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55 Abstract 

56 Smallholder farmers in sub-Saharan Africa (SSA) currently grow rainfed maize with limited 

57 inputs including fertilizer. Climate change may exacerbate current production constraints. 

58 Crop models can help quantify the potential impact of climate change on maize yields, but a 

59 comprehensive multi-model assessment of simulation accuracy and uncertainty in these low-

60 input systems is currently lacking. We evaluated the impact of varying [CO2], temperature 

61 and rainfall conditions on maize yield, for different nitrogen (N) inputs (0, 80, 160 kg N ha-1) 

62 for five environments in SSA, including cool sub-humid Ethiopia, cool semi-arid Rwanda, hot 

63 sub-humid Ghana and hot semi-arid Mali and Benin using an ensemble of 25 maize models. 

64 Models were calibrated with measured grain yield, plant biomass, plant N, leaf area index, 

65 harvest index and in-season soil water content from two-year experiments in each country to 

66 assess their ability to simulate observed yield. Simulated responses to climate change factors 

67 were explored and compared between models. Calibrated models reproduced measured grain 

68 yield variations well with average rRMSE of 26%, although uncertainty in model prediction 
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69 was substantial (CV = 28%). Model ensembles gave greater accuracy than any model taken at 

70 random. Nitrogen fertilization controlled the response to variations in [CO2], temperature and 

71 rainfall. Without N fertilizer input, maize (i) benefited less from an increase in atmospheric 

72 [CO2], (ii) was less affected by higher temperature or decreasing rainfall and (iii) was more 

73 affected by increased rainfall because N leaching was more critical. The model inter-

74 comparison revealed that simulation of daily soil N supply and N leaching plays a crucial role 

75 in simulating climate change impacts for low-input systems. Climate change and N input 

76 interactions have strong implications for the design of robust adaptation practices across SSA, 

77 because the impact of climate change will be modified if farmers intensify maize production 

78 with more mineral fertilizer. 

79 Keywords: crop simulation model, model intercomparison, ensemble modelling, uncertainty, 

80 smallholder farming systems.

81

82 1. Introduction

83 Rainfed maize production is crucial for food security and smallholder livelihoods in sub-

84 Saharan Africa (SSA). Maize is the largest contributor to the total value of staple crop 

85 production in Western, Eastern, Central and Southern Africa (OCDE, FAO, 2016). With 

86 limited access to means of income diversification and safety nets, smallholder farmers in SSA 

87 are highly vulnerable to climate change (Connolly-Boutin and Smit, 2016; Descheemaeker et 

88 al., 2016). Temperatures are expected to increase in West, East and Southern Africa, with 

89 multi-model climate projections indicating a warming of 1 to 4°C in the decades of 2081–

90 2100 relative to 1986–2005 depending on the Representative Concentration Pathway (RCP) 

91 considered (IPCC, 2013). Annual rainfall is expected to increase in West and East Africa (0 to 

92 +12% depending on RCP) and to decrease in Southern Africa (-5 to -10% depending on RCP) 

93 (IPCC, 2013). The impact of climate change on maize productivity across SSA is uncertain, 

94 but significant losses are expected, especially in Southern Africa (Conway et al., 2015; Lobell 

95 et al., 2008; Rosenzweig et al., 2014) and West Africa (Sultan and Gaetani, 2016). 

96 Smallholder farms in SSA usually obtain low maize yields, on average 1.8 t ha-1 in 2017 

97 (FAOSTAT, 2018). These low yield levels are largely attributable to low fertilizer use, which 

98 averaged 12, 2 and 3 kg ha-1 for N, P and K respectively (FAOSTAT, 2018). With limited 

99 irrigation and inadequate access and use of nutrient inputs, water and nitrogen (N) stresses 

100 prevail (Folberth et al., 2013). A
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101 Process-based soil-crop models can help quantify the potential impact of climate change on 

102 maize productivity in smallholder context whilst accounting for the water and N (and/or other 

103 plant nutrient) stresses (e.g. Kihara et al., 2012). Soil-crop models simulate biophysical 

104 processes resulting from plant genetics, crop management, soil properties, and weather, thus 

105 tracking water, carbon, N, (phosphorous (P) to some extent) dynamics, and energy balances as 

106 plants develop through the different phenological growth phases. As such, models must 

107 consider a range of complex processes and their interactions with weather, soil, and crop 

108 management, e.g. the effect of soil water dynamics on nutrient supply and uptake, or the 

109 influence of soil organic matter and organic amendments on nutrient availability during the 

110 growing season. The consideration of these soil- and climate-related processes increases 

111 model complexity, number of model parameters and data demand for model calibration. 

112 Compared to simulating irrigated systems with high nutrient inputs, where water and N are 

113 less often limiting factors, the simulation of rainfed, low-input cropping systems requires 

114 more detailed model parameterization, especially of the soil processes. Model parameters 

115 related to soil water and nutrient processes are critical for the simulation of low input systems 

116 (Corbeels et al., 2016; Jones et al., 2012). Main soil processes to be taken into account are: i) 

117 soil water dynamics, including infiltration from rainfall, redistribution within the soil profile 

118 and evapotranspiration, (ii) decomposition of soil organic matter and associated 

119 mineralization of N, and (iii) N leaching below the root zone. Accurate simulation of the plant 

120 available water is crucial for simulation of crop water stress (Whitbread et al. 2017), while 

121 mineralization and leaching largely determine soil N availability for plant uptake and 

122 therefore regulate N stress on crop growth. Hence, greater uncertainty related to model 

123 processes and parameterization is expected in the responses of low-input cropping systems to 

124 climate change. For example, it is known that N stress can strongly impact crop responses to 

125 variation in [CO2], temperature and rainfall (Affholder, 1995; Ziska et al., 1996). 

126 Furthermore, these cropping systems (which are often critical for local food security) are 

127 generally less well studied compared to the intensified mid-latitude agricultural systems that 

128 have a greater global influence (Nendel et al., 2019). 

129 The Agricultural Model Intercomparison and Improvement Project (AgMIP) was launched in 

130 2010 to foster increased collaboration around crop model improvement across modelling 

131 groups (Rosenzweig et al., 2013). Crop model intercomparisons have proven useful to 

132 compare consistency among models and quantify uncertainty in model predictions (Asseng et 

133 al., 2013; Bassu et al., 2014; Fleisher et al., 2017; Li et al., 2015; Ruane et al., 2017). They A
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134 have reinforced the benefit of multi-model approaches, as they help identify sources of 

135 uncertainty (associated with model parameters, model structure, and model users) (Tao et al., 

136 2018, 2020). The ensemble mean or median usually resulted as best predictors for multiple 

137 crops and for different soil and plant variables (Martre et al., 2015; Wallach et al., 2018). For 

138 example, the intercomparison of maize models (Bassu et al., 2014) allowed assessing model 

139 uncertainty in the simulated impact of climate change on maize yields under high-production 

140 conditions, i.e. high-input, near-potential crop growth conditions where N fertilizer inputs 

141 ranged from 60 to 255 kg N ha-1 and sites were irrigated or had good rainfall and thus grain 

142 yield ranged from 5 to 11 t ha-1. These conditions differ considerably from the context of 

143 smallholder farmers across SSA. Bassu et al. (2014) analyzed the effect of model structure 

144 related to aboveground crop growth processes (e.g. simulation of net primary production of 

145 the canopy as influenced by temperature and [CO2]) but did not deal with soil-related 

146 processes (e.g. N mineralization and N leaching). 

147 Several studies relying on the calibration of a single crop model with field data, have 

148 investigated model accuracy under current climate and explored the impact of climate change 

149 on low-input smallholder systems in SSA (e.g. Amouzou et al., 2019; Freduah et al., 2019; 

150 Rurinda et al., 2015; Traore et al., 2017). However, the use of a single crop model precludes 

151 an analysis of simulation uncertainty related to model structure. A few studies investigated 

152 climate change and N input interactions in smallholder context with two different crop models 

153 (Faye et al., 2018b; Guan et al., 2017). Although these studies did address the issue of model 

154 uncertainty, they did not embrace the wide diversity of existing crop models. The AgMIP 

155 Global Gridded Crop Model Intercomparison study has conducted a series of model 

156 sensitivity tests to [CO2], temperature, water, and N conditions (Franke et al., 2020), but the 

157 applied models operated on a macro-level (~0.5 degree spatial resolution) and were not 

158 calibrated against field data to capture the conditions of controlled field experiments in SSA. 

159 Thus, the accuracy and uncertainty of model simulations and model responses to the 

160 interactions between N supply and climate change in low-input systems have not been 

161 assessed for multi-model ensembles. Understanding climate change and N fertilizer input 

162 interactions will help prioritize relevant recommendations for adaptations to climate change 

163 for African smallholder farmers who currently use low levels of N inputs but will likely 

164 intensify their cropping systems with additional mineral fertilizers (Vanlauwe et al., 2014). 

165 This study addresses three main questions, namely: (i) What is the accuracy and uncertainty 

166 of current crop model simulations of maize yield and other intermediary variables for field A
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167 experiments in the context of rainfed smallholder systems in SSA? (ii) How does N fertilizer 

168 input interact with maize response to climate change (increase in [CO2], increase in 

169 temperature, and changes in rainfall)? (iii) Does model structure (i.e. formalisms to account 

170 for N dynamics) and model consistency (i.e. the ability to accurately simulate multiple 

171 variables) explain the simulated interaction between climate change and N fertilizer input? 

172 By doing so, we explore the hypotheses that (i) model simulations of existing maize 

173 experiments in smallholder context in SSA are more uncertain with lower accuracy than 

174 simulations of intensified cropping systems in temperate regions, (ii) crop models simulate a 

175 lower impact of [CO2], temperature and rainfall changes in low-input (e.g. 0 kg N ha-1) than in 

176 high-input conditions (e.g. 160 kg N ha-1), and (iii) model structure and consistency of 

177 simulations for multiple soil and plant variables can explain diverging responses to the 

178 interaction between N inputs and climate change.

179

180 2. Materials and methods

181 2.1. Experimental data

182 We searched the literature for peer-reviewed publications in which maize field experiments 

183 under rainfed conditions were conducted during at least two cropping seasons in 

184 representative maize growing areas in SSA. The studies needed to include measurements of 

185 crop phenology (flowering and maturity dates), final grain yield and aboveground biomass at 

186 maturity, and in-season soil water dynamics for at least one growing season. Studies chosen 

187 represent a diversity of climates, soils and management conditions found across SSA for 

188 maize production. This resulted in the selection of five experimental studies that were 

189 conducted at sites respectively in Benin, Mali, Ghana, Rwanda and Ethiopia (Figure 1 and 

190 Table 1). Besides the required data on crop phenology, grain yield, aboveground plant 

191 biomass, and in-season soil water dynamics, data on in-season leaf area index (LAI) was 

192 available in at least one of the two seasons at each site except Benin. Benin and Ghana also 

193 included additional measurements of aboveground plant N accumulation during crop growth 

194 (Benin) and at maturity (Benin and Ghana). Cultivars differed across sites and were open-

195 pollinated varieties, except in Ethiopia where a hybrid was grown. Total applied N fertilizer 

196 was 0, 64, 80, 85 and 87 kg ha-1 in the sites in Benin, Rwanda, Ghana, Mali and Ethiopia, 

197 respectively. There was no irrigation at any of the sites (Table 1). The experiments were 

198 extensively described, for Benin by Amouzou et al. (2018), for Mali by Traore et al. (2014), 

199 for Ghana by MacCarthy et al. (2015), for Rwanda by Ndoli et al. (2018) and for Ethiopia by 
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200 Sida et al. (2018). Soil water content to maximum rooting depth was expressed as a 

201 percentage of plant available soil water capacity (PAWC), which was calculated as the 

202 difference between the water content at the drained upper limit (DUL) and the water content 

203 at the lower extraction limit of the maize crop (LL) (both over the maximum rooting depth) 

204 (Table 1 and Table S1). The soil initial conditions (moisture and mineral N) for the 

205 simulations are given in Table S1. 

206 To characterize each experiment regarding soil fertility, total available mineral N during the 

207 crop growing season was estimated by summing (i) measured soil mineral N prior to sowing 

208 (0-30 cm topsoil layer), (ii) N inputs from mineral fertilizer applied and (iii) N mineralized 

209 from soil organic N in the topsoil (0-30 cm) and from manure applied. Manure was applied in 

210 Mali only (Table 1). Nitrogen mineralized from soil organic matter and applied manure was 

211 estimated considering a mineralization rate of 1.5% of soil organic N per growing season, 

212 corresponding to commonly reported average mineralization rates in SSA (Bationo et al., 

213 2007; Masvaya et al., 2017). While PAWC and the 1.5% mineralization rate were used to 

214 describe the experimental settings, this information was not forwarded to the modelling 

215 groups and they were left to address PAWC and soil N availability as per their model usual 

216 procedure.

217 Weather data (daily solar radiation, minimum and maximum temperatures and rainfall) for the 

218 years of the experiments were obtained from records at on-site meteorological stations at all 

219 sites. Wind speed and relative humidity for the years of the experiments were obtained from 

220 the AgMERRA climate dataset (Ruane et al., 2015). For the model simulation of the baseline 

221 climate (1980-2010), daily solar radiation, minimum and maximum temperatures and rainfall 

222 were obtained from records at the on-site meteorological stations in Benin, Mali, and Ghana 

223 and obtained from AgMERRA in Ethiopia and Rwanda. Wind speed and relative humidity 

224 were obtained from AgMERRA for the baseline climate at all sites. 

225 2.2. Model characteristics and calibration procedure

226 An ensemble of 25 crop models was used for this study (Table 2 and Table S2).

227 These crop models present structural differences in how they model crop growth and soil 

228 processes (e.g. leaf area and light interception, grain yield formation, soil water dynamics, 

229 nitrate leaching, see Table 2). Of particular interest for this study was how models simulate 

230 the effect of N supply on crop growth and yield. This aspect is described in section 2.4.2. A
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231 Model simulations were executed by individual modelling groups within AgMIP 

232 (Rosenzweig et al., 2013). The model calibration entailed two phases, i.e. (i) partial and (ii) 

233 full calibration. For partial calibration, minimum input values required to run the model were 

234 provided, i.e. soil characteristics, initial soil conditions (moisture at all sites and mineral N for 

235 Benin, Mali and Ghana), crop management (sowing date, mineral and organic fertilizer 

236 inputs), weather, and observed flowering and physiological crop maturity dates (Table 1 and 

237 Table S1). In the partial calibration phase, adjustment by modelling groups to observed values 

238 was limited to setting the model parameters involved in the simulation of the time to anthesis 

239 and time to maturity. For full calibration, all measured crop and soil variables of the 

240 experiments (see section 2.1) were provided. Modelling groups could adjust the model 

241 parameters they deemed relevant to improve the model fit to observed data, using their usual 

242 methods (e.g. manual tuning or use of an optimization program). There was no knowledge 

243 sharing between the modelers and the researchers who conducted the trials during the 

244 calibration steps to guarantee that modelers from the different groups had an equal level of 

245 information on the field experiments. All sites and growing seasons were used for model 

246 calibration and no independent evaluation of simulations was performed. Each modelling 

247 group used one unique crop model. The different versions of APSIM, DSSAT and 

248 SIMPLACE-LINTUL (see Table 2) were each used by single modelling groups.

249 2.3. Model response to [CO2], temperature, rainfall and N fertilizer

250 Responses of fully calibrated models to variation in [CO2], temperature and rainfall were 

251 assessed, in interaction with varying mineral N input levels. Baseline years (1980-2010) were 

252 simulated with the crop management of the second growing season at each site (Table 1) for 

253 three levels of N fertilizer (0, 80, 160 kg N ha-1). Response to [CO2] was analyzed for 

254 imposed concentrations of 360 and 720 ppm. Response to temperature was assessed by 

255 increasing daily minimum and maximum temperatures by 4 °C. Response to rainfall was 

256 analyzed by multiplying baseline daily rainfall by 0.5 and 1.50. These levels represent drastic 

257 but plausible changes in environmental conditions that allow testing the sensitivity of crop 

258 models (Rosenzweig et al., 2013). A doubling of [C02] (to 720 ppm) and a +4°C temperature 

259 increase correspond to possible conditions around 2080 as predicted by climate models under 

260 RCP 8.5 (IPCC, 2013). Factorial combinations of changes in [CO2], temperature and rainfall 

261 were not considered. For each level of [CO2], temperature and rainfall, model simulations 

262 were run for three levels of N fertilizer (0, 80, 160 kg N ha-1 split in two applications during 

263 the crop growing season). A
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264 2.4. Data analysis

265 2.4.1. Model accuracy, uncertainty, and response to climate change factors

266 We analyzed model accuracy for simulated grain yield, aboveground plant biomass, 

267 maximum LAI, aboveground plant N at maturity, harvest index and in-season soil water 

268 content. Observed and simulated values were compared using the Root Mean Square Error 

269 (RMSE) and relative RMSE (rRMSE) for each of the above variables: 

270 (1)𝑅𝑀𝑆𝐸𝑚 =
1
𝑛∑𝑛

𝑖 = 1(𝑂𝑖 ― 𝑃𝑖,𝑚)2

271 (2)𝑟𝑅𝑀𝑆𝐸𝑚 =  
𝑅𝑀𝑆𝐸

𝑂  ×  100

272 where Oi and Pi,m are the observed and simulated values (for model m) for the ith 

273 measurement, n is the number of observations (i.e. the sum over sites, seasons, and over 

274 measurement dates per site for in-season soil water content) and  is the mean of the observed 𝑂

275 values. 

276 To analyze uncertainty in model simulations, the coefficient of variation (CV) of the 

277 simulations with the 25 models for a given variable at a given site (both seasons) was 

278 computed as: 

279 (3)𝐶𝑉𝑠 =  
𝜎𝑠

𝑝𝑠 ×  100

280 where  is the standard deviation of the simulated values at site s and  is the mean of 𝜎 𝑝

281 simulated values at site s. CVs was also averaged across all sites. 

282 We assessed the value of using an ensemble of models to simulate grain yield. We started by 

283 computing the average simulated yields with ensembles of increasing number of models (n=1 

284 to 25) for each of the ten experiments. Then we computed the relative variation between these 

285 average simulated yields and the measured yield in the experiments:

286 (4)𝑈𝑛 =
∑10

𝑖 = 1|𝑃𝑛𝑖 ― 𝑂𝑖|

∑10
𝑖 = 1𝑂𝑖

× 100

287 where Oi and Pni are the observed and average simulated values (for a model ensemble of size 

288 n) for the ith experiment. Starting from two to 25 models, Un was computed for a random 

289 sampling of 5% of all the  combinations of models. For n=1, all combinations were 
25!

𝑛!(25 ― 𝑛)!

290 evaluated. A
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291 The relative model response to a given climate change factor was computed for a particular 

292 model as: 

293 (5)𝑅𝑚 =
𝑃𝑓𝑢𝑡𝑢𝑟𝑒,𝑚 ― 𝑃𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒,𝑚

𝑃𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒,𝑚

294 where  is the 31-year (1980-2010) simulated average of model m for the variable of 𝑃𝑓𝑢𝑡𝑢𝑟𝑒,𝑚

295 interest (e.g. grain yield) under changed climate (altered [CO2], temperature or rainfall, see 

296 above) and  is the 31-year simulated average of model m for the same variable under 𝑃𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒,𝑚

297 the baseline climate (1980-2010). Here, we analyzed the relative model response to climate 

298 change for doubling [CO2] (360 ppm to 720 ppm), temperature +4°C, 50% of baseline rainfall 

299 and 150% of baseline rainfall for N fertilizer applications of 0, 80 and 160 kg N ha-1. 

300 The relative model response to climate change Rm can take either positive or negative values. 

301 Since the coefficient of variation between models is of limited value to assess prediction 

302 uncertainty in this case, we calculated the Inter Quartile Range (IQR) of the ensemble relative 

303 to change in the simulated variable of interest (e.g. grain yield).

304 2.4.2. Model classification

305 We first investigated whether model structural characteristics had an influence on the model 

306 response to climate change with different N inputs. To do so, we classified the models 

307 according to (i) their capability to simulate crop responses to N inputs, and (ii) the existence 

308 of an N module with a daily time-step in the model (Table 2). 

309 Two models (MCWLA and GLAM) did not handle crop response to N and formed the first 

310 class. Three models (PEGASUS, SARRA-H and CELSIUS) simulated responses to N input 

311 but did not include a detailed N module. These models formed the second class. In these three 

312 models, a fixed N stress factor is applied to daily biomass production. In PEGASUS, values 

313 of seasonal N stress factor were obtained by the correlation of national N fertilizer inputs and 

314 gridded yield gap fraction data (Deryng et al., 2011). In CELSIUS and SARRA-H, a seasonal 

315 N stress factor is calculated as the ratio of total seasonal available N to the crop N uptake 

316 required for non-limited growth. In CELSIUS, total seasonal available N is calculated with 

317 mineralization coefficients obtained from the literature (Ricome et al., 2017). In SARRA-H, 

318 the N stress factor was calibrated with on-farm and on-station experiments across West 

319 Africa.

320 Twenty models handled crop responses to N and had a detailed N module with daily time-step 

321 calculations of soil and plant N processes; they formed the third class of models (Table 2). All 

A
cc

ep
te

d 
A

rt
ic

le



This article is protected by copyright. All rights reserved

322 class 3 models use as inputs (i) soil mineral N content at initiation of the simulation, and (ii) 

323 the amounts of fertilizer N applied at specified dates during the cropping season. These 

324 models include the explicit representation of a number of organic C pools in the soil (Table 2) 

325 and functional processes of organic matter mineralization to compute the availability of 

326 mineral N for crop uptake. In these models, daily mineralization of organic nitrogen is 

327 simulated with one to seven organic carbon and nitrogen pools (Table 2) with specific 

328 decomposition rates. Simple approaches usually identify a labile (fast decomposition rate) and 

329 a stable (slow decomposition rate) organic matter pool. More complex models have additional 

330 microbial biomass-related pools to simulate the role of soil organisms in the N mineralization-

331 immobilization turnover process during decomposition.

332 Within this third class of models, we investigated whether model consistency, i.e. model 

333 ability to adequately simulate different soil and plant variables, could explain model 

334 performances and model responses to climate change and its interaction with N fertilizer 

335 inputs. The indicator used for model consistency was the sum of ranks (Martre et al., 2015) 

336 for rRMSE over the variables of interest (i.e. grain yield, total aboveground biomass, 

337 maximum LAI, total aboveground plant N, harvest index and soil water contents). Models 

338 below the median sum of ranks for rRMSE over all the variables were classified as “most 

339 consistent” models (class 3a), models above the median as “less consistent” models (class 3b) 

340 (Table 2). An alternative ranking of models was computed based on the sum of ranks for grain 

341 yield and total aboveground biomass only (the two variables available for all experimental 

342 situations). Models below the median sum of ranks for rRMSE over these two variables were 

343 classified as “highest ranked” models (for grain and biomass) (Table 2).

344 The effect of model class on the model response to climate change (doubling [CO2], 

345 temperature +4°C, 50% of baseline rainfall and 150% of baseline rainfall) was examined 

346 using linear mixed model regression analysis with model class (3a or 3b) and N input as fixed 

347 factors and site as a random factor. P-values to test the significance of model class were 

348 obtained by likelihood ratio tests of the full regression model (including all fixed and random 

349 factors) against a regression model with only N input and site effects. Visual inspections of 

350 residuals plots did not reveal deviations from normality or heteroscedasticity. The analysis 

351 was done using R (R Development Core Team, 2019; http://www.R-project.org, last accessed 

352 13/07/2019) and the linear mixed-effect model was coded and tested with the R package lme4 

353 (http://cran.r-project.org/web/packages/lme4/index.html, last accessed 16/07/2019). We 

354 performed the likelihood ratio test with the anova function.A
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355 3. Results

356 3.1 Characterization of sites and crop experiments 

357 Seasonal rainfall (from maize sowing to harvest) varied greatly across sites and seasons, from 

358 217 mm (Rwanda, 2014 season) to 923 mm (Ethiopia, 2014 season) (Table 1). Seasonal 

359 rainfall was low in Rwanda in 2014 but residual soil water at sowing was substantial (i.e. 57% 

360 of PAWC). Crop water stress occurred during the two experimental years in Rwanda (Figure 

361 1B). In Benin, Mali and Ethiopia, observed soil water contents never went below 50% of 

362 PAWC during crop growth in the experiments where soil water was monitored (Figure 1B), 

363 indicating a likely low occurrence of crop water stress. In Ghana, water content was 

364 monitored to 30 cm soil depth only, so these data were of limited value for analyzing water 

365 stress. Overall, observed maize grain yields were not correlated to seasonal rainfall (Figure 

366 S1), confirming the role of N (Figure 1C) and other crop growth limiting factors in 

367 determining grain yield.

368 Estimated total available mineral N during the crop growing season varied widely across sites 

369 (Figure 1C). It was lowest at the experimental site in Benin, where there was no fertilizer 

370 input (Table 1). Total available mineral N was highest in the experiments in Rwanda, due to 

371 fertilizer inputs and a high soil organic N content compared with the experiments in the other 

372 sites (Table 1). Although maize yield tended to increase with estimated total mineral N 

373 availability (see section 2.1), the correlation was not significant (Figure 1C). 

374 3.2 Model simulations of the experiments

375 3.2.1 Model accuracy

376 When partially calibrated to phenology only, most models failed to accurately reproduce grain 

377 yield variations across sites and experiments (Figure 2A); rRMSE averaged across models for 

378 grain yield was 63% (Figure 2B). Full calibration greatly improved the models’ ability to 

379 reproduce observed grain yields (Figure 2A); rRMSE averaged across models decreased to 

380 26% (Figure 2B). The median of the fully calibrated model ensemble closely approximated 

381 observed grain yields (Figure 2A). Improvement in model accuracy with full calibration was 

382 also important for aboveground biomass at maturity and maximum LAI but was more limited 

383 for aboveground plant N at maturity and harvest index (Figure 2B). Maize phenology was 

384 accurately simulated by the fully calibrated models, with rRMSEs of 8 and 13% for the 

385 sowing-anthesis and anthesis-maturity durations respectively. Regarding the temporal 

386 dynamics, the range of simulated values of in-season LAI, soil water content, aboveground 
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387 plant biomass and aboveground plant N mostly enveloped the observed values (Figure S3). 

388 With exception of the 2013 season in Ethiopia, most models were able to reproduce seasonal 

389 soil water dynamics, a crucial variable for simulating crop growth when water stress occurs. 

390 The increase in soil water up to field capacity during (i) the vegetative crop phase in the field 

391 experiment in Benin in 2015 and (ii) during the reproductive phase in the field experiment in 

392 Mali in 2010 was well reproduced by most models. The decrease in soil water below 50% of 

393 PAWC early in the season in 2014 and later in the season in 2015 in Rwanda was also well 

394 simulated by most models. Main disagreements between model simulations and field 

395 measurements occurred (i) in Rwanda in 2015, for which most models underestimated LAI 

396 and overestimated aboveground plant biomass and (ii) in Ethiopia in 2013, for which all 

397 models underestimated observed aboveground plant biomass and soil water. The latter may, 

398 however, be due to errors in rainfall recording or poor calibration of the moisture probes used 

399 to estimate soil water.

400 Nitrogen mineralized from soil organic matter and N leached below the root zone were not 

401 measured in the field experiments so we could not assess model prediction accuracy for these 

402 variables. The ensemble median of simulated N mineralization, averaged over the two crop 

403 growing seasons, was 22, 20, 39, 43 and 38 kg ha-1 in Benin, Mali, Ghana, Rwanda and 

404 Ethiopia, respectively. These simulated values matched reasonably well with the empirical 

405 estimates of N mineralization using a rate of 1.5% of soil organic N (see section 3.1), i.e. 16, 

406 10, 32, 93 and 40 kg ha-1 in Benin, Mali, Ghana, Rwanda and Ethiopia, respectively. The 

407 ensemble median of simulated N leaching, averaged over the two crop growing seasons, was 

408 11, 15, 2, 2 and 4 kg ha-1 in Benin, Mali, Ghana, Rwanda and Ethiopia, respectively.

409 3.2.2 Model prediction uncertainty

410 Full model calibration resulted in a reduction of prediction uncertainty (expressed as CV), and 

411 this reduction was larger for grain yield and aboveground plant biomass at maturity than for 

412 the other plant-related variables (maximum LAI, aboveground plant N at maturity and harvest 

413 index) (Figure 2C). Overall, there was no clear indication that model prediction uncertainty 

414 was largest in the most constrained (N-limiting) sites (e.g. Benin, see Figure S2). Prediction 

415 uncertainty was relatively low for maize phenology (full calibration), with a CV of 9% for the 

416 sowing-anthesis duration, and 16% for the anthesis-maturity duration. Prediction uncertainty 

417 of simulated N mineralization was large, both with partial (CV of 90%) and full calibration 

418 (CV of 85%). A similar behavior was found for simulated N leaching, with CVs of 171 and 

419 136% with partial and full calibration, respectively. 

A
cc

ep
te

d 
A

rt
ic

le



This article is protected by copyright. All rights reserved

420 The average absolute difference between measured and simulated grain yield decreased 

421 rapidly with the number of models considered in an ensemble (Figure 3). A least eight 

422 calibrated models were needed to fall below a 13.5% threshold, i.e. the CV of measured yield 

423 typically obtained in experimental plots (Taylor et al., 1999). 

424 3.2.3 Model classification

425 Models of class 1 and 2 simulated grain yield accurately with rRMSE values equal to or 

426 below 18% (Table 3). Some models of these classes also performed well for the other 

427 variables (i.e. total aboveground biomass at maturity, maximum LAI, harvest index and soil 

428 water) with rRMSE values close to or below 30%.

429 The ten “most consistent” models of class 3, i.e. models below the median sum of rank for 

430 rRMSE across all variables (Figure S4) were grouped in class 3a, and the others were placed 

431 in class 3b (Table 2). The most consistent crop model (DNDC) when considering all variables 

432 had a sum of rank of 32 (Table 3). Decrease in model uncertainty from partial to full 

433 calibration for simulated grain yield was similar for both model classes 3a and 3b, i.e. 57 and 

434 42% for class 3a and 3b respectively. However, the decrease in model uncertainty for 

435 aboveground plant N at maturity was greater for models of class 3a than 3b, i.e. 44 and 11%, 

436 respectively, indicating a likely greater effect of calibration on N supply and N uptake for 

437 models of class 3a than 3b. After full calibration, class 3a models had a significantly (P < 

438 0.05) smaller RMSE for grain yield, aboveground plant biomass at maturity, aboveground 

439 plant N at maturity, maximum LAI, harvest index and in-season soil water content compared 

440 with class 3b models. Most of the modelling groups (60%) who used class 3a models reported 

441 calibration of soil parameters related to the size of the different soil organic matter pools to 

442 adjust the amount of N mineralized from soil organic matter and to improve the match with 

443 observed aboveground plant N, while only 10% of the class 3b modelling groups reported 

444 such parameterization procedure (Table S3). Similarly, the majority (60%) of the class 3a 

445 modelling groups reported calibration of parameters related to soil water dynamics (e.g. 

446 moisture contents at field capacity and wilting point, soil water evaporation coefficients) to 

447 mimic observed soil water dynamics, while only 30% of the class 3b modelling groups 

448 reported such parameterization procedure (Table S3). Classifying class 3 crop models 

449 according to grain yield and aboveground biomass only (i.e. the variables that were observed 

450 for all sites and experiments) led to minor changes in the classification; the eight ‘most 

451 consistent’ models were also among the eight best models when ranked based on grain yield 

452 and aboveground biomass only (see underlined models in Table 2). 
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453 3.3 Model ensemble response to climate change and N inputs

454 Across sites and levels of N fertilization, the model ensemble median indicated a 4% increase 

455 in grain yield for doubling [CO2], 21% decrease with increasing temperature (+4°C), 1% 

456 decrease with increasing rainfall (150% of baseline rainfall) and 17% decrease with 

457 decreasing rainfall (50% of baseline rainfall). Nitrogen fertilizer input controlled to a large 

458 extent the response to variation in [CO2], temperature and rainfall (Figure 4). We describe the 

459 interactions between N fertilizer input levels and climate change factors in the subsections 

460 below.

461 3.3.1 Variations in [CO2] and temperature interact with N inputs

462 The impact of increased [CO2] on maize grain yield was smaller when N was limiting (Figure 

463 4). With doubling [CO2], the model ensemble median for the grain yield response was smaller 

464 with 0 kg N ha-1 (4% across all sites, i.e. 0.04 t ha-1) than with 160 kg N ha-1 (7% across all 

465 sites, i.e. 0.29 t ha-1). Model response varied across the sites (Table S4) and ranged between 0 

466 and 5% for 0 kg N ha-1, and between 4 and 13% at 160 kg N ha-1. 

467 Without N fertilization maize grain yield was less affected by higher temperature (+4°C) 

468 compared with N fertilization (80, 160 kg N ha-1) (Figure 4). Across all sites, the ensemble 

469 median indicated a 14 and 26% decrease in grain yield as a result of increased temperature 

470 with 0 and 160 kg N ha-1, respectively. The negative effect of higher temperature was stronger 

471 at the warm sites (Benin, Mali and Ghana) than at the cool sites (Rwanda and Ethiopia). With 

472 160 kg N ha-1, maize grain yield decreased by 29% in Benin, 32% in Ghana and 39% in Mali,  

473 and by only 14% in Ethiopia and 16% in Rwanda (Table S4). 

474 Prediction uncertainty, expressed here as the IQR of ensemble relative response in simulated 

475 maize yield, was greater for temperature than for [CO2] variation, without a clear indication 

476 that uncertainty decreases with increasing N fertilizer inputs (Figure S5).

477 3.3.2 Variation in rainfall in interaction with N inputs

478 Comparing the effect of N fertilization under conditions of increased rainfall (150% of 

479 baseline), grain yields of the 0 N treatment were more negatively affected than those with 

480 inputs of 80 or 160 kg N ha-1 (Figure 4). Across all sites, the model ensemble median 

481 indicated a -8 and 0% change in grain yield caused by increased rainfall at 0 and 160 kg N ha-

482 1, respectively. In Ethiopia, Mali, and Benin, an increase in rainfall had a strong negative 

483 effect on grain yield, and the magnitude of this effect was stronger for low N conditions. The A
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484 ensemble median indicated a 7% decrease in Mali, a 16% decrease in Ethiopia and a 35% 

485 decrease in Benin at 0 kg N ha-1, and 0, -4 and -2% in those countries at 160 kg N ha-1 (Table 

486 S4). In Ghana, and Rwanda, increased rainfall had little effect on grain yield when no N was 

487 applied (-2% and +1% relative yield change respectively) while positive effects of increased 

488 rainfall occurred with 80 and 160 kg N ha-1 (6 and 20% yield increase respectively). 

489 Without N fertilization maize grain yield was less affected by a decrease in rainfall (50% of 

490 current) than with N fertilization (80, 160 kg N ha-1) (Figure 4). Across all sites, the model 

491 ensemble median indicated a 2% and 27% decrease in grain yield with 0 and 160 kg N ha-1, 

492 respectively. Model response varied across the sites (Table S4). The impact of a decrease in 

493 rainfall was lower for Ethiopia and Benin (20 and 4% yield decrease at 160 kg N ha-1, Table 

494 S4) than for Mali, Ghana and Rwanda (25, 36 and 50% yield decrease at 160 kg N ha-1, Table 

495 S4), which is consistent with the fact that Ethiopia and Benin had higher seasonal rainfall 

496 (Table 1).

497 Prediction uncertainty, expressed here as IQR of ensemble relative response in simulated 

498 maize yield, for rainfall variation was always higher at low input (0 kg N ha-1) than at high N 

499 input (80, 160 kg N ha-1) with the exception of Mali for 50% of the baseline rainfall (Figure 

500 S5). Decrease in model prediction uncertainty from low to high N input simulations was 

501 generally greater for 150% relative rainfall than for 50% decrease in rainfall (Figure S5).

502 3.3.3 Impact of model classification on model response to climate change in interaction 

503 with N inputs

504 Classifying the crop models (Table 2) allowed unravelling some of the variability related to 

505 the interaction between climate change and N fertilizer inputs. Two models, MCWLA and 

506 GLAM (class 1, Table 2), do not simulate responses to N inputs, and hence the interaction 

507 between climate change and N input could not be analyzed (Figure 5). Three models 

508 (PEGASUS, SARRA-H, and CELSIUS, see Table 2) simulate a response to N input but do 

509 not include a detailed N module. These three models had different responses to climate 

510 change and N input compared with the ensemble model responses described in sections 3.3.1 

511 and 3.3.2. The simulated response by the SARRA-H model to increased [CO2] was higher 

512 under the zero N fertilization than under the 80 and 160 kg N ha-1 fertilization in Mali. The 

513 PEGASUS and CELSIUS models simulated very little interaction between increase in [CO2] 

514 and N fertilization. Similarly, the simulated impact of increased temperature (+4°C) by 

515 SARRA-H was largest with the zero N fertilization in Rwanda, Ethiopia and Benin, i.e. the A
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516 opposite of the simulated trend by the model ensemble (see section 3.3.1). The PEGASUS 

517 and CELSIUS models simulated also very little interaction between increase in temperature 

518 and N fertilization. The three models (SARRA-H, PEGASUS and CELSIUS) simulated no 

519 interaction between 150% of the baseline rainfall and N fertilization. The SARRA-H and 

520 PEGASUS models simulated little to no interaction between 50% of the baseline rainfall and 

521 N fertilization, while CELSIUS predicted an interaction consistent with the model ensemble 

522 behavior. The response averaged across these three models is shown in Figure 5 (class 2 

523 models).

524 The magnitude of model responses to some climate change factors was different between 

525 class 3a (the ten most consistent models ranked using all the measured variables) and the “less 

526 consistent” class 3b models (Figure 5). Simulated impact of doubling [CO2] was significantly 

527 lower (P < 0.05) for models of class 3a than for those of class 3b. The class 3a models 

528 predicted a 0.9 and 5.3% increase in grain yield with doubling [CO2] at 0 and 160 kg N ha-1, 

529 respectively, while the class 3b models predicted a 4.0 and 11.8% increase in grain yield. On 

530 the other hand, simulated responses to changes in temperature and rainfall did not differ 

531 significantly between class 3a and 3b models (Figure 5). When ranked based on grain yield 

532 and aboveground biomass only (Table 2), highest ranked models did not differ significantly in 

533 their response to [CO2] and rainfall. The simulated response to increased temperature (+4°C) 

534 was however significantly lower (P < 0.05) for highest ranked class 3a models (considering 

535 grain and aboveground biomass) than for the lower ranked class 3b models. 

536 Models of class 3 simulated N leaching, whereas models of the other classes did not. This 

537 resulted in a stronger negative impact of increased rainfall on simulated grain yield, especially 

538 for zero N fertilization, i.e. class 3 models simulated an increase in N leaching with an 

539 increase in rainfall (Figure S6). The simulated increase in the amount of N leached with 150% 

540 of baseline rainfall did not differ significantly between the model classes 3a and 3b. Models 

541 of class 3 explicitly simulated N mineralization unlike the models of the other classes. They, 

542 however, did not simulate an increase in N mineralization when temperature was increased 

543 (Figure S7). 

544 4 Discussion

545 Low input systems and model accuracy and uncertainty

546 Our comparative analysis of model accuracy with partial and full calibration confirms the 

547 importance of calibration against observed harvest and in-season variables for accurate 
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548 simulation of maize growth and yield in smallholder context, as was the case in other model 

549 intercomparisons (e.g. Asseng et al., 2013; Bassu et al., 2014; Li et al., 2015). However, 

550 rRMSE for grain yield averaged over the fully calibrated models was greater (rRMSE = 26%) 

551 for the cropping situations in our study with relatively low inputs than for e.g. high-input 

552 situations in a wheat model intercomparison (rRMSE ~ 10%) (Asseng et al., 2013). This 

553 confirms our initial hypothesis that model simulations are less accurate for low-input and 

554 below potential yield situations where soil processes need to be adequately simulated. Model 

555 ensembles gave greater accuracy than any model taken at random; in our study an ensemble 

556 of at least eight randomly-selected models was needed to fall below the typical 13.5% 

557 variation of measured grain yields in field experiments. This number is in line with the 

558 findings of the previous maize, rice and wheat model intercomparison studies (Asseng et al., 

559 2013; Bassu et al., 2014; Li et al., 2015), and demonstrates the strength of model ensembles. 

560 Model ensembles combine models that have complementary strengths in simulated plant 

561 and/or soil processes and minimize errors in structure/parameterization that may exist for 

562 some processes in individual models.

563 Model calibration for soil processes appeared to be key for low-input systems. For example, a 

564 steep decrease in soil water content occurred during the growing season in the experiments in 

565 Rwanda, the site with the lowest seasonal rainfall, and most models were generally able to 

566 capture such behavior. Notably, modeling groups who reported the calibration of specific 

567 parameters related to soil water dynamics to match observed soil water, achieved a greater 

568 increase in accuracy from partial to full calibration (see section 3.2.3). A correct simulation of 

569 soil mineralization was crucial for accurately simulating maize growth and yield in Benin as 

570 no N fertilizer was applied. However, the lack of observations precluded the analysis of 

571 model accuracy for N mineralization. The uncertainty in simulated N mineralization was large 

572 and not reduced with full calibration, though some models did calibrate the sizes of the 

573 organic matter pools and achieved a more accurate simulation of maize N uptake (see section 

574 3.2.3). As expected, models simulated higher N leaching in the wetter sites (Ethiopia and 

575 Benin), but without observations we could not analyze model accuracy with respect to 

576 amounts of N leached. The large uncertainty in simulated N leaching was not reduced with 

577 full calibration, and only one model reported changes in parameter values related to N 

578 leaching with full calibration.

579 Our model classification indicated that the ‘most consistent’ models (class 3a) (see section 

580 3.2.3) achieved a greater reduction in RMSE for aboveground plant N after full calibration, 
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581 hence increasing the likeliness of obtaining accurate simulations that consistently describe the 

582 plant growth processes leading to grain yield (Martre et al., 2015). Eventually, the ‘most 

583 consistent’ models simulated grain yield better, i.e. with a significantly smaller RMSE 

584 compared with ‘less consistent’ models. Good calibration can however be impeded by data 

585 availability, e.g. aboveground plant N was not measured in Mali, Ethiopia and Rwanda. Due 

586 to imbalance in data availability between sites, modelers made assumptions on some inputs 

587 and/or model parameters, leading to uncontrolled uncertainty in model simulations. When 

588 detailed data on soil is limited, simple models with a limited number of parameters should 

589 have an advantage over more complex models (Castañeda-Vera et al., 2015). Our findings 

590 partly supported this argument. Class 3a models all used a simple “tipping bucket” model 

591 approach for water dynamics, suggesting that the more detailed Richards equation for the 

592 flow of water in unsaturated soils was not needed to simulate water stress in a satisfactory 

593 manner. However, simple models with only one single pool for the simulation of organic 

594 matter decomposition and associated N mineralization were not systematically among the 

595 ‘most consistent’ models. 

596 Data quality can also impede good model calibration (Kersebaum et al., 2015), e.g. 

597 disagreement between (all) model simulations and soil water measurement in Ethiopia in 

598 2013 points to issues with regard to rainfall input data, and/or soil water measurements, 

599 and/or errors in the soil textural properties leading to higher predicted water percolation 

600 through the soil profile.

601 Low-input cropping systems and climate change impacts 

602 Our study revealed substantial interactions between N input and the effect of climate change. 

603 With a doubling in [CO2], the model ensemble median for relative grain yield response was 

604 +7% across all sites at 160 kg N ha-1 but only +4% at 0 kg N ha-1. Such simulated increase at 

605 high N fertilizer input is consistent with the previous maize model intercomparison study that 

606 indicated a 7.5% yield increase with doubling[CO2] (Bassu et al., 2014). The range of impacts 

607 depending on sites was however narrower for our study, i.e. 4-13% compared with 0-19% in 

608 Bassu et al. (2014), indicating possible improvements of some models that were used in both 

609 studies (Table 2). In addition to a very small yet controversial direct effect of [CO2] on C4 

610 crops photosynthesis (Leakey et al., 2006; Ziska et al., 1999), maize benefits from elevated 

611 [CO2] because of a “water-saving” effect (taken into account in the majority of the models, 

612 see Table 2) due to reduced stomatal conductance and plant transpiration (Durand et al., 

613 2018). The associated increase in plant growth as a result of this effect requires greater rates 
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614 of N uptake and assimilation by the plant (Bunce, 2014; Stitt and Krapp, 1999). The maize 

615 model ensemble simulated smaller gains from elevated [CO2] at 0 kg N ha-1 than at higher 

616 rates (160 kg N ha-1), because the beneficial effects of elevated [CO2] were constrained by N 

617 stress when no fertilizer was applied (Figure 4). Chamber-based and free-air CO2 enrichment 

618 experiments for maize were most often conducted under optimal nutrient supply in temperate 

619 climates (Allen et al., 2011; Chun et al., 2011; Manderscheid et al., 2014). An exception is the 

620 study of Bunce (2014) that showed lower maize yield response to elevated [CO2] as N 

621 fertilization decreased, in line with our model estimates of the impact of elevated [CO2] for 

622 different N fertilization levels.

623 When N availability was limiting plant growth under 0 kg N ha-1, maize models simulated 

624 only minimal impact of higher temperature and reduced rainfall, i.e. N stress made climate 

625 stresses less prominent. These model results are (i) supported by experimental data showing 

626 that crops with low supply of nutrients are less exposed to water stress (Affholder, 1995; 

627 Rötter et al., 1997) and (ii) in line with other modelling studies showing a less negative 

628 impact of climate variability and change in cropping systems with lower inputs (Affholder, 

629 1997; Faye et al., 2018b; Rurinda et al., 2015; Sultan et al., 2014; Traore et al., 2017). The 

630 “Liebig law of the minimum” helps understand such pattern: growth is dictated not by total 

631 resources available, but by the scarcest resource (limiting factor). Besides, low nutrient supply 

632 causes lower leaf area index and, therefore, less transpiration compared with crops grown 

633 under non-limiting nutrient supply, leading to a lower soil water uptake by the crop and 

634 consequently less impact of drought stress when rainfall becomes insufficient (Affholder, 

635 1997; Faye et al., 2018b). 

636 An increase in average temperature impacts maize grain yield mainly through a reduced 

637 duration of the crop cycle and associated lower biomass accumulation and thus N uptake, a 

638 process well accounted for in current maize models (Bassu et al., 2014). We could not find 

639 any experimental work studying possible effects of N supply on crop growth duration. The 

640 lower impact of temperature under low N fertilizer input was not due to an increase in N 

641 mineralization and soil N availability: the models did not simulate increased N mineralization 

642 under increased temperature (see section 3.3.3 and Figure S7). Although higher temperatures 

643 are known to lead to an increase in N mineralization (Guntiñas et al., 2012), in the model 

644 simulations a decrease in topsoil moisture may occur as a result of increased soil water 

645 evaporation with increased temperature, thus reducing N mineralization rate and offsetting the 

646 increased mineralization due to the rise in temperature. A
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647 Maize was more affected by a projected increase in rainfall when N was limiting (0 kg ha-1). 

648 We attribute this effect to the simulated increase in N leaching with increased rainfall, in line 

649 with another modelling report in a smallholder context in West Africa (Freduah et al., 2019). 

650 Simulated increase in N leaching with increased rainfall is supported by field experimental 

651 studies on tropical soils in Eastern and Southern Africa, that observed highest N leaching in 

652 growing seasons with highest rainfall amounts (Kamukondiwa and Bergström, 1994; 

653 Mapanda et al., 2012; Russo et al., 2017). 

654 Overall, the site influenced the impact of climate change. Maize growth and yield in the 

655 cooler high altitude sites, i.e. Rwanda and Ethiopia, were less affected by increase in 

656 temperature, in line with other studies predicting smaller crop yield losses, and in some 

657 situations even gains at cooler locations (Waha et al., 2013; Bassu et al., 2014; Zhao et al., 

658 2017). At low N fertilizer inputs, maize at the site with the highest level of soil organic carbon 

659 (i.e. Rwanda, see Table 1) was less affected by an increase in rainfall and the associated N 

660 leaching, highlighting the crucial role of soil organic matter in the steady provision of N in 

661 low-input cropping systems (e.g. Wood et al., 2018). Maize yield at sites with higher seasonal 

662 rainfall (i.e. Benin and Ethiopia) was less affected by the simulated decrease in rainfall, 

663 highlighting the importance of current climate conditions when analyzing the impact of 

664 climate change (Waha et al., 2013). 

665 We found no evidence that model uncertainty regarding the response to elevated [CO2] and 

666 temperature would be greater at low levels of N input. However, uncertainty of model 

667 response to rainfall change decreased (except in Mali) with the level of N fertilization, 

668 indicating that models differed in the way they dealt with this interaction. The high variability 

669 in simulated soil N mineralization (see section 3.2.2) explains to an extent such uncertainties. 

670 Influence of model structure on simulated crop responses to climate change

671 Our analysis of crop model response to climate change coupled with experimental work 

672 suggests that accurately accounting for both N supply and N leaching under different 

673 experimental conditions is crucial for modelling climate change impacts on maize growth in 

674 SSA. By separating models into classes, we disentangled some of the variability in model 

675 response to climate change under contrasting N fertilizer inputs. Most models without a daily 

676 N module (models of class 2) did not account for the interactions in the case of increased 

677 [CO2] and change in rainfall in a way that was consistent with experimental evidence (see 

678 section 3.3 and discussion above). Class 3a models (ranked based on rRMSE for all the A
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679 observed variables) simulated a smaller impact of elevated [CO2] on maize yield irrespective 

680 of the N input levels. There were, however, no obvious structural model characteristics 

681 differentiating these best models from the others. For light utilization, models using a 

682 “radiation use efficiency” approach or a “gross photosynthesis – respiration” approach were 

683 represented equally within the two classes. Similarly, models with specific formalisms to 

684 compute grain number were represented in the two classes. Class 3a models also simulated 

685 more accurately crop response to N input than the other models (see section 3.2.3); therefore, 

686 their simulation of the impact of climate change with contrasting N inputs is expected to be 

687 more robust. Ranking models based on various plant and soil variables may however be 

688 disputable since each variable has a different degree of importance for modelling crop growth. 

689 For this reason, we investigated an alternative ranking based on grain and biomass yield only. 

690 With this approach, the highest ranked models simulated significantly less impact of an 

691 increase in temperature irrespective of the N fertilizer level. There were, however, no obvious 

692 model structural characteristics differentiating these highest ranked models from the others, 

693 e.g. for the type of heat stress simulated or the formalism for crop phenology. It should, 

694 however, be noted that uncertainty in calibration due to model user subjectivity can 

695 sometimes hide the role of specific model structures (Confalonieri et al., 2016). For example, 

696 the PHINT parameter (interval between successive leaf tip appearances) in the DSSAT model 

697 can be optimized to improve accuracy in LAI and grain yield simulations (Table S3). Whether 

698 such optimization without detailed leaf appearance data to calibrate against is a good practice 

699 is a point of debate. Identifying highest ranked models prior to simulation is challenging: a 

700 given model will often obtain a different ranking for fit to the observations when used with a 

701 different dataset (i.e. another combination of physical environment and management) 

702 (Wallach et al., 2018). Without model validation with independent datasets (e.g. Confalonieri 

703 et al., 2009), it is unlikely that the ranking proposed in this study holds for all possible 

704 environments in a smallholder context. The ranking should therefore be seen as a means to 

705 understand model behavior rather than a prescription on which model to use. Eventually, in 

706 some cases model response may have been unrealistic, e.g. relative grain yield change with 

707 doubling [CO2] between 50% and more than 100% (i.e. outliers not shown in Figure 4). 

708 Systematically discarding models with such unrealistic behavior could help in model selection 

709 and improve ensemble model creation. However, such procedure remains in dispute as 

710 discarding ‘extreme’ models can lead to overconfidence in models that behave in a similar 

711 way, rewarding a convergence that may be the result of similar model assumptions and errors 

712 (Knutti, 2010). Analysis of unrealistic behavior relying on relative changes also deserve 
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713 caution, as very small values with baseline climate can cause very large relative responses 

714 with future climate even if the absolute responses are reasonable. 

715 Implications for sustainable intensification in SSA

716 A substantial proportion of the farm households in SSA face food insecurity (Frelat et al., 

717 2016). Sustainable intensification with increased nutrient inputs and efficient use could 

718 drastically increase crop production and improve household food availability, whilst 

719 maintaining other important ecosystem services and preventing further land expansion (Loon 

720 et al., 2019; Vanlauwe et al., 2014). Our modelling study indicates that farmers intensifying 

721 maize production will face a different impact of climate change. With increased N 

722 fertilization maize will benefit more from elevated [CO2], but will be increasingly negatively 

723 impacted as temperature increases and/or if rainfall decreases. The benefits from elevated 

724 [CO2] in mitigating drought impacts are unlikely to offset negative impacts from changes in 

725 temperature and possibly rainfall (e.g. Faye et al., 2018b), so that yield penalties and larger 

726 yield variability are expected. Increased yield variability may exacerbate the current risk of 

727 unfavorable benefit-cost ratio for mineral fertilizer application (e.g. Bielders and Gérard, 

728 2015; Falconnier et al., 2017). Policy interventions aiming at implementing risk coping 

729 mechanisms and additional safety nets will therefore be crucial to support sustainable 

730 intensification in the context of climate change. 

731 Our findings have implications for developing recommendation domains for specific 

732 adaptation strategies. In high rainfall sites like in Ethiopia and Benin, nitrate leaching will be 

733 further intensified in case of a wetter climate; technologies maximizing N efficiency and 

734 preventing losses through leaching, e.g. relay intercropping with deep rooting cover crops and 

735 split applications of mineral fertilizer, may prove successful. In low rainfall sites like the site 

736 in Rwanda, maize will experience more severe drought stress if climate gets drier; drought 

737 tolerant cultivars and water-harvesting technologies (e.g. stone lines, tied ridging, zaï pits and 

738 contour ridging) may help mitigate production losses. Low altitude warm sites (like in Ghana, 

739 Mali and Benin) will be more affected by the rise in temperature so that breeding should aim 

740 at cultivars adapted to heat stress.

741 Avenues to extend the work

742 Given the importance of accurately accounting for N dynamics when modelling the response 

743 of low-input systems to climate change, further model improvement studies targeting these 

744 systems should focus on (i) the evaluation of model ability to accurately simulate soil organic 
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745 matter mineralization, soil mineral N dynamics (e.g. leaching), plant N uptake and N stress 

746 effects on crop growth by comparing simulations with observed data, and (ii) studying the 

747 impact of model structure and complexity (e.g. ‘tipping bucket vs Richards equation, number 

748 of soil carbon pools, impact of temperature and moisture on soil organic matter 

749 mineralization) on the accuracy of model outputs. Comprehensive datasets to perform such 

750 analysis currently do not exist for SSA. The research agenda on modelling the effects of 

751 climate in low-input conditions should therefore aim at implementing detailed soil-crop 

752 monitoring in experiments in contrasting sites representative of SSA. An experimental focus 

753 on the interaction between N fertilization and elevated [CO2] and temperature will also be 

754 required, as models have not been tested against experimental data coming from tropical 

755 environments for these interactions. Model sensitivity to rainfall was assessed in this study by 

756 assuming a uniform relative change in daily rainfall throughout the growing season. More 

757 complex patterns are likely to occur in the future, e.g. increase in the frequency and 

758 magnitude of intense rainfall events (Taylor et al., 2017), or shortening of the rainy season 

759 (Guan et al., 2017). More analyses of model responses that account for these complex patterns 

760 are required. Most soils across SSA are highly weathered and inherently poor in P (Buerkert 

761 et al., 2001). In three of the five experimental study sites (i.e. Mali, Ghana and Rwanda), 

762 substantial amounts of P fertilizer (~25 kg P ha-1) were applied, which is considered as 

763 sufficient to reach about 70% of the water-limited yield potential (ten Berge et al., 2019; 

764 Velde et al., 2014). With such amount of P fertilizer, it is unlikely that P stress was an issue in 

765 these sites. For the other sites, accounting for P stress may help to reduce model uncertainty. 

766 The number of models able to deal with P stress is however limited (e.g. Dzotsi et al., 2010). 

767 Although maize is the most important staple food crop in large parts of SSA, other traditional 

768 cereals such as sorghum and millet are also widely consumed in West and East Africa (OCDE 

769 and FAO, 2016). Other crops such as cassava and banana also contribute substantially to food 

770 security in sub-humid and humid SSA (OCDE and FAO, 2016). Extending model 

771 intercomparisons of climate change impact for these other crops that are often cultivated in 

772 environments different from the ones of our study sites would therefore allow for a more 

773 comprehensive assessment of diverse smallholder farming systems and food security issues. 

774 Besides, climate change is likely to strengthen pest and disease pressure on crops (Deutsch et 

775 al., 2018). Although the soil-crop models used in this study do not account for biotic stresses, 

776 considering this yield-reducing factor will be a necessary step towards a more integrated 

777 assessment of the impact of climate change (e.g. Donatelli et al., 2017) on smallholder 

778 farming systems. 
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779 Conclusion

780 Our modelling study revealed robust simulated interactions between climate change factors 

781 and N fertilization and indicates that maize intensively managed with more N fertilizer will be 

782 more sensitive to climate change. Therefore, the needed sustainable intensification of 

783 cropping systems in SSA will become more and more risky as climate changes, which 

784 highlights the need for policy interventions aiming at implementing risk coping mechanisms. 

785 Predicting the impact of climate change on cropping systems in which N inputs are likely to 

786 vary, requires crop models that explicitly account for N stress and N leaching. At least eight 

787 fully calibrated models were needed to ensure reasonable accuracy in simulations. 

788 Experimental data and model improvements are urgently needed to better evaluate the impact 

789 of the interaction between (i) N fertilization and elevated [CO2] and (ii) N mineralization and 

790 elevated temperature. We advocate for a research agenda geared towards filling the current 

791 data gap by implementing detailed and comprehensive soil-crop monitoring in contrasting 

792 sites representative of agriculture in SSA. 
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Figures: 

Figure 1: (A), Map of sub-Saharan Africa showing the five study sites representative of FAO tropical agro-ecological zones where maize cultivation is possible. (B), Observed 

soil water content to maximum rooting depth in the six experiments where soil water was monitored (vertical lines from left to right are sowing, anthesis and maturity dates). 

PAWC: Plant Available Soil Water Capacity. (C), Observed maize grain yield at the five sites for two growing seasons (ten experiments) as a function of estimated available 

mineral nitrogen (N), i.e. the summation of initial soil mineral N, applied mineral and organic N and mineralized soil organic N and manure N over the whole growing season 

(for Ethiopia and Rwanda, initial mineral N measurements were not available

Figure 2: (A), Observed (crosses with standard deviation if known) and simulated (box plots) grain yields. Simulations are from an ensemble of 25 partially and fully 

calibrated models. The line in the box and the width of the box are the median and the interquartile range respectively. The whiskers extend from the edge of the box to the 

most extreme data point below 1.5 interquartile range. Black open dots are outliers. (B) rRMSE (averaged across all models) of simulated – observed comparison for six 

variables of interest. For aboveground plant nitrogen the comparison was possible for four of the ten experiments only (Benin and Ghana). Open dots indicate rRMSE of 

ensemble median. (C) Coefficient of variation (averaged across sites) of 25 model simulations for five variables.

 

Figure 3: Relative variation (mean ±standard deviation) between average of n models and measured grain yield in the ten experiments at five sites across sub-Saharan Africa. 

Models were randomly selected among the 25 calibrated models that simulated yield for the ten experiments. The horizontal dotted line is the 13.5% threshold, i.e. the 

coefficient of variation for measured yields typically obtained in experimental plots (Taylor et al., 1999).

Figure 4: Boxplots of relative change in grain yield (compared with baseline climate) when doubling [CO2], increasing temperature by +4°C, increasing and decreasing 

rainfall (150% and 50% of baseline) in five sites across sub-Saharan Africa and for three N inputs of 0, 80 and 160 kg N ha-1. Simulations are from 24 maize models with full 

calibration (one model did not perform the sensitivity analysis). Two models not simulating the effect of N on crop growth are displayed only for 160 kg N ha-1. The line in 

the box and the width of the box are the median and the interquartile range respectively. The whiskers extend from the edge of the box to the most extreme data point below 

1.5 interquartile range. Outliers (data points below Q1 – 1.5×(Q3-Q1) or above Q3 + 1.5×(Q3-Q1) where Q1 is the first quartile and Q3 the third quartile) were not displayed.
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Figure 5: Mean ( ± SE) relative change in grain yield (compared with baseline climate) when doubling [CO2], increasing temperature by +4°C, increasing and decreasing 

rainfall (150% and 50% of current) in five sites across sub-Saharan Africa and for three N inputs of 0, 80 and 160 kg N ha-1. Simulations are from 25 maize models with full 

calibration classified in three classes: two models that did not simulate responses to N inputs (class 1, red), three models that simulated response to N inputs but without a 

daily N module (Class 2, green) and with a daily N module (Class 3). Models below the median sum of ranks for rRMSE over all the simulated variables were classified as 

“most consistent” models (class 3a, cyan), models above the median as “less consistent” models (class 3b, purple) (see section 2.3 for a detailed description of the 

classification). The reader is referred to the web version of this article for interpretation of references to colors.
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Tables

Table 1: Characteristics of the five sites and ten experiments selected for model evaluation of 

maize yield simulation in rainfed smallholder farming systems across sub-Saharan Africa. 

  Site     

General 

information 
Country Benin Mali Ghana Rwanda Ethiopia

Location Ouri Yori Ntarla Kpong Bugesera Bako

Source 

(Amouzou et 

al., 2018)

(Traore et al., 

2014)

(MacCarthy et 

al., 2015)

(Ndoli et al., 

2018)

(Sida et al., 

2018)

Latitude 10.82 12.58 6.16 -2.35 9.13

Longitude 1.07 -5.70 0.06 30.27 37.10

Elevation (m) 213 302 22 1400 1700-2000

FAO AEZ

Tropic - 

warm semi-

arid

Tropic - warm 

semi-arid

Tropic - warm 

sub-humid

Tropic - cool 

sub-humid

Tropic - cool - 

subhumid

Rainfall pattern unimodal unimodal bimodal bimodal unimodal

 Average growing season
june-

september
june-september

march-july and 

august-

december1

september-

january and 

february-july2

june-october

Soils Soil type (FAO) Gleyic Alisol Ferric Lixisol Vertisol
Humic 

Ferralsol
Nitisol

Soil texture loamy sand loamy sand clay sandy loam clay

maximum rooting depth 

(cm)
60 120 100 100 120

Plant Available Soil 

Water Capacity (mm to 

maximum rooting depth) 105 167 93 104 202

SOC (%) (0-30cm) 0.28 0.2 0.57 1.65 0.65

Total Nitrogen (%) (0-

30cm)
0.023 0.015 0.048 0.138 0.059

Management Cultivar
EVDT-97 

STR (OPV3)

 Suwan 1 - SR 

(OPV3)

Obatampa 

(OPV3) 
ZM607 (OPV3) BH540 (Hybrid)

Sowing dates (DOY4) 176, 185 151, 163 111, 105 282, 267 161, 158

Manure input (t/ha) 0 3 0 0 0

N content in manure (%) - 1.6 - - -

Total applied N fertiliser 

(kgN/ha)
0 85 80 64 87

Total applied P fertiliser 

(kgP/ha)
0 26 30 20 9

Total applied K 

fertilister (kgK/ha)
0 16 37 0 0

Phenology Anthesis (DAP5) 52, 53 56, 54 65, 60 72, 82 97, 98

 Maturity (DAP5) 80, 86 97, 95 105, 106 120, 118 138, 139

Experimental 

year climate

Experimental year (first 

experiment) 2014 2009 2008 2013-2014 2013

Mean growing season 27.9 26.6 27.7 22.8 21.1
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temperature 

Mean growing season 

precipitation 516 549 536 217 476

Experimental year 

(second experiment) 2015 2010 2009 2014-2015 2014

Mean growing season 

temperature (season 2) 27.1 26.9 27.6 23.1 20.5

 
Mean growing season 

precipitation (season 2) 810 705 455 351 923

Baseline climate 

(1980-2010)

Mean growing season 

temperature 25.5 28.3 27.6 21.9 20.6

Mean growing season 

precipitation 641 582 442 331 939

1Only March-July was considered for the experiments

2Only September-January was considered for the experiments

3Open pollinated variety

4Day of the year. First and second value indicate season 1 and season 2 experiments, respectively. 

5Days after planting. First and second value indicate season 1 and season 2 experiments, respectively.
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Table 2: Model grouping into four groups according to characteristics linked to the simulation of N and additional characteristics of the models. Class 3a and 3b were 

determined after the analysis of model ranking (based on rRMSE) when simulating all variables of interest (see section 2.4 for detailed description of the classification). In 

bold, models that participated in a previous maize intercomparison in high input systems (Bassu et al., 2014). Underlined models are the ten highest ranked models (among 

class 3 models) for grain and biomass simulation (see section 2.4 for detailed description of the classification). 

Model 

Class 

effect 

of N 

input

Daily N 

module Model Model reference* L
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 C
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1 no no GLAM Challinor et al. (2004) S RUE,TE B, HI T, DL LIN no yes E R C PT - RUE, TE

   MCWLA Tao and Zhang (2010) S P-R B, HI T EXP no yes E V,R R PM - -

2 yes no PEGASUS Deryng et al. (2014) S RUE B, Prt T LIN no yes E, S V,R C PT C, P(1) RUE, TE

   SARRA-H Baron et al. (2005) S RUE HI, Prt T LIN no no S - C PM - RUE, T

CELSIUS Ricome et al. (2017) S RUE B, Gn, Hi_mw T, DL LIN no yes S V,R C PM N RUE

3a yes yes APSIM 7.9 Holzworth et al. (2014) S RUE Prt T, DL EXP yes yes S V C PT CN, P(3), B RUE, TE

DNDC Smith et al. (2020) S TE HI T EXP yes yes S R C PM CN,P(5),B PT

HERMES Kersebaum (2011) D P-R Prt T, DL, O EXP yes no E, S - C PM N, P(2) LF, T

DSSAT-IXIM-

Maize+Century Lizaso et al. (2011) D P-R Gn T, DL EXP yes yes E R C PT CN, P(2), B RUE, T

DSSAT-IXIM-

Maize+Ceres-SOM Lizaso et al. (2011) D P-R Gn T, DL EXP yes yes E R C PT CN, P(1) RUE, T

MONICA Nendel et al. (2011) D P-R Prt T, DL, O EXP yes yes E V C PM CN, P(6), B -

SALUS Basso et al. (2010) S RUE HI, Prt T, DL EXP yes yes E V C PT CN, P(3), B -

SIMPLACE-Lintul + ET 

Hargreaves + Heat stress 

with air temperature Gaiser et al. (2013) S RUE Prt T, DL EXP yes no E, S - C O CN, P(7), B RUE, TE

   STICS Brisson et al. (2002) S RUE B, Gn, HI,mw T, DL, O SIG yes yes E V,R C SW CN, P(2), B RUE, T

DSSAT-CERES-

Maize+Century Ritchie et al. (1998) S RUE Gn T, DL EXP yes yes E R C PT CN, P(2), B RUE, T

3b yes yes AGRO-IBIS Twine et al. (2013) S P-R B, Prt T EXP yes yes S V,R R O C, N, P(2) F

APSIM 7.10 Holzworth et al. (2014) S RUE Prt T, DL EXP yes yes S V C PT CN, P(3), B RUE, TEA
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DSSAT-CERES-

Maize+Ceres-SOM Ritchie et al. (1998) S RUE Gn T, DL EXP yes yes E R C PT CN, P(1) RUE, T

EXPERT-N-Ceres Biernath et al. (2011) S RUE B, Gn T, DL EXP yes yes E, S V R PM CN, P(3), B -

EXPERT-N-Spass Biernath et al. (2011) D P-R Prt T, DL EXP yes yes E, S V R PM CN, P(3), B -

EXPERT-N-Sucros Biernath et al. (2011) D P-R Prt T EXP yes yes E, S V R PM CN, P(3), B -

MAIZSIM Kim et al. (2012) D P-R HI, Prt T, DL CD yes yes O V,R R P, O N, P(1), B LF, T, F

RZWQM2 Sadhukhan et al. (2019) S RUE B, Gn, Prt T, DL, O EXP yes yes E, S V,R R SW C, N, P(1), B PT

SIMPLACE-Lintul + ET 

FAO-56 + Heat stress with 

crop temperature Faye et al. (2018a) S RUE Prt T, DL EXP yes yes E, S R C PM CN, P(7), B RUE, TE

   SWB van der Laan et al. (2010) S RUE,TE Prt T LIN yes no S - C PM CN, P(4) RUE, TE
a  S, Simple-unilayer(e.g. LAI); D, Detailed Multilayer (e.g. canopy layers)
b RUE, radiation use efficiency approach; P-R gross photosynthesis - respiration; TE, compute water use first, then biomass growth from transpiration efficiency
c HI, fixed harvest index; B, total (above-ground) biomass; Gn, number of grains; Prt, partitioning during reproductive stage; HI_mw, Harvest Index modified by water stress
d Function of : T, Temperature; DL, photoperiod (day length); O, other water/nutrient stress effects considered
e LIN, Linear; EXP, Exponential; SIG, sigmoidal ;, CD, Convective Dispersive 
f E = Eta/Etp, S = soil available water in root zone, O, leaf energy balance, leaf and soil water potential effects on photosynthesis and leaf expansion
g V = vegetative (source), R = reproductive organ (sink).
h C, ‘Tipping bucket’ capacity approach; R, Richards approach
i P, Penman; PM, Penman-Monteith; PT, Priestley –Taylor; SW, Shuttleworth-Wallace, O, leaf energy balance (MZ), 

Hargreaves Dual crop coefficient method (SI2), water demand in plant, root water uptake, closes surface energy budget (AG).
j C, C model; N, N model; P(x), x number of organic matter pools; B, microbial biomass pool.
k LF, Leaf-level photosynthesis-rubisco or on QE and Amax; RUE, Radiation use efficiency; TE, Transpiration efficiency; PT, Photosynthesis and transpiration ;F, Farquhar model, GY, Grain Yield; T, Stomatal conductance.

*More references and model documentation can be found in Table S2.
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Table 3: rRMSE of simulated – observed comparison for six variables of interest for 25 fully 

calibrated maize models. In bold, models below median sum of ranks for all variables or yield 

and biomass only. Five models without daily simulation of N dynamics were not ranked.

 rRMSE (%)    Rank  

Model 

class Model name grain yield 

total 

above 

ground 

biomass 

maximum 

LAI 

total 

above 

ground 

plant 

N 

Harvest 

Index

Soil 

water

Sum of 

ranks (all 

variables) 

Sum of 

ranks 

(yield 

and 

biomass)

Final 

rank (all 

variables)

Final rank 

(yield and 

biomass)

1 GLAMM 18 31 57 - 32 - - - - -

MCWLA 8 41 15 - 32 13 - - - -

2 CELSIUS 12 26 34 - 33 12 - - - -

SARRA-H 17 31 10 - 34 17 - - - -

PEGASUS 16 43 79 - 57 78 - - - -

3a DNDC 22 34 40 7 21 9 32 20 1 9

STICS 8 26 13 52 23 22 42 6 2 1

HERMES 23 17 48 26 27 12 43 11 3 4

DSSAT-IXIM-Maize+Century 20 25 46 28 29 17 47 10 4 3

APSIM v 7.9 27 27 40 30 31 14 48 18 5 7

DSSAT-IXIM-Maize+Ceres-SOM 21 28 41 33 29 17 51 15 6 5

SIMPLACE-Lintul + Option 2* 11 30 6 43 38 24 54 10 7 2

MONICA 42 46 11 15 30 18 60 35 8 16

SALUS 36 48 6 11 41 23 73 35 9 15

DSSAT-CERES-Maize+Century 34 33 58 52 31 14 75 24 10 10

3b MAIZSIM 40 32 41 44 32 22 77 27 11 12

APSIM v7.10 15 36 41 58 33 26 78 17 12 6

DSSAT-CERES-Maize+Ceres-SOM 36 35 58 56 32 14 84 27 13 11

SIMPLACE-Lintul + Option 1** 42 48 45 30 34 18 85 38 14 18

EXPERT-N-Sucros 19 36 47 78 39 29 93 20 15 8

RZWQM2 40 54 48 50 41 19 99 37 16 17

SWB 72 58 37 49 37 43 99 42 17 20

EXPERT-N-Spass 29 46 43 56 54 32 103 28 18 13

AGRO-IBIS 82 47 28 51 50 72 104 39 19 19

EXPERT-N-Ceres 27 67 61 96 41 30 116 33 20 14

*ET Hargreaves + Heat stress with air temperature

**ET FAO-56 + Heat stress with crop temperatureA
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