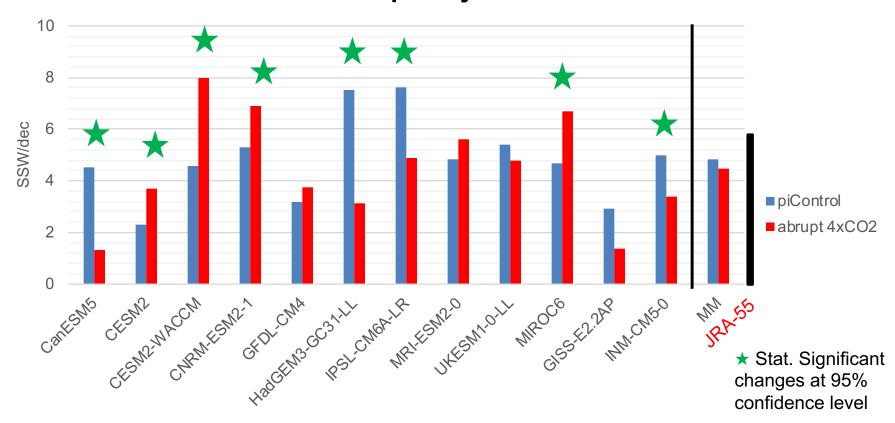
Uncertainty in the response of sudden stratospheric warmings and stratospheretroposphere coupling to quadrupled CO₂ concentrations in CMIP6 models

B. Ayarzagüena, A. J. Charlton-Perez, A. H. Butler, P. Hitchcock, I. R. Simpson, L. M. Polvani, N. Butchart, E. P. Gerber, L. Gray, B. Hassler, P. Lin, F. Lott, E. Manzini, R. Mizuta, C. Orbe, S. Osprey, D. Saint-Martin, M. Sigmond, M. Taguchi, E. M. Volodin, S. Watanabe

Published results in: Ayarzagüena, B., Charlton-Perez, A. J., Butler, A. H., Hitchcock, P., Simpson, I. R., Polvani, L. M., et al. (2020). Uncertainty in the response of sudden stratospheric warmings and stratosphere-troposphere coupling to quadrupled CO2 concentrations in CMIP6 models. *Journal of Geophysical Research: Atmospheres*, *125*, e2019JD032345. https://doi.org/ 10.1029/2019JD032345.

Introduction & data

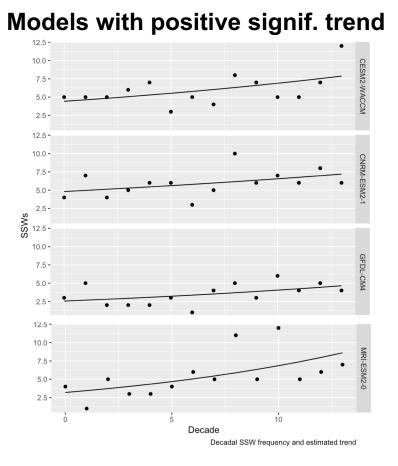
Summary


- Major sudden stratospheric warmings (SSWs), vortex formation and final breakdown dates are key highlight points of the stratospheric polar vortex.
- There is not a consensus on which projected changes to the polar vortex are robust.
- Possible limitations of previous model intercomparison studies: short data record or moderate CO₂ forcing.
- New CMIP6 simulations with the long daily data requirements of the DynVarMIP project allow us to revisit this topic by overcoming previous limitations.

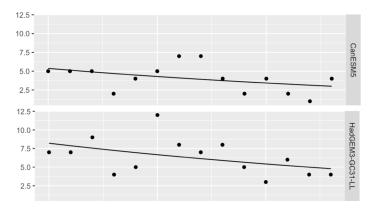
Goal of the analysis: To analyze this new model output to document the change in vortex interannual variability under $4xCO_2$ forcing.

			Model top below 0.1hPa High-top model		
DynVarMIP models					
CanESM5	CESM2		DECK Simulations	Nr. of years	
CESM2-WACCM	CNRM-ESM2-1		PiControl	At least 150 yrs except GISS-E2.2AP	
GFDL-CM4	GISS-E2.2AP		Historical	1850-2014	
HadGEM3-GC31-LL	INM-CM5-0 MIROC6	TIIStorical	1850-2014		
		1pctCO2	150 yrs		
IPSL-CM6A-LR					
MRI-ESM2-0	UKESM1-0-LL	Abrupt 4xCO2		At least 150yrs except GISS-E2.2AP	
© Authors. All rights reserved					

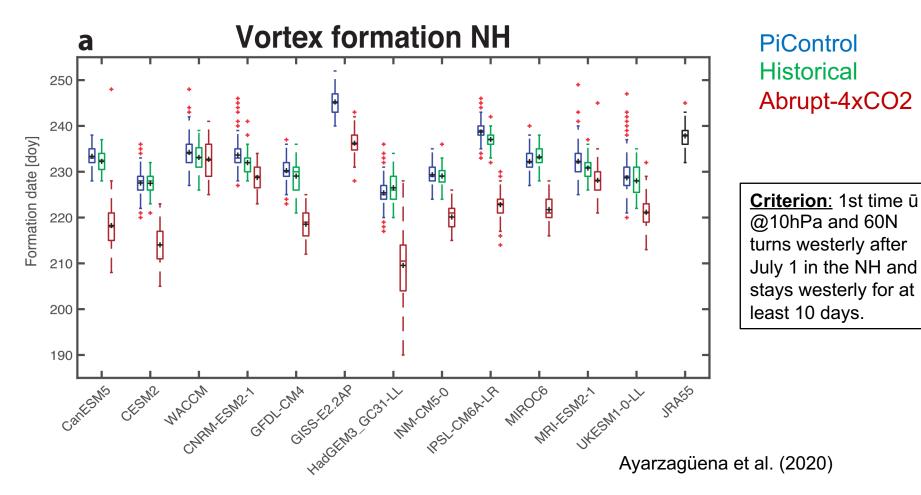
SSW frequency: total changes


SSW frequency

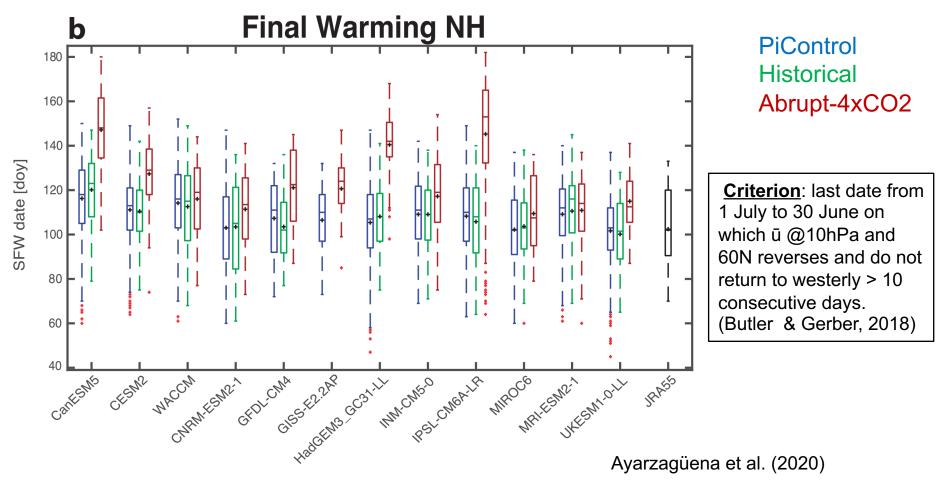
More than half of the models show stat. significant changes but there is no consensus on the sign of the changes in SSW frequency :


4 show an increase vs 4 show a decrease.

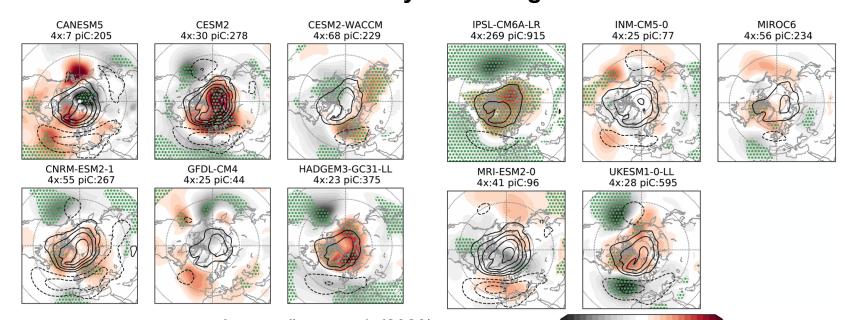
SSW frequency: time of emergence 1pctCO₂ simulation


Wide variation in the prediction of time of emergence, but in most cases after CO2 doubling (6-7 decade).

Models with negative signif. trend


Model	Decade of emergence	
MRI-ESM2-0	4.93	
CESM2-WACCM	8.67	
GFDL-CM4	9.66	
HadGEM3-GC31-LL	11.00	
CNRM-ESM2-1	11.70	
CanESM5	14.10	

Autumn vortex formation


- Earlier formation of polar vortex in Autumn in models than reanalysis.
- Vortex forms in similar dates in pre-industrial and historical conditions.
- Polar vortex tend to form earlier under 4xCO2 conditions.

Stratospheric final warming: final breakdown of vortex

- Models reproduce well SFW date in average.
- Almost no differences in SFW dates between pre-industrial and historical runs.
- Polar vortex tend to persist longer under 4xCO2 conditions in some models.

Stratosphere-troposphere coupling during SSWs

SLP +15/+60 days following SSWs

Ayarzagüena et al. (2020)

-3 hPa -1.5 hPa 0 hPa 1.5 hPa 3 hPa

- In general, no change to the impact of SSW events in the North Atlantic between the abrupt4xCO₂ and piControl simulations.
- In the North Pacific, there is some indication that under large CO₂ forcing, there will be a larger mean response to SSWs.

<u>Contours</u>: piControl <u>Shading</u>: abrupt4xCO₂-minuspiControl differences <u>Stippling</u>: stat. signif. differences abrupt4xCO₂-minus-piControl at 95% conf. level

- High uncertainty in changes of SSW frequency under 4xCO₂ forcing, although some single models show the rate to be significantly halved or doubled.
- Longer season of stratosphere-troposphere coupling: the boreal polar vortex will form earlier and disappear later under increased CO₂.
- The tropospheric signal of SSWs in the North Atlantic does not change under 4xCO2 forcing.