
Intelligent Lemma Selection for Formal Methods Proofs

Connor T. Baumler1, Mariano M. Moscato2, J. Tanner Slagel2
1Department of Computer and Data Science

Case Western Reserve University

2 Safety Critical Avionics Systems Branch
NASA Langley

Aug 2020 @ NASA Langley
Intern exit presentation

mailto:connor.baumler@case.edu
mailto:mariano.m.moscato@nasa.gov
mailto:j.tanner.slagel@nasa.gov


Outline

Introduction

Fact Selectors
MePo
MaSh
MeSh

Implementation in PVS

Numerical Experiments

Conclusion and Future Work



Outline

Introduction

Fact Selectors
MePo
MaSh
MeSh

Implementation in PVS

Numerical Experiments

Conclusion and Future Work



Motivation

• 30,000 lemmas in NASA’s PVS (Prototype Verification System) library
• Using one lemma in the proof of another is a common occurrence

• lemma, rewrite, and use command used 70,000+ times in NASAlib proofs
• Manual or string-based search often used to find lemmas

How can we make finding a relevant lemma an easier task?



Motivation

• 30,000 lemmas in NASA’s PVS (Prototype Verification System) library
• Using one lemma in the proof of another is a common occurrence

• lemma, rewrite, and use command used 70,000+ times in NASAlib proofs
• Manual or string-based search often used to find lemmas

How can we make finding a relevant lemma an easier task?



Outline

Introduction

Fact Selectors
MePo
MaSh
MeSh

Implementation in PVS

Numerical Experiments

Conclusion and Future Work



Fact Selection Process

• To decide which NASAlib lemmas are relevant, each fact selector compares the
current proof state to the initial proof state from the library lemmas

• The proof information from each state is transformed into a set of features
• Lemmas with features that are determined to be more similar to the features in the
current proof state are selected



Feature Extraction

• Basic features and patterns are pulled from proof states
• These simple features come from the variables (x), constants (a), and functions (g, h)
in each formula

• Variable names are replaced by their types
• For function calls with arguments, patterns of arguments up to depth 2 are
considered. Logical connectives are ignored

• e.g. The features for the expression g(h(x : nat, a)) are:

nat h(_, a) g(h(nat, _))
a h(nat, a) g(h(_, a))

h(_, _) g(_) g(h(nat, a))
h(nat, _) g(h(_, _))

• The features of each proof state are collected with no separation based on which
formula the feature appears in (cf. Kyle’s counting vectors)



MePo

MePo is a simple, relevancy filtering based fact selector (Meng and Paulson 2009)

Relevance is scored in relation to a passmark or a minimum relevance grade



MePo
To start, the so-called “relevant set” of features contains only goal features

Goal Lemma 1 Lemma 2 Lemma 3

Relevant Set:

Relevant Lemmas:



MePo
Features of each lemma are partitioned by the relevant set. The clause mark is calculated
based on the proportion of relevant features and how frequently the relevant features
occur in the whole library

Goal Lemma 1 Lemma 2 Lemma 3

Clause Mark = 0.86 Clause Mark = 0.55 Clause Mark = 0.55

Relevant Set:

Relevant Lemmas:



MePo
Lemmas with a clause mark above the passmark (.6) are marked as relevant, and their
features are added to the relevant set. The passmark is increased (.8, in this case)

Goal Lemma 2 Lemma 3

Relevant Set:

Relevant Lemmas: Lemma 1



MePo
The scoring repeats

Goal Lemma 2 Lemma 3

Relevant Set:

Clause Mark = 0.55 Clause Mark = 0.84

Relevant Lemmas: Lemma 1



MePo
The passmark and the relevant lemmas and features are updated. (The new passmark is
.9)

Goal Lemma 2

Relevant Set:

Relevant Lemmas: Lemma 1, Lemma 3



MePo
After scoring, we see that the final lemma doesn’t make the current passmark (.9). Since
no new lemmas are selected, lemmas 1 and 3 are returned as relevant

Goal Lemma 2

Relevant Set:

Clause Mark = 0.84

Relevant Lemmas: Lemma 1, Lemma 3



MePo

Drawback: Meng and Paulson 2009 found that this approach does well when the goal
contains rare features, but falls apart when all the goal features are common



MaSh

• MaSh is a learning-based fact selector that builds on MePo (Blanchette et al. 2016)
• This approach utilizes the proof of each fact to find a dependency structure
• The facts are partially ordered by visibility based on their dependencies
• We use MaSh’s k-nearest neighbors method



MaSh

Consider the lemmas visible from the goal

goal

1

2

3

4



MaSh

Up to k such lemmas selected based on the features they have in common and their rarity
in the entire library

goal

1

2

3

4



MaSh
Instead of updating the set of relevant features, this approach considers each goal-visible
lemma’s other goal-visible dependencies. They are scored based on:

• How close each dependency of the lemma is to the goal
• How many dependencies the goal has
• If it was a chosen neighbor, the original nearness of the lemma to the goal

goal

1

2

3

4



MaSh

Given this second scoring, up to k lemmas are selected and ordered

goal

1

2

3

4



MaSh

• In practice, the number of initially selected neighbors starts at 0 and is gradually
increased to make sure enough lemmas have non-zero relevance

• Blanchette et al. 2016 found that this approach generally outperforms MePo, with the
difference being more pronounced when the number of candidate lemmas is smaller



MeSh

• Since MePo can do better than MaSh on certain problems, the hybrid approach MeSh
combines the two (Blanchette et al. 2016)

• The rankings of each fact selector is combined with equal weight
• Blanchette et al. 2016 found that while this does improve overall performance when
being used in certain provers, the addition of MePo often hurt results more than it
helped



Outline

Introduction

Fact Selectors
MePo
MaSh
MeSh

Implementation in PVS

Numerical Experiments

Conclusion and Future Work



Implementation in PVS

• I implemented the three fact selectors themselves in python. The feature extraction
(done by Mariano) was implemented in lisp and pulls directly from PVS’s internal
representation

• MePo, MaSh, and MeSh are being integrated into the PVS VSCode extension
• This will allow users to receive suggestions of potentially relevant NASALib
lemmas as they work to prove novel lemmas



“Goals” in PVS

• MePo, MaSh, and MeSh were originally created for Isabelle (Meng and Paulson 2009,
Blanchette et al. 2016)

• In Isabelle, they were able to easily compare the features of the goal of the current
proof (or sub-proof) to the final state in facts’ proofs

• In PVS, a lemma in proven when a terminal state is reached
• This happens when certain formulae in the state are true, false, or the same

• Since the objective is then to transform a formula in the current state in a useful way,
we use the current state as the goal

• This also means that similarity to the final state of a NASAlib lemma’s proof (the leaves
of the proof tree) is likely a less informative metric than similarity to the initial state

• So, we ultimately compare the current proof state to the initial state of each NASAlib
lemma



Outline

Introduction

Fact Selectors
MePo
MaSh
MeSh

Implementation in PVS

Numerical Experiments

Conclusion and Future Work



Evaluation on NASAlib

• To test the three methods, we utilized the existing PVS proofs in NASA’s library
• For each lemma’s proof, we found the steps where other NASAlib lemmas were
applied

• Treating that point in the proof as the current state, we saw what lemmas each
method thought was relevant

• This method likely underestimates the efficacy of these approaches since:
1. The lemma that was actually applied at the given state might not be the only
lemma that leads to a successful proof

2. Some of the candidate lemmas being considered are dependent on the lemma
being proven and thus wouldn’t be in the set of proven lemmas before the
current one has been proven



Evaluation on NASAlib

Method Accuracy Avg relative lemma rank Avg Passing Avg eval
in set (when included) set size time

MePo (p = .9) 8.4% 56.7% 3.45 0.061
MePo (p = .6) 38% 14.8% 116.5 0.179
Mepo (p = .3) 79% 5.40% 3101.1 0.478

MaSh (max 1000) 89.0% 11.27% 1000 0.067
Mepo (p = 0) n/a 7.24% n/a 1.49

MaSh (no cutoff) n/a 7.33% n/a 0.084
MeSh (p = 0, no cutoff) n/a 6.19% n/a 1.23



Evaluation on NASAlib

MePo with p = 0 (Area = .919)



Evaluation on NASAlib

MaSh with no maximum suggestion cutoff (Area = .923)



Evaluation on NASAlib

MeSh with p = 0 and no maximum suggestion cutoff (Area = .924)



Outline

Introduction

Fact Selectors
MePo
MaSh
MeSh

Implementation in PVS

Numerical Experiments

Conclusion and Future Work



Conclusion

• Three Lemma selectors implemented for use in PVS and for use as baselines for
further experimentation
1. MePo: Simple, passmark-based relevancy scoring
2. MaSh: K-nearest neighbors
3. MeSh: Ensemble of MePo and MaSh

• Comparison of MePo vs MaSh vs MeSh performance
• We find overall similar performance between the three methods, with MeSh
having the best AUC.

• Since NASAlib has so many lemmas, this is unsurprising. Blanchette et al. 2016
reported MaSh and MeSh to have the greatest improvement over MePo in
problems considering between 32 and 512 facts

• This may suggest that a preliminary pruning of candidate lemmas outside the
domain of the current proof could increase MaSh and MeSh’s performance



Future Work
Function and Constant names

• Currently, variable names are replaced by their types since their names are quite
arbitrary

• Two constants of the same type may be interchangeable
• Two functions of the same type signature may also be interchangeable
• A system that can determine the similarity functions/constants (independent of their
names), will be better able to determine the similarity of lemmas

Command-level Suggestions
• Instead of suggesting existing lemmas, we may find success looking for relevant
previously-used proof commands

• Using a similar architecture, we could look at the features in each library lemma
before a command was used and comparing it to the current state

MeSh ensemble
• Currently, MeSh combines MePo and MaSh with a simple, equal weight vote
• Using an ensemble learning technique like bagging or boosting as a base, we can try
to find a more appropriate weighting



References

Blanchette, Jasmin Christian et al. (2016). “A learning-based fact selector for Isabelle/HOL”.
In: Journal of Automated Reasoning 57.3, pp. 219–244.

Meng, Jia and Lawrence C Paulson (2009). “Lightweight relevance filtering for
machine-generated resolution problems”. In: Journal of Applied Logic 7.1, pp. 41–57.


	Introduction
	Fact Selectors
	MePo
	MaSh
	MeSh

	Implementation in PVS
	Numerical Experiments
	Conclusion and Future Work
	References



