@AGUPUBLICATIONS

Journal of Geophysical Research: Atmospheres

Supporting Information for

Validation of IASI satellite ammonia observations at the pixel scale using in-situ vertical profiles

Xuehui Guo¹, Lieven Clarisse², Rui Wang¹, Martin Van Damme², Simon Whitburn², Pierre-François Coheur², Cathy Clerbaux^{2,3}, Bruno Franco², Da Pan¹, Levi M. Golston^{1,4+}, Lars Wendt^{1,5}, Kang Sun^{1,6+}, Lei Tao^{1,7}, David Miller^{1,8+}, Tomas Mikoviny^{9,10,11+}, Markus Müller^{12,13+}, Armin Wisthaler^{12,11}, Alexandra G. Tevlin^{14,15+}, Jennifer G. Murphy¹⁴, John B. Nowak^{16,17+}, Joseph R. Roscioli¹⁶, Rainer Volkamer^{18,19,20}, Natalie Kille^{18,19,20}, J. Andrew Neuman^{19,21}, Scott J. Eilerman²², James H. Crawford¹⁷, Tara I. Yacovitch¹⁶, John D. Barrick¹⁷, Amy Jo Scarino¹⁷, and Mark A. Zondlo^{1*}

¹Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ, USA

²Université libre de Bruxelles (ULB), Spectroscopy, Quantum Chemistry and Atmospheric Remote Sensing (SQUARES), Brussels, Belgium

³LATMOS/IPSL, Sorbonne Université, UVSQ, CNRS, Paris, France

⁴Atmospheric Science Branch, NASA Ames Research Center, Moffett Field, CA, USA

⁵Hunterdon Central Regional High School, Flemington, NJ, USA

⁶Department of Civil, Structural and Environmental Engineering, University at Buffalo, Buffalo, NY, USA

⁷Princeton Institute for the Science and Technology of Materials, Princeton, NJ, USA

⁸Sonoma Technology, Inc., Washington, D.C., USA

⁹Chemistry and Dynamics Branch, Science Directorate, NASA Langley Research Center, Hampton, VA, USA

¹⁰Oak Ridge Associated Universities, Oak Ridge, TN, USA

¹¹Department of Chemistry, University of Oslo, Oslo, Norway

¹²Institute for Ion Physics and Applied Physics, University of Innsbruck, Innsbruck, Austria

¹³Ionicon Analytik, Innsbruck, Austria

¹⁴Department of Chemistry, University of Toronto, Toronto, Ontario, Canada

¹⁵Environment and Climate Change Canada, Toronto, ON, Canada

¹⁶Aerodyne Research Inc., Billerica, MA, USA

¹⁷NASA Langley Research Center, Hampton, VA, USA

¹⁸Department of Chemistry, University of Colorado Boulder, Boulder, CO, USA

¹⁹Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado Boulder, Boulder, CO, USA

²⁰Department of Atmospheric Sciences, University of Colorado Boulder, Boulder, CO, USA

²¹NOAA Chemical Sciences Laboratory (CSL), Boulder, CO, USA

²²Jupiter Intelligence, Boulder, Colorado 80302, USA

+ - current affiliation

Contents of this file

Tables S1 to S4

Introduction

This SI provides more details on the comparison between IASI and in-situ columns in Colorado and California. Orthogonal regression was used for all the analyses as mentioned in the main text.

IASI In-situ	IASI (cont'd) 2.32e15	ln-situ (cont'd)
_1 Q0o15 8 87o15	2.32e15	
-1.50015 0.07015		3.11e15
1.04e15 1.56e16	3.25e15	2.44e15
1.51e16 5.04e15	1.74e16	5.62e15
7.57e15 2.33e16	1.68e16	1.49e16
6.52e15 4.44e15	3.21e16	2.26e16
1.40e16 1.00e16	3.61e15	1.29e16
5.51e15 6.52e15	2.57e15	2.43e15
8.36e15 8.23e15	2.43e15	3.05e15
7.49e15 5.74e15	8.16e15	9.29e15
1.70e16 7.70e15	6.45e15	1.86e15
1.02e16 1.11e16	1.81e16	4.79e15
4.80e15 1.09e16	6.12e15	6.23e15
9.11e15 5.70e15	5.91e15	2.16e15
9.46e15 2.09e16	3.16e15	1.62e15
1.68e16 4.04e15	4.37e15	6.86e15
1.05e16 1.49e16	3.68e15	2.34e14
2.45e16 4.10e16	1.05e16	3.17e15
7.23e15 5.57e14	2.05e15	1.07e15
9.10e15 2.25e16	7.44e15	1.82e15
1.41e16 2.41e16	4.98e15	4.41e15
4.05e15 3.27e15	2.99e15	8.26e14
6.67e15 9.77e15	3.42e15	2.47e15
1.51e16 2.04e16	8.63e14	1.98e15
5.03e15 2.43e15	1.62e16	4.67e15
2.84e16 3.23e16	-5.00e14	3.02e15
7.00e15 2.40e15	9.98e15	5.38e15
3.75e15 1.04e16	2.60e15	2.38e15
8.54e15 3.66e15	1.59e16	1.02e16
2.50e16 1.33e16	2.35e15	1.09e16
3.02e15 5.97e15	9.32e15	4.28e15

Table S1. Near real-time IASI product and corresponding in-situ columns in Colorado based on the ± 15 km and ± 60 min window and MLH assumption (N = 60). Unit: molecules cm⁻².

Temporal	20 min			60 min			180 min		
window									
Spatial	Within	15 km	45 km	Within	15 km	45 km	Within	15 km	45 km
window	pixel			pixel			pixel		
Slope	N/A	11	2.3	1.7	4.8	4.1	4.6	4.1	1.6
		±31	±0.43	±0.92	±4.0	±0.81	±8.2	±4.2	±0.21
Intercept	N/A	-1.6e17	-8.6e15	8.1e15	-6.6e16	-2.7e16	-6.0e16	-4.8e16	-8.5e15
		±5.8e17	±7.4e15	±1.4e16	±7.8e16	±1.0e16	±1.6e17	±7.3e16	±4.3e15
Correlation	N/A	0.15	0.70	0.67	0.37	0.56	0.27	0.29	0.65
coefficient									
Number of	1	5	29	4	9	57	4	11	76
datapoints									
IASI mean	5.4e16	3.3e16	2.4e16	3.0e16	2.6e16	2.1e16	3.0e16	2.3e16	1.9e16
		±2.0e16	±2.3e16	±1.7e16	±1.7e16	±2.4e16	±1.7e16	±1.7e16	±2.3e16
In-situ	1.8e16	1.9e16	1.4e16	1.3e16	1.9e16	1.2e16	1.9e16	1.7e16	1.7e16
mean		±9.5e15	±1.3e16	±1.2e16	±8.0e15	±9.6e15	±9.8e15	±9.9e15	±1.7e16
%	192	76	68	128	36	78	54	34	8.7
difference									

Table S2. Orthogonal regression statistics between the reanalysis IASI product and the in-situ MLH assumption in California for all the spatiotemporal windows tested, including overlapping points.

Temporal window		20 min			60 min			180 min	
Spatial	Within	15 km	45 km	Within	15 km	45 km	Within	15 km	45 km
window	pixel			pixel			pixel		
Slope	1.2	1.0	0.11	3.0	1.0	1.5	3.2	3.5	0.66
	±0.18	±0.19	±0.04	±1.2	±0.19	±0.23	±0.66	±0.77	±0.11
Intercept	-2.2e13	3.8e13	8.9e15	-1.0e16	1.3e15	-1.4e15	-7.6e15	-1.1e16	4.1e15
	±2.5e15	±2.9e15	±8.0e14	±8.7e15	±1.9e15	±1.7e15	±4.5e15	±5.3e15	±7.8e14
Correlation	0.88	0.74	0.22	0.45	0.57	0.39	0.65	0.44	0.35
coefficient									
Number of	12	23	151	26	63	240	33	84	248
datapoints									
IASI mean	1.2e16	1.2e16	1.0e16	1.1e16	1.0e16	8.5e15	1.2e16	1.1e16	7.9e15
	±1.2e16	±1.1e16	±8.6e15	±9.2e15	±8.4e15	±7.9e15	±1.0e16	±1.0e16	±6.9e15
In-situ	1.1e16	1.2e16	1.1e16	7.1e15	8.8e15	6.8e15	6.1e15	6.4e15	5.7e15
mean	±1.0e16	±1.1e16	±2.1e16	±5.2e15	±8.2e15	±6.8e15	±4.5e15	±5.1e15	±8.0e15
%	15	-0.14	-7.4	56	19	26	96	74	39
difference									

Table S3. Orthogonal regression statistics between the reanalysis IASI product and the in-situ MLH assumption in Colorado for all the spatiotemporal windows tested, including overlapping points.

Temporal	20 min			60 min			180 min		
window									
Spatial	Within	15 km	45 km	Within	15 km	45 km	Within	15 km	45 km
window	pixel			pixel			pixel		
Slope	1.2	1.0	0.16	3.5	1.1	1.5	3.2	3.6	1.1
	±0.18	±0.23	±0.05	±1.4	±0.22	±0.25	±0.63	±0.78	±0.22
Intercept	2.9e14	5.1e14±	9.3e15	-1.1e16	1.7e15	-1.4e15	-6.3e15	-1.0e16	2.3e15
	±2.6e15	3.5e15	±8.5e14	±9.7e15	±2.2e15	±1.8e15	±4.0e15	±5.1e15	±1.4e15
Correlation	0.89	0.68	0.28	0.45	0.54	0.37	0.67	0.46	0.30
coefficient									
Number of	12	22	151	25	60	243	32	80	258
datapoints									
IASI mean	1.3e16	1.3e16	1.1e16	1.1e16	1.1e16	9.0e15	1.2e16	1.2e16	8.8e15
	±1.2e16	±1.1e16	±9.0e15	±1.0e16	±8.7e15	±8.1e15	±1.0e16	±1.0e16	±8.6e15
In-situ	1.1e16	1.3e16	1.0e16	6.6e15	8.5e15	6.7e15	5.7e15	6.2e15	5.9e15
mean	±1.0e16	±1.1e16	±1.9e16	±5.1e15	±8.2e15	±6.8e15	±4.4e15	±5.0e15	±8.4e15
%	24	4.3	7.5	74	30	33	111	88	51
difference									

Table S4. Orthogonal regression statistics between the in-situ derived IASI product and the in-situ MLH assumption in Colorado for all the spatiotemporal windows tested, including overlapping points.