
Lemma Suggesting in PVS using Machine
Learning

Kyle Nguyen1, Mariano Moscato2,3, J. Tanner Slagel2

1 Biomathematics Graduate Program

North Carolina State University

2 Safety Critical Avionics Systems Branch

NASA Langley Research Center

3 Formal Methods Team

National Institute of Aerospace

August 5, 2020



Overview

I Motivation

I Proof procedure in PVS

I Implementation

I Machine learning model

I Prenex normal form conversion

I Empirical evaluation

I Integration of suggester to vscode-pvs IDE



Motivation

I Safety-critical systems require the highest possible degree of
verification and validation.

I Theorem proving offers such kind of warranties.
I NASA LaRC use Prototype Verification System (PVS) for

verification of safety-critical systems.

I Downside: it is a very time-consuming activity.

I Goal: Speed up formal verification time in PVS using machine
learning (ML) by adding a lemma suggester to PVS.



Proof procedure in PVS

I Defining a lemma:

I Lemma presentation in PVS:



Proof procedure in PVS

I Step n − 1:

I Step n:



Proof procedure in PVS

I Usage of lemmas in PVS:
I Pros: using the correct lemma could speed up the proof

process.
I Cons: user needs to locate it among the existing library

(NASALib has ≈ 30,000 available lemmas).

I Need a new feature that could provide users the right lemma
during proof process.



Implementation
I Case study: real library from the NASALib.
I Number of lemmas: 1048.
I Data size: 2167.
I Inputs: Previously used proof command, antecedents,

consequents, and current lemma.
I Neural network model: A combination of convolution and

long-short term memory.
I Model output: An embedded vector of predicted-to-use

lemma.
I Output: A list of “useful” lemmas.



Embedding Previously Used Tactic Command

I Take the top 50 mostly used proof commands.

I Encoding: assigning a number to each proof command.

I Embedding: using one-hot encoding.



Counter for Antecedents, Consequents, Lemmas
I Take the top 50 most important keywords/symbols/data

types.
I Assign a position.
I Count the number of their appearance.



Neural Network Model
I Loss function: Mean square error.
I Optimizer: Adam [1].
I Training/Validation/Testing ratio: 70/20/10.



Suggesting Top 5 Lemmas

I Compute the difference between model output and each
lemma in the real library.

I Choose the top 5 (out of 1048) lemmas with the smallest
difference.



Result of the First Attempt

I Test size: 217.

I Predict correctly when the actual lemma used is in the top 5
lemmas predicted.

I Model accuracy ≈ 6.5% (14 out of 217).
I Potential explanations for low accuracy:

I Model overfitting.
I Have not explored hyperparameters.
I Encoding was not rich enough to capture important

information.
I Proof data from PVS are not in a normal form.



Prenex Normal Form Conversion

I Why prenex normal form?
I To canonize PVS formulas for accurate comparison.
I Example:

A ⇐⇒ B ≡ (A =⇒ B) ∧ (B =⇒ A)

I Implemented in Common Lisp.

I Prenex normal form examples:

A =⇒ B → ¬A ∨ B

¬∀xA(x)→ ∃x¬A(x)

∀xA(x) ∧ ∀xB(x)→ ∀x∀yA(x) ∧ B(y)



Result of Prenex Normal Form Conversion

Output:



Result of Prenex Normal Form Conversion

Output:



Empirical Evaluation

I What did we change?
I Removed: previously used proof command, current lemma.
I Counter vector size: 50 → 25.
I Simplified the model.
I Converted to a traditional classification problem.
I Chose top 5 (out of 434) lemmas.

I Model accuracy ≈ 42% (91 out of 217).



Integration of Suggester to Vscode-pvs IDE
I Load pre-computed neural network model and pre-recorded

position of the 434 lemmas.

I Receive queries as JSON format from Vscode.

I Return JSON output file containing the top k relevant
lemmas.



Future Direction

I Try different neural network architectures: WaveNet, Graph
Neural Networks.

I Explore different tokenizers.

I Increase the size of dataset.

I Predict proof commands.

I Fully automated formalization.



Summary

I To NASA:
I Introduced an initial framework for lemma suggesting feature

in PVS using machine learning.
I Developed a prenex normal form conversion feature in PVS.

I To me:
I Learned how to use PVS.
I Improved Common Lisp skill while trying to build prenex

normal form conversion feature.
I Applied machine learning to formal verification.
I Applied object oriented visitor design pattern to a real-life

implementation of a higher order logic language.
I Worked with non-trivial logic concepts (higher order languages

and sequent calculus) and their implementation in an object
oriented setting.



Acknowledgment

I Mariano Moscato and J. Tanner Slagel.

I César Muñoz.

I NASA Langley Research Center.

Thank you! Questions?



References

D. P. Kingma and J. Ba, “Adam: A method for stochastic
optimization,” arXiv preprint arXiv:1412.6980, 2014.


