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ANALYSIS AND APPLICATION OF NOVEL AND HERITAGE
ACCELERATION LIMITING ALGORITHMS FOR SLS ON ASCENT

Jason Everett∗, John Wall†, and Naeem Ahmad‡

National Aeronautics and Space Administration (NASA) is currently build-
ing the Space Launch System (SLS) Block-1 launch vehicle, to be used as
the crewed heavy-lift vehicle for the Artemis series of missions. The SLS
Block-1 guidance subsystem1 utilizes a nonlinear algorithm derived from
Shuttle heritage2 for limiting the vehicle’s induced maximum axial accel-
eration during ascent flight, known as g-limiting. Even though g-limiting
has demonstrated stability and robustness through several design analysis
cycles and the extensive Shuttle flight history, there are no available docu-
ments that demonstrate that this algorithm has been proven stable through
conventional controls stability analysis. This paper highlights the non-
linear nature of g-limit, presents an alternative methodology to employ
a linear version of this algorithm, performs assessment of selected linear
gains using classical stability analysis and, conducts a comparison of both
approaches through Six Degrees-of-Freedom (6-DOF) Monte Carlo (MC)
simulations.

INTRODUCTION

The g-limiting algorithm is the means by which Space Launch System (SLS) limits its
maximum acceleration primarily for the reason of preventing excessive structural loads and
maintaining crew safety. Without g-limiting, SLS will experience higher stress loads than
those for which the vehicle is designed, resulting in potential structural failure. Therefore,
it is imperative that g-limit functionality is robust and any weakness of this algorithm is
known a priori. The g-limiting algorithm in use for SLS gained its reputation from its
Space Shuttle flight heritage.2 Moreover, through several recent design analysis cycles, this
heritage implementation of Shuttle’s g-limiting algorithm has been thoroughly tested and
has been vetted for SLS ascent for the Artemis I and Artemis II missions. The algorithm is
also robust to certain failure scenarios, including the loss of a single core engine and loss
of communication.

This heritage Shuttle g-limiting algorithm is a nonlinear time-varying system that con-
tains a dynamic, multiplicative feedback law. Although this algorithm has been thoroughly
∗Aerospace Engineer, EV42/Guidance, Navigation, and Mission Analysis Branch, NASA Marshall Space
Flight Center, Huntsville, AL 35812.
†Aerospace Engineer, EV41/Control System Design and Analysis Branch, Dynamic Concepts, Inc. (Jacobs
ESSCA Group) Huntsville, AL 35806.
‡Aerospace Engineer, EV42/Guidance, Navigation, and Mission Analysis Branch, NASA Marshall Space
Flight Center, Huntsville, AL 35812.

1



tested through high-fidelity SLS simulation environments, and has strong flight heritage,
there are no available documents that demonstrate that this algorithm has been proven sta-
ble through conventional controls stability analysis. While the basis of flight heritage made
a strong point in adopting this algorithm as a baseline for SLS, formal stability assess-
ments were not part of its adoption criteria. Heritage aside, formal stability analysis of this
nonlinear system, despite being a challenging controls problem, can provide an additional
assurance for the robustness of the algorithm as adopted for SLS. Furthermore, stability
analysis of the g-limiting feedback control ensures consistency with the treatment of other
components of Guidance, Navigation, and Controls (GN&C) subsystems, such as the flight
control system, for which stability analysis is an integral requirement.

Earlier attempts of converting the nonlinear model to a linear, time-invariant (LTI) sys-
tem for stability analysis proved infeasible due to reasons which will be discussed in the
upcoming sections. Efforts to linearize the inherently nonlinear heritage g-limiting algo-
rithm led the SLS GN&C team to redefine physical interpretation of the components of the
non-linear algorithm, which led to formulation of a fully LTI alternative controller formula-
tion. In the next sections, the existing g-limiting and newly developed linear algorithms are
compared and discussed in terms of stability and performance. To verify the design, a Six
Degrees-of-Freedom (6-DOF) ascent simulation is used to evaluate performance including
propellent usage and orbit insertion targets.

OPERATION OF THE HERITAGE G-LIMITING ALGORITHM

The g-limiting algorithm is a closed loop control system wherein throttle commands are
issued in response to sensed acceleration feedback in order to maintain a desired target
acceleration. Put plainly, the g-limiting algorithm solves the following problem: given a
desired acceleration, with access to sensed vehicle acceleration, what throttle command
would allow the vehicle to achieve the target acceleration?

The solution to this problem is a multiplicative feedback law that can be derived in a
straight forward fashion when the appropriate assumptions are made. First, given a desired
acceleration target acmd, it is clear that the desired engine thrust to be produced Tcmd is
proportional to the desired acceleration by the current vehicle estimated mass m in the
following fashion:

Tcmd = macmd (1)

In order to arrive at the desired throttle command, ηcmd, with a measurement of sensed
acceleration, asensed, Equation 1 can be expanded into Equation 4, where Tmax and Tcurrent
are the maximum and current thrust levels:
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ηcmdTmax = macmd (2)

ηcmdTmax =
Tcurrent
asensed

acmd (3)

ηcmdTmax =
ηcurrentTmax

asensed
acmd (4)

The SLS GN&C architecture does not have innate knowledge or feedback of the exact
engine controller output throttle ηcurrent. Therefore, an assumption is made that the current
throttle of the engine is sufficiently equivalent to the previously commanded throttle of
the engine, ηprev. This assumption is valid as long as the engine thrust has had ample
time to respond to the previously commanded throttle. This fundamental assumption in the
use of the heritage algorithm will be illustrated in the forthcoming sections. After some
simplifications, Equation 4 becomes:

ηcmd = ηprev
acmd

asensed
(5)

Equation 5 above represents the nonlinear control law, a multiplicative operation with
two feedback loops: division by asensed and product with ηprev. The operation of this
method assumes the achieved throttle has converged to the previous command and the
resulting acceleration has been reached. Using this multiplicative approach, a small off-
set/overshoot of actual acceleration (when compared to commanded acceleration) becomes
apparent. This offset is adjusted for by introducing a PI+I system upstream to this multi-
plicative feedback law, such that instead of using a fixed acmd, a new acceleration multiplier,
ades, is adjusted to remove any errors between the target and sensed acceleration. This PI+I
system, while resembling a classical linear controller, serves only to adjust the set point
of the main control law, inherently nonlinear with its multiplicative feedback. Further dis-
cussion of the PI+I system and the physical meaning of this ades term, is discussed in the
sections that follow.

STABILITY ANALYSIS OF THE HERITAGE G-LIMITING ALGORITHM

As is appropriate for the design and certification of a control system, and consistent with
the other control loops employed during the operation of the SLS (eg. Flight Control Sys-
tem (FCS), Thrust Vector Control (TVC)), the authors sought to determine the stability
properties of the heritage closed-loop g-limiting algorithm. This section presents an ex-
ploration into the stability properties and linearized treatment of the inherently nonlinear
heritage algorithm and then proposes a fully linear control system alternative.

Figure 1 shows, in block diagram form, the nonlinear g-limiting algorithm as connected
to a representation of the vehicle plant. This simple representation of the system was simu-
lated in MATLAB to evaluate the response and stability characteristics of the acceleration
limiting algorithms.
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Figure 1: Nonlinear G-Limiting Algorithm Representation

The plant model represents the conversion of throttle command, η to sensed acceleration,
a. The plant model includes the simple transfer function dynamics of the engine throttle
response and acceleration sensor dynamics. The block, G0, represents the actual throttle to
truth acceleration relationship. In this paper, the time domain simulation of G0 utilizes the
relationships in Equations 6 through 9, yielding a partially linearized set of computations
which, through simulation, were shown to closely match the full dynamical system using
test-correlated tabular thrust, specific impulse Isp, and mass flow rate tables.

ṁ =
F0

Ispgη0
η (6)

F =
F0

η0
η (7)

m = m0 − ṁ0ηt (8)

a =
F

m
(9)

While the mass depletion rate ṁ and thrust F shown in Equations 6 through 8 are readily
linearized into the simple throttle gain relationships shown above, the resulting mass after
ṁ integration is then divided into thrust to produce acceleration (Equation 9, yielding a
nonlinear relationship between acceleration and throttle.

While the acceleration, via mass flow rate, is indeed a function of the throttle control
variable, η, the thrust relationship to throttle dominates as the primary means of accelera-
tion control. As such, the mass integration step and the relatively low gain ṁ relationship
to throttle, allows the mass parameter to be treated as an input exogenous to the system,
yielding a fully linear relationship between throttle and acceleration.

As such, and for stability analysis and interpretation, the resulting plant model relation-
ship between throttle and acceleration can be treated as a time-varying gain, G0, shown in
Equation 10

a = G0η =

(
F0

m(t)

)
η (10)

This time-varying gain block of the g-limiting plant is analogous to the launch vehicle
TVC control effectiveness, which is commonly addressed in the autopilot application with
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the use of gain scheduling. The exception to this analogy is that unlike the time-varying
autopilot problem, the mass depletion effect additionally produces the very disturbance the
g-limiting algorithm is seeking to reject.

Even though the time varying gain and the external disturbance are directly related, the
assumption that they are decoupled from the control system throttle command enables clas-
sical control system analysis treatment as though the two effects of mass depletion are un-
related. Since mass depletion is the key driver of the g-limiting control problem at hand,
one can also interpret the throttle de-coupled mass loss as an analogously increasing dis-
turbance force input. An increasing force would produce the same effect disturbance-wise
as a linearly decreasing mass. The analysis of such a ramp force disturbance to a dynamic
system is well-known to the control system analysis discipline.

The final observation is that in typical operation the throttle feedback mechanism of g-
limiting maintains control of the acceleration, keeping it at constant value. In this scenario,
G0 can be simplified further to a constant gain block, corresponding to the operating point
acceleration, a0, shown in Equation 11. This simplification removes the time-varying con-
sideration of the plant enabling the interpretation of the acceleration problem as a control
system whose main goal is to reject a ramp-style disturbance force.

a = G0η = a0η =

(
F

m

)
0

η (11)

LINEARIZATION OF THE HERITAGE NONLINEAR SYSTEM

While the plant dynamics can be sufficiently linearized for stability analysis of the accel-
eration control problem at hand, one quickly observes that the g-limiting control algorithm
shown in Figure 1 contains both linear blocks (familiar to classical controls practitioners)
as well as some nonlinear operations. At first look of the complete nonlinear model (both
the PI+I and the multiplicative feedback law), the front end of the control system (the PI+I)
looks fairly typical in that an error signal is computed based on the desired acceleration
target and the sensed acceleration. The error signal is processed through a typical propor-
tional+integral control scheme, followed by another integrator, a PI+I. The output of the
final integrator, ades, then feeds into a nonlinear operation. The operation of the nonlin-
ear portion of the controller, as described earlier, computes an incremental scaling of the
previously issued throttle command based on PI+I processed error signal and the previous
acceleration.

In order to treat the nonlinear control system stability, the authors sought to interpret the
nonlinear incremental scaling block as a linear operation so that a linear system response
could be computed and analyzed using classical LTI control techniques. Figure 2 shows a
block diagram representation of the fully linearized system, where the nonlinear operations
have been replaced with a scaling block, SF. The scaling operation converts the PI+I output
into the throttle command.
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Figure 2: Linear G-Limiting Algorithm Representation

Following the operation of the nonlinear block shown in Figure 1, Equation 12 represents
a linear version of the scaling block, wherein the throttle is computed by multiplying the
processed acceleration error, ades signal by a “throttle per accel” gain or more specifically,
Equation 13 “throttle per thrust over mass”.

η = SFades =
η0
a0
ades (12)

η = SFades =
η0

thrust0
mass0

ades (13)

At this point it is advantageous to describe a subtle but important change of the repre-
sentation of the PI+I system when comparing the nonlinear multiplicative feedback model
as shown in Figure 1 to the strict PI+I linear feedback model shown in Figure 2. In the
nonlinear control model, the transformation from an acceleration control signal error to a
throttle is performed by the multiplicative feedback gain, and the PI+I is merely used to
compensate for any small tracking deviations that may appear due to the nonlinear, time-
variant nature of the heritage g-limiting algorithm. Put plainly, the signal that comes out
of the PI+I component of the nonlinear system is still in units of acceleration, and the
multiplicative feedback gain is the component of the model responsible for converting this
acceleration signal into a desired throttle.

In stark contrast, when using the same linear PI+I system but with a scaling block instead
of the the multiplicative feedback law, the PI+I system now takes on an entirely different
meaning. Whereas in the nonlinear system the PI+I component simply handles a small
nonlinear offset that appears, the PI+I component of the linear model is now entirely re-
sponsible for handling the conversion from the acceleration error signal to throttle response.
In fact, it can be shown that if the scale factor SF is “absorbed” into the ki and kp gains,
then the PI+I system in the linear model would then relate directly to converting a desired
acceleration error signal into a commanded throttle value. In fact, the “PI” component in
this case would convert an acceleration error signal into a throttle rate, and the extra “+I”
component then integrates this throttle rate into a commanded throttle signal.

For this analysis, instead of completely absorbing this scale factor into the ki and kp
gains of the PI+I system, it is left as a separate scale factor which exists downstream of the
PI+I component. This allows for an extra tuning parameter that can be used for stability
analysis, analogous to control allocation for vehicle attitude control. Leaving this scale
factor separated also means that the PI+I system no longer directly converts the acceleration
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error signal to a throttle rate and throttle - instead, it converts the acceleration signal into
an intermediary control signal, which is then converted into throttle using the SF gain.
Stability analysis of this SF gain is analyzed in future sections.

To summarize, as the fully linear version of the g-limiting control system closely resem-
bles the nonlinear operation by visual observation, the PI+I component of the model takes
on radically different meaning. Therefore this linear system is not so much a lineariza-
tion of the nonlinear version, but rather an alternative linear architecture to the inherently
nonlinear multiplicative feedback heritage algorithm. As such, classical linear stability
techniques cannot strictly be applied to the nonlinear system. To contrast the heritage non-
linear algorithm and the linear alternative, the next Section displays some time domain
sensitivities under various conditions.

Time Domain Response Comparison, Simple Model

A time domain simulation using the simple model described in the previous sections was
performed to contrast the two approaches to the g-limiting algorithm: the heritage non-
linear version with multiplicative feedback, and the fully linear version with the scaling
alternative of Equation 13. Both simulations initialize the vehicle at the same g-limiting
target acceleration and continue to deplete mass, requiring the g-limiting algorithm to re-
duce throttle to keep the acceleration at the target. The command quantization, present
in the production system, has not shown any adverse effects in either algorithm approach
but has been disabled in the simulations below to more clearly highlight the contrasting
behaviors of the two system responses.

Figure 3 shows a comparison of the achieved acceleration, in red, and the ades control
command, in black where both signals are normalized with respect to the target accelera-
tion. Immediately clear from the simulations is while both achieve the target acceleration,
ades is quite different between the two. The linear version shows a decreasing signal that
follows the expected trend of the throttle response whereas the nonlinear system appears
to settle to a fixed value. This is a clear visual representation of the effect described in the
previous section, where the PI+I system clearly has different responsibilities across the two
models. In the nonlinear model, the PI+I system merely acts as a “tracking improvement”
offset that helps maintain a desired acceleration more accurately. Therefore, in the nonlin-
ear model, ades is still an acceleration signal. However, in the linearized model, ades now
takes on a different physical meaning in the control model: ades now represents a more
familiar linear control law control command which, when multiplied by a scale factor, is
converted into a commanded throttle.
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Figure 3: Time Response: Heritage (Left) vs. Linear Alt. (Right)

With these two systems and their representations clearly defined, it is advantageous to
perform sensitivity trades on both algorithm update rate and engine throttle response. The
nonlinear system, with its multiplicative feedback law using the previously commanded
throttle, is sensitive to update rate, whereas the linear system is not sensitive to update rates
- as expected. Whereas the baseline algorithm shown in Figure 3 updates every 0.7 seconds,
Figure 4 shows a comparison of the nonlinear (left) and linear (right) systems run at 50Hz.

Note that a throttle rate command limit, normally avoided in normal operating condi-
tions, is continually saturated in the nonlinear system when simulated at the higher ex-
ecution rate and additionally shows divergent behavior. The faster update rate scenario
represents a case in which the fundamental assumption of thrust to throttle command con-
vergence has been violated. For such a high update rate, the throttle dynamics are too slow
to respond and the current vehicle throttle is nearly or exactly equal to the previously com-
manded throttle, resulting in poor g-limiting response. The linearized system, no longer
dependent on this commanded-to-actual throttle assumption, is free from this update rate
sensitivity. In typical SLS operation, a 0.7 Hz update rate is selected for the heritage al-
gorithm to ensure that sufficient time has passed for the actual physical engine throttle
response to settle onto the previously commanded throttle.
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Figure 4: Time Response at 50Hz: Heritage (Left) vs. Linear Alt. (Right)

With the commanded-to-actual throttle assumption being a key requirement for applica-
tion of the heritage algorithm, it is then intuitive that an increase in execution rate would
lead to similar instabilities as a decreased engine throttle controller bandwidth. And, as ex-
pected, at the original 0.7 Hz update rate, the nonlinear system appears to be more sensitive
to a reduced response of the throttle dynamics. Figure 5 shows a comparison where the
nonlinear system (left) exhibits unstable oscillations in the presence of throttle dynamics
reduced to approximately one tenth of the original bandwidth, whereas the linear system is
nearly unaffected by the reduced responsiveness. This represents another example in which
the throttle response time assumption for the use of the heritage algorithm has been vio-
lated. As the previously commanded throttle significantly deviates from the actual engine
throttle, the stability of the nonlinear g-limiting algorithm is no longer maintained.

Figure 5: Time Response with 1/10 throttle bandwidth: Heritage (Left) vs. Linear Alt. (Right)
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Described in the sections above, the responsibility of the PI+I component in the nonlin-
ear system is to simply improve the tracking of the desired acceleration signal that gets fed
into the multiplicative feedback law. In fact, the multiplicative feedback law itself (without
the introduction of the upstream PI+I compensation component) is capable of maintaining
a targeted acceleration with moderate accuracy. However, without the PI+I compensation,
a small offset/overshoot is introduced into the system due to the several nonlinearities that
exist in the derivation of the multiplicative feedback law. Figure 6 shows the nonlinear
g-limiting algorithm without the PI+I error compensation (right), where ades = atarget in
comparison to the baseline system (left). The inclusion of the PI+I system into the multi-
plicative feedback control law serves to produce an offset acceleration signal enabling more
accurate convergence onto the true desired acceleration; thus successfully compensating for
any offsets introduced by the feedback law or vehicle conditions.

Figure 6: Time Response with 1/10 throttle bandwidth: Heritage (Left) vs. Linear Alt. (Right)

Stability Margin Assessment of Linearized G-Limiting Algorithm

The fully linear g-limiting algorithm, while seeking to achieve the same objectives as
the heritage algorithm, carries with it the advantage that linear stability techniques can be
readily applied. To assess the linear system stability in terms of classic gain and phase
margins, the open loop response was computed for the plant and control in series, with the
loop broken at the ades command, shown in Figure 2. Equation 14 shows the expression
for the open loop system response. The SF term is the glimit linear scaling computed
based on the assumed throttle and acceleration whereas the thrust, F , and mass, m, are
the current vehicle operating conditions. The proportional gain, kp and integral gains ki
were not adjusted from the original nonlinear algorithm in the results of this section but are
indeed selectable parameters. The throttle and sensor transfer functions, Gthrottle(s) and
Gsensor(s) are second order approximations of the low pass dynamics produced by throttle
response and anti-aliasing filters, respectively.
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OL(s) = SF
F

m
Gthrottle(s)Gsensor(s)

kp +
ki
s

s
(14)

Figure 7 shows the Nichols chart for the open loop response of the system at the vari-
ous flight times using the minimum (left) and maximum scaling alternatives (right). The
minimum scaling alternative corresponds to the condition in which the glimit algorithm
begins its operation: maximum acceleration and maximum throttle. The maximum scaling
is based on minimum assumed commanded throttle and minimum achieved acceleration.
While both conditions are beyond the anticipated operating limits of the glimit algorithm,
they are analyzed to show an expected range of variation in loop gain resulting from a mis-
match between controller scaling and actual conditions. For a fixed linear scaling of the
control algorithm during operations, the variations shown equivalently represent the range
of possible operating conditions for the vehicle throttle and acceleration. The ample mar-
gin space in the Nichols charts shown in Figure 7 indicates that the linear algorithm is very
robust to system uncertainty including mis-matches between the asssumed linear scaling
and the actual throttle and acceleration conditions.

Figure 7: Nichols Response with Min Scaling (Left) and Max Scaling (Right)

Figure 8 shows the resulting Nichols plots corresponding to the times of operation as
mass and throttle continually decrease as simulated and shown in Figure 3. The left plot
shows the result with the baseline throttle response whereas the right plot shows the de-
creased stability margins produced by having one tenth the throttle response bandwidth.
While the presence of throttle dynamics are what determine the maximum system gain
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bandwidth for the linear g-limiting algorithm, there is plenty of gain margin available even
after the drastic decrease in the throttle response. This result corroborates the time domain
simulation of the degraded throttle response scenario using the linear algorithm, Figure 5,
and it also illustrates how the linear margins do not correspond to the inherently nonlinear
heritage algorithm.

Figure 8: Nichols Response baseline (Left) and 1/10 throttle bandwidth (Right)

As shown in this section, the linear alternative to the baseline glimiting algorithm appears
to exhibit generous stability margins across the range of accel and throttle conditions as
well as under the extreme scenario of a very slow throttle response.

TUNING OF THE LINEARIZED ALGORITHM, SIMPLE MODEL

The previous sections analyzed a linear version of the glimiting algorithm using the
same proportional and integral gains as were set in the heritage algorithm. To eliminate
the overshoot with the linear system and utilize the available excess gain margin, a simple
scaling of the gains was employed. Figure 9 shows the Nichols and time response of the
system with 5 times the original kp and ki gains. Clearly the time response has much
improved when the available gain margin is utilized.
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Figure 9: Nichols and Time Response of Linear Algorithm with 5x gains

As noted before, the time domain analysis comparing the nonlinear and linear version of
the systems were produced without the effect of the throttle command quantization (simple
rounding). Figure 10 compares the achieved acceleration responses of the nonlinear system
and the linear system, where the linear system includes the 5x scaling on the gains. As
evidenced by the similarity in the responses when quantization included, the effect masks
the underlying differences highlighted before. The comparison of Figure 10 also illustrates
that the well-tuned linear alternative g-limiting algorithm performs similar to the baseline
approach.
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Figure 10: Nonlinear (left) and Linear (right) Accel Response

Figure 11 compares the resulting throttle responses for the nonlinear and linear systems,
again showing very similar results.

Figure 11: Nonlinear (left) and Linear (right) Throttle Response

6-DOF IMPLEMENTATION OF LINEARIZED G-LIMITING ALGORITHM

Preliminary 6-DOF analysis was performed using Marshall Space Flight Center (MSFC)’s
flagship C++ simulation environment, Marshall’s Aerospace Vehicle Representation in
C (MAVERIC), in order to compare these two algorithms in a realistic flight environment.
Figure 12 shows the results of 50-Monte Carlo sets which employ three unique variants:
an untuned linearized g-limiting algorithm, a tuned linearized g-limiting algorithm, and the
baselined heritage nonlinear algorithm.
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As shown, the nominal responses of both the linearized and bibkubaer g-limiting algo-
rithms in Figure 12 are similar to the profiles found in Figure 3. By visual inspection, it
can be seen that the behavior of the linear g-limiting algorithm seems to take an expected
linearized/smooth steadying response to targeting an acceleration, whereas the nonlinear
algorithm clearly takes a more nonlinear response to targeting a specific acceleration. Pre-
liminary results also showed that, when comparing mass-to-orbit performance of nominal
Block-1B flight, the linearized g-limiting algorithm performed just as well as the nonlinear
algorithm.

Figure 12: MAVERIC Preliminary 6-DOF Performance Results

Thus, as shown throughout this section and previous ones, the linearized algorithm brings
advantages of stability enhancements and increased stability margin simply not possible
with the nonlinear, multiplicative feedback implementation. The GN&C team at MSFC
is continuing to run dispersion analysis on the possible benefits and disadvantages of the
linearized architecture. The preliminary results show that a linearized g-limiting algorithm
may provide a stable, simple alternative to the heritage g-limiting algorithm, containing
physically representative and intuitive components. Following more comprehensive eval-
uations, the linear g-limiting algorithm may serve as a viable alternative to the heritage
algorithm for future SLS flights.
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CONCLUSION

Both nonlinear and linear glimiting algorithms perform adequately in the time domain
and the differences in response between the two systems are hardly noticeable when com-
mand quantization is present. While the nonlinear system was flown throughout the Shuttle
program and has performed well in many SLS simulations, the linear system provides an
alternative formulation which appears to have increased overall robustness to system un-
certainty and enables faster update rates. The linear system additionally provides a means
to characterize robustness and deterministic system response using the well known classi-
cal LTI techniques, which can provide a level of assurance desirable for the certification of
human spaceflight.
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