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Aircraft designers
need better battery
data to size vehicles

Battery designers
need power profiles
to publish data 
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Goals                                Overview

• Facilitate better design coupling 
between battery and aircraft 
designers by highlighting 
multidisciplinary performance 
considerations

• Vehicle & Mission
• Optimization Environment
• Battery/Vehicle Coupling
• Results
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• Single and Six Passenger Variants
• 30-120 km
• 1.5km altitude ceiling
• 200m minimum cruise altitude
• Subsystems: Propulsion, Thermal, Mass, Aero, Trajectory

• Experimental Platform
• 80 km

• 120knot cruise speed
• 6kft cruise altitude

X-57

Quadrotor

Vehicle and Mission
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Battery Capacity is Discharge Profile Dependent
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System Knockdown ∈ (Wh/kg)

Cell - 225

Pack *0.663 (structure) 149

Vehicle *0.8 (depth of discharge) 119

Component 𝜼 @ cruise

Propeller 76%

Motor 92%

Inverter 97.5%

Wire 99.9%

Battery 89.1%

Total 60.7%

Alt
(ft)

Time (s)

Battery knockdowns are significant
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Battery Discharge Efficiency Varies with Pack Size

128s 40p
128s 60p
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Optimization Environment
DYMOS

USAtm1976

Rotor

Motor
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BodyForces

EOMGroup
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System Knockdown ∈ (Wh/kg)

Cell - 488

Pack *0.769 (structure) 375

Vehicle *0.8 (depth of discharge) 300

Component 𝜼 @ cruise*

Propeller 76%

Gearbox 99%

Motor 97.4%

Inverter 98%

Wire 99.9%

TMS 97.3%

Battery 89.7%

Total 62.6%

*1pax – 92.6km

Thermal Management
Adds Additional Efficiency Penalty
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Optimal Trajectories are
Driven by Battery Temperature
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Range impacts both the proportions and scale
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Energy density mostly impacts the scale
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Energy density impacts thermal efficiency

Minimized Energy vs Minimized Weight
0.3% increase in vehicle weight,
15% increase in TMS weight
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Summary

• Cell-to-air efficiencies of 60-65% are realistic (compared to 25-40% for combustion)

• Optimal trajectories are dictated by battery thermal constraints

• Regressions developed for range, passenger count, energy density have been established

• Range impacts optimal vehicle proportions more than energy density, both impact scale

• Higher energy density batteries create large differences between
minimum energy and minimum weight vehicle designs
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Forward Work

Taxi

50ft Vertical
TKO @ 100fpm

Climb 
> 900 fpm

Cruise @ 4kft AGL

No credit
descent

30s hover

Taxi

Range

Investigate more constrained trajectories
• UAM Reference Mission*
• Back-to-back flights
• Additional Vehicle Types

• Lift+Cruise
• Tiltrotor/wing

• More generalized battery
• Additional thermal architectures
• Improved pack-level modeling

*Silva, Johnson, Antcliff, Patterson

Develop comprehensive surrogate models
to better inform battery development
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Thank You!

Transformative Tools and Technologies Project
Flight Demonstration Capabilities Project
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