

RDE Nozzle Computational Design Methodology Development and Application

Kenji Miki and Daniel E. Paxson and H. Douglas Perkins
NASA Glenn Research Center

Shaye Yungster HX5, LLC

This material is a work of the U.S. Government and is not subject to copyright protection in the United States.

Published by the American Institute of Aeronautics and Astronautics, Inc., with permission.

Outline

- Introduction and Motivation
- Proposed Methodology
 - Step 1: Quasi-2D CFD code for the unsteady inflow generation
 - Step 2: Data Conversion
 - Step 3: OpenNCC (3D) for the design optimization
- Results
 - Validation with the NPS exp. data
 - Design Optimization
- Conclusions

Introduction and Motivation

Operational Rotating Detonation Engine (courtesy, Naval Postgraduate School)

- The design of a nozzle for an RDE combustor is somewhat problematic due to the spatially and temporally varying nozzle inlet flow
- While an "aerospike" nozzle geometry has generally been assumed for the RDE because of the annular combustor geometry, it is not yet clear that this geometry will provide optimal performance.

A relatively <u>fast</u> nozzle design methodology is needed in order to explore a wide variety of nozzle geometries in a relatively short amount of time!

Overview of Proposed Methodology

[1] Paxson, D.,, AlAA Paper 2016-1647, [2] Paxson, D., Fotia, M. L., Hoke, J., and Schauer, F., AlAA Paper 2015-1101. [3] Paxson, D., and Schwer, D. A., AlAA Paper 2019-0748. [4] Yungster, S., Paxson, D. E., and Perkins, H. D., Proceedings of the 66th JANNAF Propulsion Meeting, Dayton, Ohio, June 2019., [5] Ajmani, K., and Chen, K.-H., AlAA Paper 2001-0972. [6] Wey, T., and Liu, N.-S., AlAA 2015-0099. [7] Miki, K., Moder, J., and Liou, M.-S., Journal of Propulsion and Power, Vol. 34, 2018, pp. 415-427.

Validation Test Data from NPS

Detailed Data From One Test Point

RDE and nozzle geometry

- Air and H₂ flow rates
- Manifold pressures and temperatures
- Gross thrust
- Time averaged surface pressures at:
 - 2 interior locations
 - 5 nozzle cone locations
- Operational video footage
- Wave count

2D Unsteady Inflow BC Generation -1-

Quasi-2D CFD

Physical Setup

- $P_m=131.7 \text{ psia}$; $T_m=510 \text{ R}$; $P_{amb}=14.7 \text{ psia}$
- ϕ =0.972; Air mass flow rate=200.2 lb_m/min
- $A_{th}/A_{ch}=0.8245$

Code Setup

- γ =1.272; R_g=73.38 ft-lb_f/lb_m/R
- Simulation ends @ throat; 1 of 2 waves simulated
- A_i/A_{ch}= 0.41- adjusted to match mass flow rate

Results

- F_q=474.0 lb_f (15% above measured)
- CTAPS-see below
- 17% of chem. energy lost to walls
- 52% of manifold total pressure lost to inlet
- EAP_i/P_m-1=-22%
- Backflow=12% of throughflow
- The value of Ai/Ach used by the code was within 5% of the actual Ai/Ach

2D Unsteady Inflow BC Generation -2-

Data Conversion

- Extract detonation frame data from Q2D code output at axial location just upstream of physical throat
- Convert data from single calorically perfect gas to multi-species mixture.
 - Should increases mass flow rate by 15%
 - Should increases thrust by an unknown amount
- Convert data from detonation to laboratory frame
 - Spatially non-uniform data becomes spatially and temporally non-uniform (though still periodic)
 - OpenNCC requires total conditions
- Converted data becomes unsteady bc input for OpenNCC
 - Spatially non-uniform data becomes spatially and temporally non-uniform (though still periodic)

Data Conversion 1. Exact detonation frame data (P_t, T_t, u, v) 2. Convert data from CPG to multispecies mixture, (P_t, T_t, u, v, y_i) 3. Convert data from detonation to lab. frame, (P_t, T_t, u, v, w, y_i) • Simulate exhausted gas from RDE with coarse mesh and unsteady inflow BC Provide unsteady • P_{exit} = 14.7 psia, adiabatic wall

inflow BCs

3D Nozzle Design Optimization

Features of Open National Combustion Code (OpenNCC)

NASA

user: kmiki Wed Jan 30 17:14:20 201

 OpenNCC [1] is the releasable version of the National Combustion Code (NCC), which has been continuously updated for more than two decades at NASA Glenn Research Center (GRC)

Closeup near the exit

Unsteady _ inflow test

Relevant Main Features

- ✓ Numerics: Jameson-Schmidt-Turkel (JST) scheme and Roe's upwind scheme, and Advection Upstream Splitting Method (AUSM)⁽²⁻³⁾
- Turbulence: Cubic non-linear k-ε⁽⁴⁾ model with the wall function, Low-Re model, LES
- Other features: Low-Mach preconditioning, transition model⁽⁵⁾, unstructured mesh, adaptive mesh refinement (AMR)⁽⁶⁾, massively parallel computing (with almost perfectly linear scalability achieved for non-spray cases up to 4000 central processing units)

Instantaneous Flow Fields from OpenNCC

- The pressure increases in the upstream region of the throat, and then the strong shock wave starts forming at the left edge of the throat.
- The flow is chocked at the throat and then expand outside the throat.

3D Nozzle Surface Profiles and Pressure Waves

0.000

5000. 1.000e+04

Low P

Compression recirculation

High/Low P

Detonation and Expansion waves

Rotating

High P

- A low-pressure (and relatively cold temperature) region associated with the expansion wave at the throat exit
- Steep gradient of the shear stress related to the complex inflow profiles remains downstream of the nozzle.
- There are a spiral propagation generated by the two rotating detonation waves, and a strong dynamic motion (i.e., pressure waves) propagating toward the far-field region.

Time-Histories of MFR and Thrusts

Validation with Exp. Data

- Mass flow rate =1.65 kg/s
- Gross thrust = 487 lbf
- lsp=134 s
- Thrust from cone = -7 lbf

- Mass flow rate =1.56 kg/s
- Gross thrust = 413 lbf
- Isp=120
- Thrust from cone = -4 lbf

Nozzle Design Optimization

Time-Averaged Flow Fields

Summary of Nozzle Performance

	Geometry	MFR [kg/s]	PRT [lbf]	NZT [lbf]	MOT [lbf]	OBT [lbf]	Total [lbf]
CONT OF THE CONT	NPS	1.65	51.2	-7.6	441	-0.9	483.7
100 100 100 100 100 100 100 100 100 100	Case 1	1.63	91.8	-11.1	389.2	-1.7	468.2
187 - 17 - 187 - 17 - 187 - 17 - 187 - 17 - 1	Case 2	1.64	36.5	-5.8	460	1.2	491.9
0.307 0.407 0.307 2.607 2.7 2.604	Case 3	1.69	-5.1	-46.5	529	0.2	478.1
139 1399 149 4 1399 177 149	Case 4	1.66	-16.5	17.5	500.3	-2	499.3
SAFT LINE	Case 5	1.64	-49	35.9	487.2	-0.4	473.7

Mass flow rate (MFR), and thrusts associated with components of pressure (PRT), momentum (MOT), nozzle (NZT) and outer body (OBT).

- Strong unsteadiness enhanced by the presence of the wake and free shear layers For Case3.
- Case 4 shows the best performance and gains ~3.2% improvement from the NPS nozzle by just extending the outer body.

Thrust Distribution at Nozzle Surface

To minimize such a low-pressure region, it is beneficial to extend an outer body!

High-Pressure Condition (Case 4)

More representative higher Mach number airbreathing, or rocket nozzle operating condition (the total pressure increased by a factor of 3.9

Condition	MFR [kg/s]	PRT [lbf]	NZT [lbf]	MOT [lbf]	OBT [lbf]	Total [lbf]
Low-Pressure	1.66	-16.5	17.5	500.3	-2	499.3
High-Pressure	6.82	54.5	-26.9	2470	-0.7	2496.9

Mass flow rate (MFR), and thrusts associated with components of pressure (PRT), momentum (MOT), nozzle (NZT) and outer body (OBT).

- PRT and NZT are in the opposite directions in the low/high-pressure cases.
- However, these forces are a considerably smaller fraction of the total thrust.
- This suggests that this nozzle is working well, and that a simple extension of the outer body on an existing aerospike nozzle can provide reasonable performance at higher pressure ratios.

Conclusions

- In this paper, we developed a computationally feasible optimization tool using two in-house codes: Q2D and OpenNCC, for an RDE nozzle and validated our methodology using experimental data.
- The novel feature of the methodology is to introduce an unsteady inflow boundary condition so that we are able to decouple the combustor and the nozzle sections.
- We investigated the performance of five different nozzle designs at the low-power condition and found that gross thrusts among these nozzles vary from 468.2 [lbf] to 499.3 [lbf].
- We select the best nozzle with an extended outer body and confirmed that a simple extension of the outer body on an existing aerospike nozzle can provide reasonable performance.

This methodology is a promising tool to explore a wide variety of nozzle geometries in a relatively short amount of time.

Thank you!

Questions?

Acknowledgement

- National Aeronautics and Space Administration Space Technology Mission Directorate's Center Innovation Fund program and Game Changing Development project
- Simulations conducted NASA Advanced Supercomputing (NAS) Pleiades computers
- Grid Generation conducted with Pointwise
- Flow Viz was conducted with Visit (Lawrence Livermore National Labs)

Instantaneous Flow Fields from OpenNCC

Bluff Body with Ideal Expansion Ratio (Case 3)

Ideal?

- Bluff body creates 46.5 lbf drag
- Exit flow is nearly perfectly expanded, with only -1% of thrust from pressure
- At 140 s (bluff body corrected), this is the highest lsp that we find for all configurations
- EAPi predicts 153 s (fundamental losses is ~ 8%)
- Strong unsteadiness enhanced by the presence of the wake and free shear layers

Results from Quasi-2D CFD code

0.3 > 0.2

0.1

Inflow

- Run the Qsuai-2D CFD code using a very fine mesh to resolve the steep detonation front.
- Output at axial location just upstream of physical throat
- Record the solution each 9.2324E-9 [s] for unsteady inflow BC for OpenNCC