shown), indicating that the wind-pressure relationships in Fig. 8375

are not merely a product of each model’s boundary layer and surface layer376

parameterizations, but stem from differences in the overall model imple-377

mentation including the dynamical cores.378

Snapshots of 10-m wind speed demonstrate the diversity of the models379

in simulating the surface wind field (Fig. 9). There were striking differences380

in eyewall shape, size, and symmetry, as well as in the radial extent of the381

wind field. Some models produced unrealistic wind fields, either too large382

and too strong (ARPEGE; Fig. 9a), or too faint and with peculiar waviness383

(SAM; Fig. 9h). The wind fields of FV3, GEOS, and MPAS were arguably384

most similar to that of a canonical intense TC, with a distinct eyewall that385

contained multiple convective- and mesoscale asymmetries (Figs. 9b,c,f).386

The ICON example was unique in that it did not reveal a distinct eyewall387

with sharp gardients; its wind field was rather diffuse and spread out over388
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a large area (Fig. 9d). In contrast, the IFS example was a very small TC389

with a radially constrained wind field (Fig. 9e). The NICAM example, Fig.390

9g, had an even larger hurricane-force (wind speed ≥33 m s−1) wind field391

than ICON, but it also had a distinct eyeall like most other models—albeit392

somewhat smoother than the eyewalls in FV3, GEOS, and MPAS. The wind393

field from the UM example exhibited the smoothest structure, the widest394

eyewall, and the clearest imprint of the model mesh—all consistent with395

UM being the model with the lowest resolution (Fig. 9i).396

A closer look at the kinematic structure of the modeled TCs was achieved397

by creating composites of the azimuthally-averaged circulation (Fig. 10).398

Each model’s composite includes the individual cases where vmax ≥ 33 m399

s−1. Broadly speaking, all models produced a typical kinematic structure,400

that is, a well-defined primary circulation with a tangential wind maximum401

in the lower troposphere near the storm center, and a well-defined secondary402

circulation manifested by strong radial inflow in the boundary layer, rising403

motion in the eyewall region, and radial outflow in the mid- to upper tro-404

posphere. Despite the overall agreement, there were noteworthy differences405

between the models, which will be discussed next. Note that we will assume406

that the inter-model structure differences are due to model formulation and407

not due the varying intensity of the composite storms.408

The differences in the overall tangential wind structure can be eluci-409
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dated by comparing the size of the radius of maximum tangential wind, the410

compactness of the wind maximum (specifically, the radial extent of the411

35 m s−1 isotach), and the decay of the tangential wind in the radial and412

vertical direction. The composite storms had radii of maximum tangential413

wind roughly between 30–70 km, with ARPEGE and IFS on the lower end414

(Figs. 10a,e) and ICON on the upper end (Fig. 10d). In FV3 and MPAS,415

the wind maximum was comparatively narrow and confined, and the radial416

extent of the 35 m s−1 isotach was less than 20 km (Figs. 10b,f). On the417

other hand, in ICON and NICAM, the wind maximum was rather broad,418

and the radial extent of the 35 m s−1 isotach was greater than 50 km (Figs.419

10e,g). Differences in the radial and vertical decay rates mirror the previ-420

ous discussion of storm size, that is, models in which the tangential wind421

decayed more slowly, such as in ICON and NICAM, were the ones that422

produced comparatively larger storms.423

Given the lack of an equivalent observational dataset, it is difficult to424

assess what model produced a particularly realistic tangential wind struc-425

ture. The observational composites of Gao et al. (2019, their Fig. 5c) and426

Komaromi and Doyle (2017, their Fig. 7a) at least suggests that no model427

produced a particularly unrealistic structure.428

As for the vertical motion, ARPEGE and IFS had the steepest eyewall429

slopes (Figs. 10a,e). The other extreme was UM, which had the most430
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pronounced eyewall tilt (Fig. 10i). In ICON and NICAM, the eyewall431

updraft was spread out and diffuse (Figs. 10d,g), but in IFS and MPAS it432

was relatively narrow and confined (Figs. 10e,f). Besides these differences433

in the eyewall region, there were differences in the rainband region, too.434

Specifically, the vertical motion between r = 100–250 km was noticeably435

stronger in ICON, MPAS, and NICAM than in GEOS, IFS, and SAM (Figs.436

10d,f,g versus Figs. 10c, e,h). This difference may be a reflection of more437

or stronger rainbands in the former models.438

Again, it is difficult to say which models produced a particularly realistic439

structure because no equivalent observational dataset exists for the TCs440

observed during the DYAMOND period. Stern and Nolan (2009) showed441

that the slope of the eyewall depends on the size of the radius of maximum442

wind, which would explain why the eyewall updraft in IFS has a steeper443

slope than in IFS, but it cannot explain the differences between models444

with similarly sized radii of maximum wind, such as MPAS and UM.445

The upper-tropospheric outflow also differed between the models, espe-446

cially with regard to the altitude of the outflow maximum and the depth of447

the outflow layer. For instance, the outflow was comparatively deep in FV3448

(Fig. 10b) and comparatively shallow in IFS (Fig. 10e). In ARPEGE and449

ICON, the outflow maximum occurred at a height of 15 km (Figs. 10a,d),450

but in most of the other models, it occurred mostly below 15 km.451
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One particularly noteworthy feature, produced somewhat more promi-452

nently by FV3, GEOS, and IFS, is the descending flow above the outflow453

layer that merges with the ascending outflow from below (Figs. 10b,c,e). We454

are not aware of either observational or modeling studies that show such a455

feature in TCs; to the contrary, there is reasonable evidence to suggest that456

at least in intense TCs, it may be common to have a shallow layer of weak457

inflow atop the upper-level outflow layer (e.g., Kieu et al. 2016; Komaromi458

and Doyle 2017; Heng et al. 2017; Duran and Molinari 2018).459

Inter-model differences in the boundary layer inflow were mostly in the460

form of variations of inflow layer depth and strength (Fig. 11). Specifically,461

IFS and SAM produced comparatively shallow inflow layers that did not462

extend much above 1 km height (Figs. 11e,h). In GEOS and ICON, the463

inflow layer had a maximum depth of 1.5 km (Figs. 11c,d), and in the464

other models, its maximum depth extended slightly above 1.5 km. The465

observational composite of Zhang et al. (2011, their Fig. 5b) shows that466

the inflow layer depth increases from 900 m at the radius of maximum wind467

to 1.5 km roughly 200 km from the center, which is in broad agreement468

with most of the models.469

From basic TC dynamics one would expect that the inflow strength470

correlate with the average intensity of the TCs simulated by the models.471

However, this was not the case. For example, ICON, which simulated mostly472
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weak TCs, produced stronger inflow than FV3, MPAS, and NICAM, which473

simulated much stronger TCs (Fig. 11d vs. Figs. 11b,f,g). In fact, with474

inflow magnitudes of 9 m s−1, the inflow in FV3, MPAS, and NICAM was475

relatively weak not only compared to the other models, but also compared476

to observations, which show an inflow magnitude of 20 m s−1 (Zhang et al.477

2011).478

Besides teh kinematic structure, we also explored the thermodynamic479

TC structure in our set of global storm-resolving simulations. To this480

end, we examined the TC warm core, here represented by the tempera-481

ture anomaly with respect to the mean temperature between r=300–700482

km (Fig. 12). All models produced a warm core, and all models agreed483

on its general structure (expansive in the upper levels, radially confined be-484

low). Differences emerged mostly in the vertical structure of the warming485

inside the TC eye, and in the upper and lower level temperature anomalies486

outside the eye.487

Most models agreed that the warm anomaly peaks at a height of just488

under 10 km. More pronounced differences between the models appeared489

in the vertical structure of the warm core, which ranged from a single, ver-490

tically confined maximum in FV3 and GEOS (Figs. 12b,c), to an extended491

vertical column in NICAM (Fig. 12g), to a clear double maximum of anoma-492

lously warm air in UM (Fig. 12i). The other models fell somewhere in493
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between these three distinct cases. Most observational studies indicate that494

the warm core is maximized in the upper troposphere (Frank 1977; Bram-495

mer and Thorncroft 2017; Komaromi and Doyle 2017), in agreement with496

most of the DYAMOND models. However, Stern and Nolan (2012) claimed497

that the maximum warming should be between 4–8 km, with a potential498

secondary maximum at higher altitudes. Kieu et al. (2016) also claimed499

that a double-warm core structure is the norm rather than the exception.500

According to those studies, UM had a particularly realistic thermodynamic501

structure, even though it was an outlier among the DYAMOND models.502

Compared to the model differences in terms of the warm core, the dif-503

ferences above the outflow layer were equally if not more striking. Above504

15-km height, the models did not even agree on the sign of the temperature505

anomaly. In particular, IFS and ARPEGE produced a strong cool anomaly506

(<-3 K; incidentally, IFS and ARPEGE were the only spectral models),507

whereas NICAM, SAM, and UM produced a warm anomaly. FV3, GEOS,508

ICON, and MPAS were somewhere in between the extremes and produced509

a weak cool anomaly (>-1 K). Observational composites generally show a510

weak cold anomaly above the outflow layer (Frank 1977; Komaromi and511

Doyle 2017), although instantaneous snapshots of intense TCs may also512

show strong cold anomalies (Komaromi and Doyle 2017).513

Temperature differences were also found in the boundary layer, although514
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less dramatic: NICAM was anomalously cool (Fig. 12g), and IFS was515

anomalously warm (Fig. 12e). The other models had weak cool anomalies516

or no clear signal. Note that IFS and NICAM were polar opposites of each517

other (NICAM: warm in the upper levels, cool in the lower levels, IFS: vice518

versa).519

3.5 Sensitivity of Tropical Cyclone Formation and Intensity520

to Model Resolution and Parameterized Deep Convection521

Fig. 13

Fig. 14In addition to the primary high-resolution simulation, some DYAMOND522

models produced sensitivity runs with lower resolution. For example, ICON523

produced six simulations with mesh spacings of 2.5, 5, 10, 20, 40, and 80524

km, all without parameterized convection (ICON no-conv), and an ad-525

ditional three simulations with mesh spacings of 20, 40, and 80 km with526

parameterized convection (ICON conv). These nine simulations provided527

an opportunity to investigate the sensitivity to model resolution and pa-528

rameterized convection in a controlled way (Fig. 13, Fig. 14) .529

As for sensitivity to resolution, there was a clear inverse relationship and530

the number of simulated TCs increased when resolution was decreased531

(Fig. 13, left column). Concretely, the highest resolution run produced532

the fewest TCs (15; Fig. 13a), and the lowest resolution run produced the533

most TCs (50; Fig. 13h). In the simulations with intermediate resolution,534
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the number of TCs was relatively constant (around 20). The sensitivity535

to resolution seemed to be basin dependent. In the Atlantic and Eastern536

Pacific, the 80-km ICON produced five to six times as many TCs as the537

2.5-km ICON (Figs. 13a,h), but in the Western Pacific, the 80-km ICON538

produced only two times as many TCs as the 2.5-km ICON. In the Indian539

Ocean, the number of events seemed to be insensitive to resolution, and540

each run produced either one or two TCs.541

As for sensitivity to parameterized convection, the model produced dra-542

matically fewer TCs once the parameterization was turned on (Fig. 13, left543

vs. right column). This effect was most pronounced at lower resolution.544

Specifically, the number of TCs dropped from 23 to 17 in the 20-km runs545

(Figs. 13d,e), from 21 to 14 in the 40-km runs (Figs. 13f,g), and from 50546

to a mere 9 in the 80-km runs (Figs. 13h,i).547

The runs with parameterized convection also featured substantially lower548

ACE (Fig. 14). Again, the effect was most dramatic at lower resolution,549

but even for an intermediate resolution of 20 km, the ACE was reduced550

by 65%. This result suggests that convection parameterization did not just551

reduce the number of TCs, but it also made them weaker and their lifetime552

shorter.553

Interestingly, the ICON no-conv runs produced more or less the same554

amount of ACE at all resolutions (Fig. 14). Evidently, the lack of intense555
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storms in the lower-resolution runs was compensated by a larger number556

of weak storms. An interesting follow-up question would be to investigate557

whether this compensation was pure luck or whether the amount of back-558

ground available potential energy that is converted to kinetic energy by TCs559

is a resolution-independent quantity, such as mean precipitation (Hoheneg-560

ger et al. 2020).561

4. Discussion562

Fig. 15

One of the drawbacks of global storm-resolving models is their immense563

computational cost, which poses questions about cost versus benefit. One564

may, for example, postulate that regional high-resolution models suffice565

for TC prediction. Although a practical alternative, regional models have566

disadvantages such as determining the ideal domain size and placement567

for a regional domain. More importantly, regional domains require lateral568

boundary conditions, which have “serious negative effects” (Warner et al.569

1997). One of those effects is that errors creep in through the boundaries570

and render longer-range forecasts less skillful than those made by global571

models. Putting it slightly differently, regional models are very dependent572

on the global model forcing being “good enough”.573

One may also follow Manganello et al. (2012) and argue that hydrostatic574

models with mesh spacings of 10 km and parameterized convection are575
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sufficient for producing realistic TCs. Nonetheless, mesh spacings of <5 km576

are still required for realistically simulating vmax and the dynamic processes577

in the TC inner core (e.g., Chen et al. 2007; Gentry and Lackmann 2010;578

Judt and Chen 2010; Gopalakrishnan et al. 2012; Davis 2018). Observations579

and numerical models indicate that such processes are important for rapid580

intensification (e.g., Miyamoto and Takemi 2015; Guimond et al. 2016; Judt581

and Chen 2016). In fact, a case study by Fox and Judt (2018) suggested that582

simulating extreme cases of rapid intensification requires ≤1 km horizontal583

grid spacing. Since extreme storms are highly disruptive to society, being584

able to reliably predict or project intense TCs has great value.585

As a potential easy target for bias reduction in the models, we examined586

whether models with similar biases used similar parameterization schemes.587

For example, we investigated whether the models with a TKE-like boundary588

layer parameterization produced similar intensity biases versus models that589

used a diagnostic eddy diffusivity. However, no such relationships were590

found. In the end, there are variety of reasons for the model diversity,591

including but not limited to: cloud microphysics, boundary layer processes,592

and the dynamical cores (with differences in effective resolutions).593

In agreement with other studies, this paper also demonstrates that high594

resolution is necessary yet not sufficient to capture the vmax of TCs. For595

example, ICON was tied with ARPEGE for highest resolution (2.5 km),596
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yet ICON struggled to produce intense TCs while ARPEGE produced un-597

realistically strong TCs. These intensity biases are likely a consequence of598

the respective model’s surface flux formulation, as demonstrated by Fig.599

15, which shows the surface fluxes of momentum and latent heat over an600

area 300×300 km centered on the strongest TC in each model. The drag601

in ICON increased much faster with wind speed than in ARPEGE (Fig.602

15a), which means that there was a comparatively stronger “break” on the603

surface wind in ICON. ICON also had significantly weaker latent heat fluxes604

for a given wind speed, providing less amount of “fuel” (Fig. 15b).605

The monotonically increasing momentum flux in Fig. 15a also indicates606

that the models did not account for the saturation of the drag at wind speeds607

above 25 m s−1 (e.g., Powell et al. 2003; Donelan 2004; Chen et al. 2013;608

Curcic and Haus 2020). This shortcoming was found in other models as well609

(not shown), and it may be the reason why the wind-pressure relationship610

in several models deviated from observations at higher winds (Fig. 8). In611

fact, the wind-pressure relationship in IFS seems to improve when drag612

is computed in a more realistic three-way coupled atmosphere-wave-ocean613

model (Magnusson et al. 2019).614

Lastly, there is much evidence that the storm count (and storm-count-615

related model biases) are sensitive to the tracker and to the model formula-616

tion/resolution (Roberts et al. 2020; Vanniere et al. 2020). This can be an617
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issue when comparing models as weak TCs might be over- or under-detected618

depending on the threshold used. In the end, only further studies can speak619

to the robustness of the results presented in this paper.620

5. Summary and Conclusions621

We evaluated nine global storm-resolving models that participated in the622

DYAMOND initiative (Stevens et al. 2019) in their ability to simulate TCs.623

Specifically, we validated and compared the number of TCs each model pro-624

duced, their tracks, intensity, size, and structure. With mesh spacings be-625

tween 2.5–7.8 km, the DYAMOND models are the highest-resolution global626

models that have so far been analyzed for this purpose.627

The results suggest that global storm-resolving models are able to sim-628

ulate the structure and intensity of TCs more realistically than previous629

generations of global models. However, we found that TCs are strongly630

affected by model formulation, and essentially all models had biases. We631

found that no model did best in all regards, although some models did,632

generally speaking, better than others. For instance, GEOS produced the633

observed number of TCs, captured TC size better than any other model,634

and produced a realistic wind-pressure relationship. But GEOS also pro-635

duced too many strong storms and had the largest ACE bias of all models636

(it is unclear if ocean coupling would reduce this bias). Other models that637
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did generally well were FV3, MPAS, and UM.638

On the other hand, ICON, IFS, and SAM had some issues with size,639

structure, and intensity. For example, ICON and SAM produced storms640

that were too weak. ICON, IFS, and SAM were also not able to capture641

the wind-pressure relationship as realistically as GEOS, FV3, and MPAS,642

pointing to deficiencies in their numerical formulations. We also found that643

parameterized convection strongly reduces the number and intensity of TCs644

in comparison to simulations without convection parameterization (at least645

for simulations with a mesh spacing of >20 km). This sensitivity high-646

lights the problems and ambiguities that come with parameterizing deep647

convection.648

In a nutshell, we believe that the ability to realistically simulate TCs649

in global models is critical for weather and climate prediction. This study650

demonstrates that global-storm resolving models are an optimal tool to651

advance TC prediction; however, they need to be improved to unleash their652

full potential. Surface layer, pbl are targets for improvements.653
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Fig. 1. TC tracks and numbers from observations (black/grey) and models
(orange) for the DYAMOND period (1 Aug–10 Sep 2016). Numbers are
given for each basin (Indian Ocean, Western Pacific, Eastern Pacific,
Atlantic); the global total number of TCs is shown in the lower right.
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Fig. 2. Timeseries of TC formation events in the Western Pacific (a), East-
ern Pacific (b), Atlantic (c), and Indian Ocean (d) from observations
(black) and models (orange).

46



Max. 10-m Wind (m/s)

d) GEOS 

c) FV3 

b) ARPEGE 

g) MPAS

j) UM

i) SAM

h) NICAM

f) IFS

e) ICON

a) Obs 

17
32
43
49

70
58

17
32
43
49

70
58

17
32
43
49

70
58

17
32
43
49

70
58

17
32
43
49

70
58

17
32
43
49

70
58

17
32
43
49

70
58

17
32
43
49

70
58

17
32
43
49

70
58

17
32
43
49

70
58

Fig. 3. Timeseries of maximum surface wind speed (vmax) for each TC from
observations (black, grey) and models (orange).
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Fig. 4. Kernel density estimates of maximum wind speed from observations
(black) and models (orange).
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Fig. 5. Kernel density estimates of minimum sea-level pressure from obser-
vations (black) and models (orange).
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Fig. 6. Accumulated cyclone energy (ACE) from observations (grey) and
models (orange). The lower bound of the uncertainty range in observed
ACE assumes that all vvmax observations have an error of -5 m s−1 or
+5 m s−1 (upper bound).
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Fig. 7. Average storm size as measured by the median 17 m s−1 wind
radius for each storm quadrant from observations (black) and models
(orange). Dashed grey circles indicate radius intervals of 100 km. The
error bars in the observations are based on an error estimate of 50%.
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a) ARPEGE b) FV3 c) GEOS

d) ICON e) IFS f) MPAS

g) NICAM h) SAM i) UM

Obs
Model

Fig. 8. TC wind-pressure relationships from observations (black) and mod-
els (orange). The curves are least-squares tted quadratic functions.
Note: the peculiar shape of the fit line in SAM (h) is not caused by the
obvious outlier at 65 m s−1 and 950 hPa. Excluding this outlier will
not change the fit substantially.
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Fig. 9. Snapshots of 10-m wind speed of the strongest storm from each
model at the time of peak intensity.
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Fig. 10. Radius-height composites of azimuthally-averaged tangential wind
speed (grey shading) and radial/vertical flow (colored streamlines) from
each model. The 20 m s−1-contour is annotated. The composites in-
clude all snapshots where a storm’s vmax ≥ 33 m s−1.
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Fig. 11. Radius-height composites of azimuthally-averaged radial wind
speed in the lowest 2 km from each model. The dashed black line de-
picts the inflow layer height, here defined as the layer with radial wind
< -1 m s−1. The composites include all snapshots where a storm’s
vmax ≥ 33 m s−1.

55



Fig. 12. Radius-height composites of the TC warm core from each model,
computed as the azimuthally-averaged temperature anomaly with re-
spect to the mean temperature between r = 300–700 km. The compos-
ites include all snapshots where a storm’s vmax > 32 m s−1.
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Fig. 13. TC tracks and numbers from various ICON runs (orange) and
observations (grey). Left: ICON runs without deep convective pa-
rameterization, right: ICON runs with deep convective parameteriza-
tion. The model resolution, given in each panel, increases from top to
bottom.
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Fig. 14. ACE from observations (grey) and various ICON runs with (light
orange) or without (dark orange) deep convective parameterization.
Model resolution increases from top to bottom. The error bars are the
lower an upper bounds assuming that all vvmax observations have an
error of ± 5 m s−1.
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ARPEGEICON

ARPEGE

ICON

Fig. 15. Momentum flux (top) and latent heat flux (bottom) from ARPEGE
and ICON as a function of wind speed. The data are from the same
time and domain as the snapshots in Fig. 9. Instead of a raw scatter
plot, the data are binned and the color saturation is a measure of points
per bin.
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