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Key Points: 

 Equilibrium Climate Sensitivity (ECS) estimates for a single coupled model can vary 

by more than 1°C (20%) depending on analysis method. 

 ECS estimates from ≥300-year coupled simulations from current US models range 

from 3.1°C to 7.0°C, another method giving 2.7°C to 5.3°C.  

 Analysis of years 21-150 agrees with slab ocean ECS, but pentadal analysis of years 

51-150 reduces bias against long, coupled simulations. 
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Abstract 

We compare equilibrium climate sensitivity (ECS) estimates from pairs of long (≥ 800-year) 
control and abruptly quadrupled CO2 simulations with shorter (150, 300 year) coupled 
atmosphere-ocean simulations and Slab Ocean Models (SOM). Consistent with previous 
work, ECS estimates from shorter coupled simulations based on annual averages for years 1-
150 underestimate those from SOM (-8% ± 13%) and long (-14% ± 8%) simulations. Analysis 
of only years 21-150 improved agreement with SOM (-2% ± 14%) and long (-8% ± 10%) 
estimates. Use of pentadal averages for years 51-150 results in improved agreement with 
long simulations (-4% ± 11%). While ECS estimates from current generation US models 
based on SOM and coupled annual averages of years 1-150 range from 2.6°C to 5.3°C, 
estimates based longer simulations of the same models range from 3.2°C to 7.0°C. Such 
variations between methods argues for caution in comparison and interpretation of ECS 
estimates across models. 

Plain Language Summary 

Precise definition and estimation of Equilibrium Climate Sensitivity (ECS) continues to 

challenge model inter-comparison. While annual analyses of years 1-150 of coupled 

atmosphere-ocean models agree with slab ocean model simulations, they underestimate 

coupled ECS estimates from multi-centennial to millennial scale simulations.  However, 

long-term ECS estimates can be largely recovered through a combination of 1) ignoring the 

first 50 years of abrupt 4x preindustrial CO2 simulation dominated by early timescales of 

ocean response and 2) using pentadal (5-year) averages instead of annual ones for years 51-

150. This variation between methods argues for reconsideration of ECS estimation and 

application acknowledging that slab-ocean estimates systematically ignore potential sources 

of enhanced sensitivity and simulations longer than 150 years are necessary for precise 

estimation of the long-term trend.  

1 Introduction 

Two primary metrics of idealized global climate model 2-m air temperature response of CO2 

greenhouse radiative forcing are the Transient Climate Response (TCR) to 1%CO2 yr-1 

increase at doubling, and the Equilibrium Climate Sensitivity (ECS) to CO2 increase to a long 

term equilibrium doubling.  ECS was originally estimated at 3°C ± 1.5°C [Charney et al., 

1979] and has continued to serve as a fundamental metric of climate model behavior over the 

last four decades as estimated by the Intergovernmental Panel on Climate Change (IPCC) 

Fifth Assessment with "high confidence that ECS is extremely unlikely less than 1°C and 

medium confidence that the ECS is likely between 1.5°C and 4.5°C and very unlikely greater 

than 6°C." [Bindoff et al., 2013]. While both TCR and ECS are defined as a temperature 

change from CO2 doubling, the TCR is easily calculable in an idealized model framework as 

the global warming at the time of doubling (average of years 61-80), while the ECS of a 

given model is only fully known after that model has simulated control and doubled or 

quadrupled CO2 over the long timescales of ocean heat uptake and after the sea surface 

temperature response has come to equilibrium - usually after several millennia of simulation 

[Paynter et al., 2018, Krasting et al., 2018; Rugenstein et al., 2019, 2020].  While TCR is 

generally considered to more closely resemble the incremental (rather than abrupt) historical 

and projected CO2 increase, ECS has been found to display a more robust representation of 

regional temperature change patterns than TCR [Grose et al., 2018] and is also highly useful 

both as a fundamental metric of model response and for the calibration of integrated 

assessment models [Calel and Stainforth, 2017]. The relationship between TCR and ECS 
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depends on several factors including the rate and pattern of both surface and interior ocean 

warming.  Further, ECS has a long history of use, through all the IPCC reports and back to 

the late 1960’s [e.g. Möller, 1963] and serves as an integrated high-level metric of the climate 

system that spans multiple generations of climate model development.  A full contextual 

analysis of the value of the TCR and ECS concepts both historically and in the ongoing IPCC 

Sixth Assessment is provided in Meehl et al. [2020]. 

 

To estimate ECS without the computational expenditure of multi-millennial simulations, 

several strategies have been used.  The first was the ‘slab’ ocean model (SOM) or ‘mixed 

layer’ approach [Manabe and Stouffer, 1979; 1980] where the atmospheric model is coupled 

to a simple mixed layer ocean - sea ice model.  Early SOM heat flux patterns were derived 

from observational climatologies while later SOMs where constructed from equilibrated 

coupled atmosphere-ocean simulations to more adequately reflect coupled model behavior 

[Bitz et al., 2012].  As the SOM with specified lateral and deep ocean heat flux pattern comes 

rapidly to equilibrium, this approach requires far shorter simulations but has the uncertainty 

of estimating with a fundamentally different ocean component [Hansen et al., 1985, 1997; 

Danabasoglu and Gent, 2009] and it assumes no changes in heat transport by the world 

oceans.  An alternative approach that uses shorter runs and extrapolates to equilibrium was 

put forth by Gregory et al. [2004] and applied to CMIP5 models by Andrews et al. [2012] 

and is alternatively referred to as the “Effective Climate Sensitivity”. In this approach, one 

conducts two simulations of at least 150 years - a control run and an abrupt quadrupling of 

CO2 - and regresses the difference in net radiative flux at the top of the atmosphere (ΔF) 

versus the change in global surface air temperature (ΔT) to extrapolate to the hypothetical 

radiative balance at equilibrium.  Danabasoglu and Gent [2009] estimated the one sigma 

uncertainty in ECS estimates of approximately 0.18°C (8%) for CCSM3. Several studies 

have demonstrated the limitations of this approach highlighting the multiple timescales of 

ocean adjustment [Frölicher et al. 2014; Paynter et al. 2018] and the need to run models out 

longer than 150 years to achieve a robust estimate of ECS [Gregory et al., 2004]. 

Nonlinearity of the relationship between ΔT and temporal and spatial variation in ocean heat 

uptake causes extrapolation methods to underestimate the ECS but with decreasing error as 

the integration lengthens [Senior and Mitchell, 2000; Winton et al. 2010; Armour et al., 2013; 

Armour, 2017; Ceppi et al., 2017].  Ocean heat uptake influences the pattern of surface 

temperature (Haugstad et al., 2017), which in turn determines the strength of climate 

feedback due to the spatially heterogeneous nature of these feedbacks (Armour et al. 2013). 

Specifically, the increase in feedback with time appears to be in large part due to the 

movement of the pattern of warming away from regions of tropical convection, regions which 

tends to induce particularly negative climate feedbacks (Zhou et al., 2017; Dong et al., 2019, 

Bloch-Johnson et al., 2020). Feedback temperature dependence, as mentioned above, can also 

change the slope of ΔF against ΔT. 

 

Geoffroy et al. [2013] emulate the CMIP5 model nonlinearity of global temperature/heat 

uptake response to step forcing with a two box (two timescale) model.  The kink in this 

adjustment occurs after the fast timescale adjustment with an e-folding time of about 4 years. 

Including the initial fast timescale adjustment with its steeper slope in the regression biases 

the ECS estimate low. Geoffroy et al. [2013] find an average long timescale e-folding time of 

290 years for the CMIP5 models but is limited by the analysis having been based on only the 

first 150 years. Andrews [2015] demonstrated that linearly fitting only years 21-150 increased 

the ECS estimate.  Alternative methods include fitting functions with two or three 

exponentials [Proistosescu and Huybers, 2017], specific simulation set ups [Saint-Martin et 

al., 2019], and the local tangent approach [Rugenstein et al., 2016]. Recently, Rugenstein et 
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al. [2020] showed through a 15-model inter-comparison that the Gregory et al. [2004] 

method underestimated the long-term estimate by a median 17%. 

 

Another weakness of the Gregory [2004; Andrews et al., 2012] methods relates to enhanced 

regression uncertainty in CMIP6 models as they increasingly capture climate modes of 

variability and their teleconnections.  While only a few CMIP5 models were capable of 

accurately representing the role of El Niño Southern Oscillation (ENSO) on global 

temperature variability, modeling centers have since successfully represented not only ENSO 

but other modes of variability including Madden Julian Oscillation and Pacific Decadal 

Oscillation [Eyring et al., 2019], and multidecadal to centennial modes [e.g. Zhang et al., 

2019].   Preprocessing the data by taking long averages before performing the regression 

filters out some of this low frequency variability. For example, the method of Winton et al. 

[2020] is uses 50-year-binned averages of ΔF and ΔT before the regression is applied to 

better capture  the forced response and avoid biasing the result with the different relationships 

between ΔF, Ocean heat uptake and ΔT relationship from natural internal variability such as 

ENSO. The first heat uptake/temperature pair is discarded and the remaining 5 that are 

available in the 300-year simulation are used in the regression.  

  

The first 50 years are discarded to remove a period of sea surface temperature adjustment 

during which a pattern of relatively reduced warming emerges in the subpolar North Atlantic 

and Southern Ocean [Winton et al. 2010].  Although the fast mode of global surface 

temperature adjustment takes place with an e-folding timescale of about 4 years [Geoffroy et 

al. 2013], high latitude adjustments - including changes in deep water circulation - are multi-

decadal or longer as the evolving SST response pattern changes the relationship between 

surface warming and high latitude ocean heat uptake[Winton et al. 2013a]. 

 

One of the central experiments for the sixth phase of the Coupled Model Intercomparison 

Project (CMIP6) Diagnostic, Evaluation and characterization of Klima (DECK) [Eyring et 

al., 2016a] experiments is an abrupt quadrupling of atmospheric CO2 run out for 150 years to 

estimate ECS, precluding the Winton et al. [2020] approach.  The current approach used in 

ESMvalTool [Eyring et al., 2016b] to estimate ECS is that of Gregory et al. [2004; Andrews 

et al., 2012] in which least squares regression is conducted on the full 150 years using annual 

values of ΔF and ΔT.  Making use of several previous generation models that have been run 

out to equilibrium and more recent ones run out 300 years, we are able to provide both a 

quantitative multi-model assessment of the Gregory et al. [2004] and Andrews et al. [2012] 

methods and provide an alternative approach for an improved estimate of the derived ECS 

among current generation US models.  However, we also note that the Andrews et al (2012) 

method remains superior compared to SOM estimates in this analysis. 

 

Building on previous work [Winton et al., 2013b; Paynter et al., 2018; Krasting et al., 2018; 

Rugenstein et al. 2019, 2020], the central factors of concern in the present study with respect 

to abrupt 4xCO2 changes in radiative forcing are: 1) Do models return to radiative balance 

and, if so, how long does it take?, 2) Over what timescale (if ever) does the approach to 

equilibrium to become quasilinear, and 3) how long of a temporal average is required to 

remove the confounding role of model internal variability. While the first question on decadal 

scales is largely answered in Winton et al. [2013b] and on millennial scales in Paynter et al. 

[2018] and Krasting et al. [2018], the present study takes the practical step of translating that 

understanding into improved analysis of the current short (150 year) CMIP6 DECK 

simulations to estimate the ECS achieved from multiple century to multi-millennial 

simulations. 
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2 Methods 

We take advantage of the combination of previous generation models that were contributed to 

LongRunMIP [Rugenstein et al., 2019, 2020] along with the University of Arizona 

implementation of the Manabe Climate Model (MCM_UA) based on the GFDL R30c and 

MOM1 component models described in Delworth et al. [2002] with air-sea flux adjustment to 

reproduce sea surface temperatures and a fixed 40 m mixed layer,  GFDL’s second 

generation of climate model GFDLESM2G [Dunne et al., 2012] based on GFDL’s CM2.1 

[Delworth et al., 2004].  We also take advantage of GFDL’s fourth generation model 

development products, GFDLCM4 [Held et al., 2019] and GFDLESM4.1 [Dunne et al., in 

review].  The climate sensitivity in CM4 has been previously documented in Winton et al. 

[2020].  Additionally, long simulations with Goddard Institute for Space Studies GISSE2.1-G 

(2091 years) [Kelley et al., in review], the National Center for Atmospheric Research 

NCARCESM2(CAM6) (898 years) [Gettelman et al., 2019; Danabasoglu et al., 2020], and the 

Department of Energy DOEE3SMv1 (300 years) [Golaz et al., 2019] are used.  

 

3 Data 

Data from CMIP6 models can be found on the Earth System Grid Federation [https://esgf-

node.llnl.gov/projects/esgf-llnl/].  All global annual values for temperature and net radiation 

at the top of the atmosphere for control and 4xCO2 runs used in this study as well as 

MatlabTM scripts to analyze the data are supplied as a supplement.  LongRunMIP data are 

from Rugenstein et al. [2020]. 

4 Results 

 

Model SOM 

Manabe and 

Stouffer, 1979 

>800yr 

Senior and Mitchell, 

2000 

50yr51-300 

Winton et al., 

2020 

1yr1-150 

Gregory et al., 

2004 

1yr21-150 

Andrews et al., 

2015 

5yr51-150 

This study 

Latest US CMIP6 Models 

DOEE3SMv1   7.02 5.31 ± 

0.29 

5.68 5.99 

GFDLCM4 4.1 
 

4.93 3.91 ± 

0.29 

4.45 4.88 

GFDLESM4.1 

five-

member 

ensemble 

of 4xCO2 

simulations 

 

 

 

 

 

 

101 

3.25 3.37 3.06 

2.66 ± 

0.14 

2.63 2.93 

126 2.65 2.67 2.84 

151 2.68 2.65 2.75 

176 2.65 2.63 2.89 

201 2.64 2.68 2.90 

Ave 2.66 2.65 2.90 

Std. Dev    0.02 0.02 0.13 



 

©2020 American Geophysical Union. All rights reserved. 

GISSE2.1G 3.0 3.21 3.23 2.72 ± 

0.10 

2.83 3.10 

NCARCESM2(CAM6) 5.3e 6.58 6.53 5.26 ± 

0.29 

6.24 6.60 

       

Previous GFDL Models 

GFDLESM2G 3.4d 3.27a 2.92 2.34 ± 

0.14 

2.68 3.04 

MCM_UA 3.4c 3.45 3.60 3.76 ± 

0.17 

3.97 4.13 

LongRunMIP Models (Rugenstein et al. [2020]) 

CCSM3 2.32
f
 2.46

k
 (2.73) 2.60 2.50 2.66 2.81 

CESM1.0.4 3.20i 3.57 (3.38) 3.29 2.88 3.18 3.44 

CNRMCM61  5.47 (5.7) 4.91 4.94 4.88 4.70 

ECHAM5MPIOM 5.55g 6.0, 5.4g 

(5.83) 
5.84 5.26 4.93 4.67 

FAMOUS  7.42 (8.55) 6.28 5.56 5.85 6.15 

GFDLCM3  4.84 (4.67) 4.38 3.96 4.21 4.18 

GFDLESM2M 3.4d 3.34b (3.25) 2.97 2.45 2.63 2.87 

GISSE2R 2.4j 2.40 (2.44) 2.28 2.16 2.30 2.28 

HADCM3L 3.3l 3.40 (3.45) 3.30 2.90 3.27 3.44 

HADGEM2  4.71 (4.77) 4.72 4.52 5.65 5.80 

IPSLCM5A  4.27 (4.76) 4.05 4.04 4.19 4.27 

MIROC32 4.0h (4.49)  4.12 4.11 4.27 

MPIESM11  3.46 (3.35) 3.51 3.02 3.22 3.49 

MPIESM12  3.47 (3.42) 3.44 3.04 3.23 3.37 

aKrasting et al. [2018] based 4x simulation; bPaynter et al. [2018] based 2x simulation;  
cStouffer et al. [2006]; dDelworth et al. [2002]; eGettelman et al. [2019]; fKiehl et al et al. 

[2006]; gLi et al. [2013] 
hRandall et al. [2007]; iMeehl et al. [2013]; jSchmidt et al. [2014]; kDanabasoglu et al. [2009] 

 

Table 1: Equilibrium Climate Sensitivity (ECS; °C doubled CO2
-1) estimates from Slab Ocean 

Models (SOM) [e.g. Manabe and Stouffer, 1979] under atmosphere-land-sea ice simulations, 

long equilibration runs [e.g. Senior and Mitchell, 2000; see footnotes], and 150 and 300 year 

runs with 1 year and 50 year averaging periods for ΔF and ΔT (column heading notation: 

averaging-perioddata-span) where preindustrial reference F and T were estimated from least 

squares regression over the first 300 years of the control run.  1σ uncertainties associated with 
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the regression are provided for models not already contributed to LongRunMIP.  Columns 

that represent the long term (≥800 years regressing 50-year-binned averages; hereafter long) 

with values from LongRunMIP provided in parentheses are provided along with 1 year 

averages over years 1-150 (1yr1-150) [Gregory et al., 2004], 1-year averages over years 21-150 

(1yr21-150) [Andrews et al., 2015], regressing 50-year-binned averages over years 51-300 

(50yr51-300) [Winton et al., 2020], and regressing 5-year-binned averages over years 51-150 

(5yr51-150) methods. 

 

A comparison of different methods of estimating ECS for a suite of climate models is 

provided in Table 1.  Among models for which both slab ocean model (SOM; column 2) and 

long (>800 year regressing 50-year-binned averages; hereafter long; column 3) coupled 

atmosphere-ocean estimates are available, SOM estimates tend to be 6% ± 7% lower than 

long estimates (Figure 2, upper left).  One example of significant disagreement is 

NCARCESM2(CAM6) for which the long estimate is 1.4°C higher than the SOM based 

estimate.  Early analysis suggests this is a result of the cloud response to the warming surface 

in NCARCESM2(CAM6) [Gettelman et al., 2019; Danabasoglu et al., 2020].  Several studies 

have demonstrated a strong increase in ECS estimates with warming climate with 4xCO2 

perturbations often giving a higher ECS than 2xCO2 experiments [e.g. Meraner et al., 2013; 

Bloch-Johnson et al., 2015; Rohrschneider et al., 2019].  As many of the SOM estimates 

come from 2xCO2 experiments whereas all of the fully coupled simulations come from 

4xCO2 experiments, this nonlinearity could explain this result.  

 

When we compute 50yr51-300 (column 4 in Table 1) following Winton et al. [2020] from 300 

year simulations in which the first 50 years is ignored and the slope/intercept is calculated by 

regressing 50-year-binned averages (50yr51-300, fourth column), we find good correspondence 

with long ECS with 50yr51-300 tending to underestimate long ECS by approximately 5% ± 5% 

with the exception of FAMOUS which gave a 21% lower 50yr51-300 estimate than its long 

estimate.  The lack of convergence of ECS in FAMOUS is discussed in Rugenstein et al. 

[2020] but could not be explained.  As this model displays a fundamentally different and 

unexplained behavior than the other models, it is excluded from subsequent analysis in this 

study.  Similar to NCARCESM2(CAM6), GFDLCM4 also exhibits a much lower ECS (0.8°C) 

based on SOM than 50yr51-300.  We also note that this analysis – using a linear regression of 

the entire 1-300 year period to reference the control, gets a slightly lower estimate for 

GFDLCM4 (4.93°C) than the value of 5.0 °C provided in Winton et al. [2020].  This is due to 

their having referenced individual 50-year time differences from the control and ignoring data 

corresponding to the first 50 years of perturbation.  Overall, we found that differences in 

treatment of the control drift resulted in relatively small ECS estimates (<0.1°C) using year 

51-300 analyses.  

 

Because the standard simulation time of the abrupt 4xCO2 simulations in the CMIP6 

experimental design is only 150 years, we next turn our attention to comparability of 

alternative methods for performing such calculations from the CMIP6 multimodel 

ensemble.  For all estimates of ECS based on the first 150 years alone, we applied a single 

linear estimate of the 0-300 year control drift for all ECS calculations as we found the 

uncertainty control drift to inflate markedly when restricted to year 1-150 and 51-150 

analysis.   We find the annual-150 year method (1yr1-150; column 5 in Table 1) [Gregory et 

al., 2004; Andrews et al., 2012] slightly overestimates long ECS for the first generation 

MCM_UA but strongly underestimates by approximately 0.4-1.7°C, or -18% ± 5% of 50yr51-

300 among the more recent models analyzed here.  Important to note is that MCM_UA differs 

from all of the other models considered here in not having an explicit mixed layer but rather a 
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fixed 40 m mixed layer depth.  As such, it is unable to represent the immediate surface-

warming based shoaling and reduction of ventilation of the upper ocean that, in all the other 

models, leads to a latitudinal shift in sea surface warming away from the tropics towards 

higher latitudes and results in a strong initial ΔF:ΔT slope that subsides as warming 

propagates into the ocean interior and surface stratification subsides [Cubasch et al., 1992].  

Held et al. [2010] found that surface ocean warming initially was focused in the tropics while 

higher latitude warming occurred later except for the North Atlantic subpolar region which 

cooling. 

 

Efforts to remove the role of the initial response of the 150-year runs have been 

proposed.  We find that the revised 150 year method using annual averages but ignoring the 

first 20 years proposed by Andrews et al. [2015; column 6) increases the ECS estimate on 

average by 8% ± 6%) and removing the first 50 years in the annual analysis (1yr51-150; column 

6 in Table 1) leads to further increase of 3% ± 5%).  We found that ignoring more than 50 

years led to considerable degradation in the reliability of the regression.  Ignoring initial 

slopes associated with ocean equilibration timescales is not the only challenge, however, as 

current generation climate models include representation of a complex combination of 

interannual, decadal and centennial scale modes of variability.  We find that the ECS 

underestimate can be further reduced when both the first 50 years are ignored and the annual 

data is averaged into pentads. An example visual comparison of these methods is provided in 

Figure 1 for the case of GFDLCM4. 

 
 

Figure 1: Example estimation of ECS from different methods described in Table 1 for 

GFDLCM4 model from the regression of the difference in net radiation at the top of the 

atmosphere in the 4xCO2 simulation from the control (ΔF; W m-2) versus the difference in 2 

m air temperature as annual values from those simulations for the first 150 years (black x), 

and next 150 years (blue +) along with 50 year averages (red o) and regression using 1yr1-150 
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(black solid), 50yr51-300 (red solid), 1yr21-150 (black dot), and 5yr51-150 (black dash) methods.  

 

Excluding FAMOUS, we find that the original Gregory et al. [2004] method (1yr1-150) 

underestimates the long estimate by an average of -14% ± 8% (Figure 2, Middle Left Panel), 

while the Andrews et al. [2012] method (1yr21-150) is less biased relative to the long estimate 

but with a larger uncertainty (-8% ± 10%; Figure 2, Middle Right Panel).  We find an 

improved correspondence to the long estimate when 5-year averages are first calculated 

before linear regression is performed (5yr51-150; Table 1, column 7; Figure 2, Lower Left 

Panel) with underestimation of the long estimate but slightly larger uncertainty of -4% ± 

11%.  The overall results are shown in Figure 2 which illustrates that the 5yr51-150 tends to 

follow the 1:1 line when compared to long simulations (Figure 2, Lower Left Panel) whereas 

the 1yr1-150 approach follows more closely to the 0.85:1 line (Middle Left Panel).  It is 

important to note that this analysis suggests that some of the higher ECS estimated from 300-

year simulations is due to processes that begin to manifest within the first 150 years but are 

potentially masked by the early response and that the value of running the simulations out to 

300 years is not to uncover a differing response from the 51-150 year period but rather to 

boost the signal to noise in the result.  However, it is also clear that some long term processes 

are also at work in some models such as FAMOUS that serve to further elevate ECS and may 

result in a biased underestimate in the final equilibrium value [e.g. Meraner et al., 2013; 

Bloch-Johnson et al., 2015; Rohrschneider et al., 2019]. 

 

Alternatively, when the SOM estimate is used as the true value (Figure 2 Lower Right Panel), 

it is the 1yr21-150 method that follows more closely the 1:1 line with a low bias of -2% ± 14% 

whereas the 5yr51-150 method gives a high bias of 4% ± 15%. While the NCARCESM2(CAM6) and 

DOEE3SMv1 models give similar ECS of 5.3°C with the 1yr1-150 method, NCARCESM2(CAM6) 

gives a significantly higher ECS with both 5yr51-150 and 50yr51-300 methods (6.66°C and 

6.53°C, respectively) while DOEE3SMv1 gives a much higher ECS with 50yr51-300 (7.02°C) 

than 5yr51-150 (5.96°C) methods, highlighting the potential for significant differences in 

results between methods across models.  Further, while the 5yr51-150 method appears superior 

to the 1yr1-150 approach in 16 of 21 cases, the 5yr51-150 approach strongly overestimates the 

long estimate in the case of MCM_UA, ECHAM5MPIOM, and HADGEM2.  As such, the above 

diversity in model behavior should serve as caution in interpreting the uncertainty associated 

with each method and the potential role of a suite of factors including the nonlinearity of CO2 

response, lack of equilibration of initial and final states, and long-term feedbacks associated 

with adjustments in ocean circulation. 
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Figure 2: Visual comparison of ECS (°C) based on Long (≥800 years) abrupt 4xCO2 runs 

versus slab ocean model (SOM) estimates (upper left), 300 year estimates (upper right), and 

150 year estimates using the 1yr1-150 (middle left) 1yr21-150 (middle right), and 50yr51-150 
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methods (lower left) and SOM estimate versus the 1yr21-150 method (lower right) where the 

1:1 (solid), 1.0:1.15 (dashed), and 1.15:1 (dotted) lines are also shown on each plot for 

reference. 

 

We also conducted a suite of sensitivity studies varying both the averaging windows from 1 

to 50 years, and length of initial simulation ignored from 0 to 50 years.  As discussed in the 

supporting information, we found little advantage to increasing the averaging window 

without ignoring an initial segment.  In contrast, we found that including an averaging 

window of 5 years filtered out most of the interannual variability when the first 50 years of 

simulation was excluded.  Further, we found that fidelity declined slightly as the averaging 

window increased beyond 5 years. We attribute this slight loss in fidelity as an effective 

decrease in the span along the x-axis from 95 years with the 5-year window to 50 years with 

the 50-year window.  Overall, we found that analysis of 150-year simulation results largely 

converged with analysis of 300-year simulation when the first 50 years were excluded both 

with an averaging window of 1 year, and slightly more so with an averaging window of 5 

years. 

5 Conclusions 

We find that much of the character of the long-term behavior of the ECS estimates can be 

captured with exclusion of the first third of a 150-year simulation and calculating 5-year 

averages before least squares regression for an ECS estimate with only slight underestimation 

(-4% ± 11%).  With the original method of Gregory et al. [2004], however, we find an 

underestimation of -14% ± 8% of ECS compared to those estimated from long (>800 year) 

runs.  Using the modified method of Andrews et al. [2012], we find a smaller underestimation 

of -8% ± 10% compared to those estimated from long runs but good agreement (-2% ± 14%) 

with SOM-based estimates.  One interpretation of these results is that the CMIP6 

experimental design significantly underestimates the long ECS with CMIP6 class models, but 

that this deficiency can be largely addressed using the modified 5yr51-150 method excluding the 

initial part of the simulation and taking pentadal averages of years 51-150 to calculate the 

temperature at radiative balance.  As such, we find a large range of ECS estimates among 

current generation US models from 2.6°C using the 1yr21-150 method for GFDLESM4.1 to 7.0°C 

using the 50yr51-300 method for DOEE3SM1 - well outside the IPCC assessment that ECS is 

very unlikely greater than 6°C." [Bindoff et al., 2013].  However, we also find evidence that 

estimates from long abrupt 4xCO2 simulations are significantly higher than SOM estimates as 

well as considerable divergence in the relationships between different methods for different 

models.  There might also be an additional discrepancy due to the typical use of 2xCO2 

simulations for SOM estimates but 4xCO2 simulations for coupled estimates. Under the 

assumption that the global surface air temperature responds linearly to an increase in 

atmospheric CO2, the 4xCO2 and the 2xCO2 should give the same climate sensitivity. In 

practice the linear assumption is not strictly satisfied [Jonko et al., 2013] as forcing has been 

shown to be supra-logarithmically dependent on the CO2 concentration [Etminan et al. 2016, 

Byrne and Goldblatt, 2014; Gregory et al., 2015] along with other arguments for non-

linearity in the temperature dependence of radiative feedbacks [e.g. Meraner et al., 2013; 

Bloch-Johnson et al., 2015; Rohrschneider et al., 2019].  As such, we argue that more 

research should be done to standardize methods to estimate ECS through a more 

comprehensive comparison of ECS through both multi-millennial climate perturbation 

simulations such as conducted in LongRunMIP [Rugenstein et al., 2019; 2020] and slab 

ocean model comparisons to better understand the causes of these differences and derive a 

more robust estimate of climate sensitivity from current generation models. 
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Note also that the concept of Equilibrium Climate Sensitivity (ECS) is predicated on the 

initial and final states both being in equilibrium. With computationally intensive models such 

as those used in CMIP6, models have typically not spun up the ocean to equilibrium for 

practical considerations. As such, while the surface temperature was stable, the deep ocean 

thermal status was continuing to evolve. When such a system is perturbed, it may respond 

differently, at least in transient [e.g. He et al., 2017], to the equilibrium of a slab ocean 

model.   

Whereas ECS began as a convenient idealized model construct [e.g Charney et al., 1979], it 

has emerged as a routine test of models as if ECS could be measured and interpreted 

precisely and accurately.  We argue that the concept of ECS should be considered more 

notional than absolute and useful more in idealized studies of relative sensitivity with the 

understanding absolute value of this metric will depend on the state of the system and the 

nature of the imposed forcing with different methods of estimating ECS accessing different 

feedbacks. 
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