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Summary

(1) Temperate forests are shaped by late spring freezes after budburst—false springs—which may shift with climate 

change. Research to date has generated conflicting results, potentially because few studies focus on the multiple underlying 

drivers of false spring risk. 

(2) Here, we assessed the effects of mean spring temperature, distance from the coast, elevation and the North Atlantic 

Oscillation (NAO) using PEP725 leafout data for six tree species across 11648 sites in Europe, to determine which were 

the strongest predictors of false spring risk and how these predictors shifted with climate change. 

(3) All predictors influenced false spring risk before recent warming, but their effects have shifted in both magnitude and 

direction with warming. These shifts have potentially magnified the variation in false spring risk among species with an 

increase in risk for early-leafout species (i.e., Aesculus hippocastanum, Alnus glutinosa, Betula pendula) versus a decline 

or no change in risk among late-leafout species (i.e., Fagus sylvatica, Fraxinus excelsior, Quercus robur). 

(4) Our results show how climate change has reshaped the drivers of false spring risk, complicating forecasts of future 

false springs, and potentially reshaping plant community dynamics given uneven shifts in risk across species. 

 Keywords: false spring, climate change, phenology, spring freeze, elevation, risk, leafout, temperate tree 

Introduction

False springs—late spring freezing events after budburst that can cause damage to temperate tree and shrub species—may 

shift with climate change. With earlier springs due to warming (Wolkovich et al., 2012; IPCC, 2015), the growing season 

is lengthening across many regions in the Northern Hemisphere (Chen et al., 2005; Liu et al., 2006; Kukal & Irmak, 2018). 

Longer growing seasons could translate to increased plant growth, assuming such increases are not offset by tissue losses 

due to false springs. Last spring freeze dates are not predicted to advance at the same rate as warming (Inouye, 2008; 

Martin et al., 2010; Labe et al., 2016; Wypych et al., 2016b; Sgubin et al., 2018), potentially amplifying the effects of false 

spring events in some regions. In Germany, for example, the last freeze date has advanced by 2.6 days per decade since 

1955 (Zohner et al., 2016), but budburst has advanced 4.3 days per decade across Central Europe (Fu et al., 2014; Vitasse 

et al., 2018). To date, studies have variously found that spring freeze damage may increase (Hänninen, 1991; Augspurger, 

2013; Labe et al., 2016), remain the same (Scheifinger et al., 2003) or even decrease (Kramer, 1994; Vitra et al., 2017) 

with climate change. When damage does occur, studies have found it can take 16-38 days for trees to refoliate after a 

freeze (Gu et al., 2008; Augspurger, 2009, 2013; Menzel et al., 2015), which can detrimentally affect crucial processes 

such as carbon uptake and nutrient cycling (Hufkens et al., 2012; Richardson et al., 2013; Klosterman et al., 2018). A
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Spring freezes are one of the largest limiting factors to species ranges and have greatly shaped plant life history strategies 

(Kollas et al., 2014). Plants are generally the most freeze tolerant in the winter but this freeze tolerance greatly diminishes 

once individuals exit the dormancy phase (i.e. processes leading to budburst) through full leaf expansion (Vitasse et al., 

2014; Lenz et al., 2016). Thus, most individuals that initiate budburst and have not fully leafed out before the last spring 

freeze are at risk of leaf tissue loss, damage to the xylem, and slowed canopy development (Gu et al., 2008; Hufkens et al., 

2012). Plants have adapted to these early spring risks through various mechanisms with one common strategy being 

avoidance (Vitasse et al., 2014). Many temperate species minimize freeze risk and optimize growth by using a complex 

mix of cues to initiate budburst: low winter temperatures (i.e., chilling), warm spring temperatures (i.e., forcing), and 

increasing spring daylengths (i.e., photoperiod). With climate change advancing, the interaction of these cues may shift 

spring phenologies both across and within species and sites, making some species less—or more—vulnerable to false 

springs than before.

Species may vary in their false spring risk for several major reasons. Species that leafout first each spring may be 

especially at risk of false springs, as their budburst occurs during times of year when the risk of freeze events is relatively 

high. To date these early-leafout species also appear to advance the most with warming (Wolkovich et al., 2012). Thus, if 

climate change increases only the prevalence of late spring freezes, we would expect major increases in false spring risk 

for these species. In contrast, if climate change has restructured the timing and prevalence of false springs to later in the 

spring, then later-leafout species may experience major increases in false spring risk with climate change. Additional 

complexity in these predictions, however, comes from the potential of species-level differences in in their tolerance of low 

temperatures during leafout (Lenz et al., 2013), and how quickly they progress from budburst to full leafout—when leaf 

tissue is least resistant to low temperature (Augspurger, 2009; Lenz et al., 2013; Muffler et al., 2016; Zohner et al., 2020).

Some research suggests false spring incidence has already begun to decline in many regions (i.e. across parts of North 

America and Asia); however, the prevalence of false springs has consistently increased across Europe since 1982 (Liu 

et al., 2018). Understanding differing results across regions is difficult without understanding the underlying drivers of 

false spring risk. Recent site-specific studies have examined some drivers, including elevation, where higher elevations 

appear at higher risk (Vitra et al., 2017; Ma et al., 2018; Vitasse et al., 2018), and distance from the coast, where inland 

areas appear at higher risk (Wypych et al., 2016b; Ma et al., 2018). Examining these drivers together, however, is likely 

necessary to determine which regions are at risk currently and which regions will be more at risk in the future. Most 

studies assess only one predictor (e.g. temperature, elevation or distance from the coast), making it difficult to examine 

how multiple factors may together shape risk. Further, because predictors can co-vary—for example, higher elevation sites 

are often more distant from the coast—the best estimates of what drives false springs should come from examining all 

predictors at once. 

Estimates of what drives false spring risk should also examine if drivers are constant over time. With recent warming the 

importance of varying climatic factors on phenology has shifted (e.g., Cook & Wolkovich, 2016; Gauzere et al., 2019), 

which could in turn impact false spring risk. The importance of elevation, for example, may decline with warming. A
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Because warming tends to be amplified at higher elevations (Giorgi et al., 1997; Rangwala & Miller, 2012; Pepin et al., 

2015), which can lead to increasing uniformity of budburst timing across elevations with climate change (Vitasse et al., 

2018), we may expect a lower effect of elevation on false spring risk in recent years. Warming impacts also appear greater 

further away from the coast, which could in turn impact how distance from the coast affects risk today (Wypych et al., 

2016b; Ma et al., 2018). Further, climate change can alter major climatic oscillations, including the North Atlantic 

Oscillation (NAO), which structures European climate. The NAO is tied to winter and spring circulation across Europe, 

with more positive NAO phases tending to result in higher than average winter and spring temperatures. With climate-

change induced shifts, years with higher NAO indices have correlated to even earlier budburst dates since the late 1980s in 

some regions (Chmielewski & Rötzer, 2001), suggesting the NAO’s role in determining false spring risk with warming 

could also shift with climate change. Little research to date, however, has examined this. 

Here we investigate the influence of known climatic and geographic factors on false spring risk (defined here as when 

temperatures fell below -2.2 C between estimated budburst and leafout for all species included in the study, Schwartz, 
∘
 

1993). We assessed the number of false springs that occurred at 11648 sites across Europe using observed phenological 

data (755087 observations) for six temperate, deciduous trees, combined with daily gridded climate data (from 1951-

2016), to understand (1) which climatic and geographic factors are the strongest predictors of false spring risk, and (2) how 

these major predictors have shifted with climate change across species. We focus on the major factors shown to influence 

false spring risk: mean spring temperature, elevation, distance from the coast, and NAO. 

Materials and Methods

Phenological Data and Calculating Vegetative Risk

We obtained phenological data from the Pan European Phenology network (PEP725, www.pep725.eu), which provides 

open access phenology records across Europe (Templ et al., 2018). The phenological data spans large parts of Central 

Europe—primarily in Germany, Austria and Switzerland—and also covers parts of Ireland, the United Kingdom, the 

Mediterranean and Scandinavia (Figure 1(a)-(f)). Since plants are most susceptible to damage from freezing temperatures 

between budburst and full leafout, we selected first leaf data (i.e., in Meier, 2001, BBCH 11, which is defined as the point 

of leaf unfolding and the first visible leaf stalk) from the PEP725 dataset. Given our focus on understanding how climatic 

and geographic factors underlie false spring risk, we selected species well-represented across space and time and not 

expected to be altered dominantly by human influence (i.e., as crops and ornamental species often are), thus our selection 

criteria were as follows: (1) to be temperate, deciduous species that were not cultivars or used as crops, (2) there were at 

least 90,000 observations of BBCH 11 (leafout), (3) to represent over half of the total number of sites available (11648), 

and (4) there were observations for at least 65 out of the 66 years of the study (1951-2016) (Table S1). This resulted in six A
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species: Aesculus hippocastanum Poir. (Sapindaceae), Alnus glutinosa (L.) Gaertn. (Betulaceae), Betula pendula Roth. 

(Betulaceae), Fagus sylvatica Ehrh. (Fagaceae), Fraxinus excelsior L. (Oleaceae), and Quercus robur L (Fagaceae). 

Individuals are most at risk to damage in the spring between budburst and leafout, when freeze tolerance is lowest (Sakai 

& Larcher, 1987). To capture this ‘high-risk’ timeframe, we subtracted 12 days from the first leaf date to find budburst—

which is the average rate of budburst across multiple studies and species (Donnelly et al., 2017; Flynn & Wolkovich, 2018; 

USA-NPN, 2019)—and then added 12 days from the first leaf date to find leafout to establish a standardized estimate for 

day of budburst, since the majority of the individuals were missing budburst and full leafout observations. 

We additionally considered a model that altered the timing between budburst and leafout for each species. For this 

alternate model, we calculated budburst and leafout by subtracting and adding 11 days respectively from the first leaf date 

for Aesculus hippocastanum and Betula pendula, 12 days for Alnus glutinosa, 5 days for Fagus sylvatica, and 7 days for 

both Fraxinus excelsior and Quercus robur based on growth chamber experiment data from phylogenetically related 

species (Buerki et al., 2010; Wang et al., 2016; Hipp et al., 2018; Flynn & Wolkovich, 2018,  see supplemental materials 

‘Supporting Information Methods S1: Species rate of budburst calculations’ for more details).

Climate Data

We collected daily gridded climate data from the European Climate Assessment & Dataset (ECA&D) and used the E-OBS 

0.25 degree regular latitude-longitude grid (version 16). E-OBS version 16 incorporates station altitude in the interpolation 

scheme, thus spatially explicit information on day-to-day variability in the environmental lapse rate is captured (Cornes 

et al., 2018). We used this daily minimum temperature dataset to determine if a false spring occurred. We defined false 

springs as temperatures at or below -2.2 C (Schwartz, 1993) between budburst to leafout. Decades of research has found 
∘
 

that many species sustain damage between budburst and leafout when temperatures drop below -2.2 C. However, as there 
∘
 

is evidence of interspecific variation in spring freeze tolerance, we additionally performed our analyses considering a -5 C 
∘
 

(Sakai & Larcher, 1987; Lenz et al., 2013) threshold for one model and performed an additional model considering 

varying temperature thresholds for different species (Lenz et al., 2016; Muffler et al., 2016; Zohner et al., 2020): with -5
∘
 

C for early-leafout species (i.e,. Aesculus hippocastanum, Alnus glutinosa and Betula pendula) and -2.2 C for late-leafout 
∘
 

species (i.e., Fagus sylvatica, Fraxinus excelsior and Quercus robur). In order to assess climatic effects, we calculated the 

mean spring temperature by using the daily mean temperature from March 1 through May 31. We used this date range to 

best capture temperatures likely after chilling had accumulated to compare differences in spring forcing temperatures 

across sites (Basler & Körner, 2012; Körner et al., 2016). We collected NAO-index data from the KNMI Climate Explorer 

CPC daily NAO time series and selected the NAO indices from November until April to capture the effects of NAO on 

budburst for each region. We then took the mean NAO index during these months (KNMI, 2018). More positive NAO 

indices typically result in higher than average winter and spring temperatures across Central Europe. Since the primary aim A
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of the study is to predict false spring incidence in a changing climate, we split the data to create a binary ‘climate change’ 

parameter: before temperature trends increased (1951-1983), reported as ‘0’ in the model, and after trends increased (1984-

2016, Stocker et al., 2013; Kharouba et al., 2018) to represent recent climate change, reported as ‘1’ in the model.

Data Analysis

Simple regression models

We initally ran three simple regression models—following the same equation (below) but with varying response 

variables—to assess the effects of climate change on budburst, minimum temperatures between budburst and leafout and 

the number of false springs across species (Equation 1).

ε 
i ∼ Normal(y\s\do5(i)\)1

y 
i = α  

[i] + β
 

ClimateChange  
[i]

+ β
 

Species  
[i]

+ β
 

ClimateChange × Species  
[i]

+ ε  
[i]

Main Model

To best compare across the effects of each climatic and geographic variable, we scaled all of the predictors to a z-score 

following the binary predictor approach (Gelman & Hill, 2006). To control for spatial autocorrelation and to account for 

spatially structured processes independent from our regional predictors of false springs, we generated an additional ‘space’ 

parameter for the model. To generate our space parameter we first extracted spatial eigenvectors corresponding to our 

analyses’ units and selected the subset that minimizes spatial autocorrelation of the residuals of a model including all 

predictors except for the space parameter ( Diniz-Filho et al., 2012; Bauman et al., 2017,  see supplemental materials 

‘Supporting Information Methods S2: Spatial parameter’ for more details). We then took the eigenvector subset 

determined from the minimization of Moran’s I in the residuals (MIR approach) and regressed them against the above 

residuals—i.e. number of false springs vs. climatic and geographical factors. Finally we used the fitted values of that 

regression as our space parameter, which, by definition, represents the portion of the variation in false springs that is both 

spatially structured and independent from all other predictors in the model (e.g. average spring temperature, elevation, etc. 

Griffith & Peres-Neto, 2006; Morales-Castilla et al., 2012). A spatial predictor generated in this way has three major 

advantages. First, it ensures that no spatial autocorrelation is left in model residuals. Second, it avoids introducing 
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collinearity issues with other predictors in the model. And third, it can be interpreted as a latent variable summarizing 

spatial processes (e.g. local adaptation, plasticity, etc.) occurring at multiple scales.

To estimate the probability of false spring risk across species and our predictors we used a Bayesian modeling approach. 

By including all parameters in the model, as well as species, we were able to distinguish the strongest contributing factors 

to false spring risk. We fit a Bernoulli distribution model (also know as a logistic regression) using mean spring 

temperature (written as MST in the model equation), NAO, elevation, distance from the coast (written as DistanceCoast in 

the model equation), space, and climate change as predictors and all two-way interactions and species as two-way 

interactions (Equation 2), using the brms package (Bürkner, 2017), version 2.3.1, in R (R Development Core Team, 2017), 

version 3.3.1, and was written as follows:

y 
i ∼ Binomial(1\)2

logit(p) = α  
[i] + β

 

MST  
[i]

+ β
 

DistanceCoast  
[i]

+ β
 

Elevation  
[i]

+ β
 

NAO  
[i]

+ β
 

Space  
[i]

+ β
 

ClimateChange  
[i]

+ β
 

Species  
[i]

+β
 

MST × Species  
[i]

+ β
 

DistanceCoast × Species  
[i]

+ β
 

Elevation × Species  
[i]

+ β
 

NAO × Species  
[i]

+β
 

Space × Species  
[i]

+ β
 

ClimateChange × Species  
[i]

+ β
 

MST × ClimateChange  
[i]

+β
 

DistanceCoast × ClimateChange  
[i]

+ β
 

Elevation × ClimateChange  
[i]

+β
 

NAO × ClimateChange  
[i]

+ β
 

Space × ClimateChange  
[i]

We ran four chains of 4 000 iterations, each with 2 500 warm-up iterations for a total of 6 000 posterior samples for each 

predictor using weakly informative priors. Increasing priors five-fold did not impact our results. We evaluated our model 

performance based on R values that were close to one. We also evaluated effective sample size estimates, which were 1 

994 or above. We additionally assessed chain convergence visually and posterior predictive checks. Due to the large 

number of observations in the data we used the FASRC Cannon cluster (FAS Division of Science Research Computing 

Group at Harvard University) to run the model. 

Model estimates were on the logit scale (shown in all tables) and were converted to probability percentages in all figures 

for easier interpretation by following (Gelman & Hill, 2006). These values were then back converted to the original scale A
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by multiplying by two standard deviations. We calculated overall estimates (i.e., across species) of main effects in Figure 

2, Figure S1, Figure S2 and S3 from the average of the posteriors of each effect by species. We report all estimated values 

in-text as mean ± 98% uncertainty intervals, unless otherwise noted. 

Results

Basic shifts in budburst and number of false springs

Day of budburst varied across the six species and across geographical gradients (Figures 1 and 3). Betula pendula, 

Aesculus hippocastanum, Alnus glutinosa (Figure 1a-c) generally initiated budburst earlier than Fagus sylvatica, Quercus 

robur, and Fraxinus excelsior (Figure 1d-f). Across all six species, higher latitude sites and sites closer to the coast tended 

to initiate budburst later in the season (Figure 1(a)-(f)). 

Across species, budburst dates advanced 6.41 ± 0.29 days after 1983 (Table S2) and minimum temperatures between 

budburst and leafout increased by 0.58 ± 0.03 C after climate change (Table S3). This trend in advancing day of budburst 
∘
 

for each species corresponds closely with increasing mean spring temperatures (Figure 3(a)-(f)). While all species initiated 

budburst approximately seven days earlier (Figure 4a, Table S2 and Table S4), the average minimum temperature between 

budburst and leafout varied across the six species with Betula pendula and Aesculus hippocastanum experiencing the 

lowest minimum temperatures (Figure 4b), Quercus robur and Fraxinus excelsior experiencing the highest minimum 

temperatures, and Fraxinus excelsior experiencing the greatest variation (Figure 4b). 

A simplistic view of changes in false springs—one that does not consider changes in climatic and geographic factors or 

effects of spatial autocorrelation—suggests that the number of false springs increased across species by 0.44% (± 1.21) 

after climate change (i.e., after 1983), but with important variation by species (Figure 4c). Early-leafout species (Aesculus 

hippocastanum, Alnus glutinosa and Betula pendula) showed an increased risk whereas later species (Fagus sylvatica and 

Quercus robur) generally showed a decrease in risk, except for Fraxinus excelsior, which also showed an increase in risk 

(Table S5). 

The effects of climatic and geographic variation coupled with climate change on 

false spring risk

Climatic and geographic factors underlie variation across years and space in false springs (Figure 2 and Table Error! 

Reference source not found.) before recent climate change (1983). Mean spring temperature had a negative effect on 

false springs, with warmer spring temperatures resulting is fewer false springs (Figure 2 and Table S6; comparable A
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estimates come from using standardized variables—reported as ‘standard units,’ see `Materials and Methods: Main Model’ 

for more details). For every 2 C increase in mean spring temperature there was a -3.27% in the probability of a false 
∘
 

spring (-0.2 ± 0.07 probability of false spring/standard unit). Distance from the coast had the strongest effect on false 

spring incidence. Individuals at sites further from the coast tended to have earlier leafout dates, which corresponded to an 

increased risk in false springs (Figure 2 and Table Error! Reference source not found.). For every 150km away from the 

coast there was a 3.77% increase in risk in false springs (0.28 ± 0.07 probability of false spring/standard unit). Sites at 

higher elevations also had higher risks of false spring incidence—likely due to more frequent colder temperatures—with a 

3.38% increase in risk for every 200m increase in elevation (0.29 ± 0.08 probability of false spring/standard unit, Figure 2 

and Table S6). More positive NAO indices, which generally advance leafout, heightened the risk of false spring, with 

every 0.3 unit increase in NAO index there was a 3.42% increased risk in false spring or 0.26 ± 0.05 probability of false 

spring/standard unit (Figure 2 and Table S6). 

These effects varied across species (Figure 5). While there were fewer false springs for each species with increasing mean 

spring temperatures, Betula pendula—an early-leafout species—had the greatest risk of false springs and Fraxinus 

excelsior—a late-leafout species—had the lowest risk (Figure 5a), though Fagus sylvatica had the biggest change in risk 

with increasing mean spring temperature. There was an increased risk of false spring for all species at sites further from the 

coast (Figure 5b), with a sharp increase in risk for Fraxinus excelsior at sites further from the coast. With increasing 

elevation, all species had a greater risk of a false spring, except for Fraxinus excelsior, which had a slightly decreased risk 

at higher elevations (Figure 5c). With increasing NAO indices, the risk of false spring increased for all species, but Fagus 

sylvatica experienced the greatest change in risk with higher NAO indices (Figure 5d). 

After climate change, the effects of these climatic and geographic factors on false spring risk shifted (Figure 2). With 

climate change, the effect of mean spring temperature on false spring risk remained consistent, where warmer sites still 

tended to have lower risks of false springs -3.39% in risk per 2 C (or -0.14 ± 0.06 probability of false spring/standard unit 
∘
 

versus -3.27% per 2 C or -0.2 before climate change; Figure 2 and Figure S4a). The level of risk also remained consistent 
∘
 

before and after 1983 at sites further from the coast (Figure 2 and Figure S4b). With warming, there was a large reduction 

in risk in false springs at higher elevations (Figure 2 and Figure S4c), with 0.18% increase in risk per 150km (or 0.02 ± 

0.06 probability of risk/standard unit versus 3.38% increase 150km or 0.29 ± 0.08 before climate change). The rate of false 

spring incidence largely decreased after climate change with increasing NAO indices (Figure 2 and Figure S4d), with a -

4.07% in risk per 0.3 unit increase in the NAO index (or -0.84 ±0.06 probability of false spring/standard unit or versus 

3.42% per 0.3 unit increase in the NAO index or 0.26 ± 0.06 before climate change). After climate change, NAO had the 

strongest effect on false spring risk, with higher NAO indices rendering fewer false springs.

Overall, there was little change in false spring risk across all species (-0.79% or -0.03 in probability of risk/standard unit), 

due to climate change (after 1983) that was not otherwise explained the climatic and geographic factors we examined. This 

effect, however, varied by species, with an 2.97% increased risk in false springs after climate change for Aesculus A
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hippocastanum (or 0.12 ± 0.06 probability of false spring/standard unit; Figure 2, Figure 5d and Table S6), a 4.39% 

increase for Alnus glutinosa, and a 4.04% increase for Betula pendula (or a 0.18 ± 0.09 and 0.16 ± 0.07 probability of false 

spring/standard unit respectively; Figure 2, Figure 5e and Table S6). Climate change decreased risk by -4.48% for Fagus 

sylvatica, Fraxinus excelsior by -6.99% and Quercus robur by -4.66% (or -0.178 ± 0.09, -0.28 ± 0.11 and -0.19 ± 0.09 

probability of false spring/standard unit respectively; Figure 2, Figure 5e and Table S6). 

Sensitivity of results to duration of risk and temperature thresholds

Our results remained consistent (in direction and magnitude) when we applied different rates of leafout for each species 

(i.e., varied the length of time between estimated budburst and leafout). Mean spring temperature (-3.79% for every 2 C 
∘
 

or -0.24 ± 0.06 probability of risk/standard unit), distance from the coast (3.81% increase for every 150km or 0.29 ± 0.07 

probability of risk/standard unit), elevation (2.94% increase for every 200m or 0.25 ± 0.07 probability of risk/standard 

unit) and NAO (3.67% increase for every 0.3 or 0.27 ± 0.05 probability of risk/standard unit) all contributed to false spring 

risk (Figure Error! Reference source not found. and Table S7). After climate change, results also were congruous with 

our main findings (Figure S1, Table S7 and Figure S5). 

Results also remained generally consistent when we applied a lower temperature threshold for defining a false spring (i.e., 

-5 C), though there were more shifts in the magnitude of some effects, especially those of climate change. Mean spring 
∘
 

temperature (-10.66% for every 2 C or -0.67 ± 0.12 probability of risk/standard unit) was the strongest predictor but 
∘
 

distance from the coast (2.85% increase in risk for every 150km or 0.22 ± 0.13 probability of risk/standard unit), elevation 

(7.1% increase in risk for every 200m or 0.61 ± 0.14 probability of risk/standard unit) and NAO (3.62% increase in risk for 

every 0.3 or 0.27 ± 0.12 probability of risk/standard unit) all contributed to risk of false spring. There was greater increase 

in false spring risk due to the residual climate change effect across all six species combined, though the greatest increase 

was in the early-leafout species (8.83% increase or 0.35 ± 0.11 probability of risk/standard unit; Figure S2, Table S8 and 

Figure S6). 

Results of climatic and geographic effects, again, remained consistent in our varying threshold model (where we defined a 

false spring as -5 C for early-leafout species and -2.2 C for late-leafout species) with all predictors contributing to risk: 
∘
 

∘
 

mean spring temperature (-10.38% for every 2  or -0.65 ± 0.13 probability of risk/standard unit), distance from the coast 
∘
 

(2.41% for every 2 C or 0.18 ± 0.14 probability of risk/standard unit), elevation (7.48% for every 200m or 0.64 ± 0.14 
∘
 

probability of risk/standard unit) and NAO (3.74% for every 2  or 0.28 ± 0.12 probability of risk/standard unit). There 
∘
 

was also a slight increase in false spring risk due to the residual effect of climate change across all six species (3.59% 

increase or 0.14 ± 0.06 probability of risk/standard unit; Figure Error! Reference source not found. and Table S9). In 

contrast to our other models, in this model late-leafout species (i.e., Fagus sylvatica, Quercus robur, Fraxinus excelsior) A
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experienced more false springs than the early-leafout species (i.e., Aesculus hippocastanum, Alnus glutinosa, Betula 

pendula), though after climate change all species experienced a more similar magnitude of risk (Figure S7). 

Discussion

Integrating over 66 years of data, 11648 sites across Central Europe and major climatic and geographic factors, our results 

suggest climate change has reshaped the factors that drive false spring risk. Our results support that higher elevations tend 

to experience more false springs (Vitra et al., 2017; Vitasse et al., 2018) and sites that are generally warmer have lower 

risks of false springs (Wypych et al., 2016a). Individuals further from the coast typically initiated leafout earlier in the 

season, which subsequently increased risk and, similarly, years with higher NAO indices experienced an increase in risk. 

The effect of many of these factors on false spring risk have changed with climate change, with the effects of the NAO and 

elevation shifting the most after 1983, while the effects of distance from the coast and mean spring temperature shifting 

comparably little (Figure Error! Reference source not found.). These shifts in the influence of climatic and geographic 

factors subsequently result in different effects of climate change on species. The late-leafout species (e.g. Fraxinus 

excelsior and Quercus robur) have experienced decreases while the early-leafout species (e.g., Aesculus hippocastanum, 

Alnus glutinosa and Betula pendula) have experienced increases in risk, though these results depended on a common 

temperature threshold across all species to define false springs. Together, our results highlight where we have a more 

robust understanding of what drivers underlie shifts in false spring and for which species, and where we most critically 

need greater understanding.

Climatic and geographic effects on false spring risk

Past studies, often considering few drivers of false spring events (Wypych et al., 2016b; Liu et al., 2018; Ma et al., 2018; 

Vitasse et al., 2018), have led to contradictory predictions in future false spring risk. By integrating both climate gradients 

and geographical factors, we found that all factors contributed to false spring risk, emphasizing the need to incorporate 

multiple predictors to better understand false spring risk. 

Climatic and geographic factors varied in how consistent, or not, they were across species. Mean spring temperature, 

distance from the coast and NAO effects were fairly consistent across species in direction, though Fraxinus excelsior 

experienced a much greater increase in risk at sites further from the coast and Fagus sylvatica had a heightened risk to 

higher NAO indices compared to the other species. Elevation was the only factor that varied in direction among the species 

with most species having an increased risk at higher elevations except for Fraxinus excelsior. These inconsistencies may 

capture range differences among species, with potentially contrasting effects of factors on individuals closer to range edges 

(Chuine & Beaubien, 2001). A
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Adding to this species-level complexity, the strength of these climatic and geographic effects has shifted since the onset of 

recent major climate change. After climate change, we found a decreased risk for individuals at higher elevations after 

climate change, in line with findings that warming has caused more uniform budburst across elevations (Vitasse et al., 

2018). Additionally, our results show a large decrease in risk of false springs with higher NAO indices, switching the role 

of NAO from increasing to decreasing false spring risk. This could be because high NAO conditions no longer lead to 

temperatures low enough to trigger a false spring—that is, climate-change induced warming coupled with high NAO 

conditions, which increase spring temperatures, could reduce the likelihood of freezing temperatures, leading to a 

decreased risk of false spring conditions (Screen, 2017). 

Variation in risk across species

In addition to the shifts in climatic and geographic factors with climate change, we found that climate change has 

potentially increased differences in risk between early- and late-leafout species. Assuming a common threshold for damage 

of -2.2 C, before 1983 false spring risk was slightly higher for species initiating leafout earlier in the spring but overall the 
∘
 

risk was more consistent across species (Figure 5e). After climate change species differences in risk amplified: the early-

leafout species (i.e., Aesculus hippocastanum, Alnus glutinosa and Betula pendula) had an increased risk and the later-

leafout species (i.e., Fagus sylvatica, Fraxinus excelsior and Quercus robur) had a decreased risk (Figure 5e). 

These results, however, hold only for using a common threshold for false spring risk across species. When we applied a 

model with varying thresholds for early and late species (-5 C for early-leafout species and -2.2 C for late-leafout 
∘
 

∘
 

species), we found contrasting results: with late species having the highest overall risk of false springs and climate change 

making the risks across species more similar. This is in some ways not surprising as this model more than doubles the 

threshold for a false spring event for early compared to late species thus biasing the model to find such differences, but it 

highlights the importance of continued research (e.g., Lenz et al., 2013; Muffler et al., 2016; Zohner et al., 2020) to 

estimate the temperature threshold across species, and shows species-level findings can be highly dependent on this 

threshold. In contrast models using species-specific time periods for budburst to leafout or varying the temperature 

threshold for a false spring event across all species showed similar results to our main model.

Our model estimates further show how climatic and geographic factors shape differences in species’ risk, highlighting the 

insight these factors can provide beyond simple estimates of absolute changes in number of false springs across species 

(e.g., Figure 4c). Our models generally showed that the three early-leafout species (Betula pendula, Aesculus 

hippocastanum, Alnus glutinosa) experienced large effects of climate change on false spring—outside of impacts through 

climatic or geographic factors—Fagus sylvatica experienced the greatest effects of climate change and the late-leafout 

species (Fraxinus excelsior and Quercus robur) experienced very small effects of climate change. These results suggest the 

climatic and geographic factors we examined are perhaps better at capturing variation in false spring risk for later species, 

but that we still fundamentally lack information on what drives false spring risk for most species. While our model A
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examines the major factors expected to influence false spring risk (Wypych et al., 2016b; Liu et al., 2018; Ma et al., 2018; 

Vitasse et al., 2018), these results highlight the need to explore other climatic factors to improve forecasting. We expect 

factors that affect budburst timing, such as shifts in over-winter chilling temperature or greater climatic stochasticity earlier 

in the season, may help explain these discrepancies. Progress, however, will require improved models of chilling beyond 

the current models, which were mainly developed for perennial crops (Dennis, 2003; Luedeling & Brown, 2011). 

Our results and others (Ma et al., 2018) suggest phenological differences between species may predict their changing false 

spring risk with warming, but further understanding species differences will require more data and new approaches. Our 

focus on understanding shifting climatic and geographic factors led us to limit our study to the few species well sampled 

over space and time. Data on more species are available (e.g., Ma et al., 2018), but are sampled spatially and temporally 

much more variably. Thus, analyses of more species will need alternative datasets, or approaches that can detect and limit 

bias produced by uneven sampling of species across space and time.

Though our study focuses only on Central Europe, overall habitat preference and range differences among the species 

could also explain some of the species-specific variation in the results (Chuine et al., 2001). The ranges of the predictors 

are similar across species within our dataset, but Betula pendula extends to the highest elevation and latitude and spans the 

greatest range of distances from the coast (Figure 1(a)-(f)) while Quercus robur experiences the greatest range of mean 

spring temperatures. Within our species, Betula pendula has the largest global distribution, extending the furthest north and 

east into Asia. The distribution of Fraxinus excelsior extends the furthest south (into the northern region of Iran). These 

global range differences could potentially underlie the unexplained effect of climate change seen in our results and why the 

climatic and geographic factors failed to explain all of the variation in false spring risk for our species. Though testing 

these hypotheses would require extending data across species’ ranges (as our dataset does not cover these species full 

ranges) and would require data on more species—and species that vary strongly in their climatic and geographic ranges—

for robust analyses. Such research may be particularly useful if it connects how range and habitat differences translate into 

differences in physiological tolerances and the underlying controllers of budburst and leafout phenology—the factors that 

proximately shape false spring risk. 

Forecasting false springs

Our study shows that multiple major climatic and geographic factors underlie false spring risk in Europe, highlighting that 

robust forecasting will need to integrate over these factors across species and time. Of the four climatic and geographic 

factors we examined, the effects of mean spring temperature and distance from the coast remained relatively stable 

compared to elevation and NAO, suggesting stability in some factors over time. This is perhaps not surprising as climate 

change is shifting critical spring temperatures—and ultimately the environmental drivers of phenology (Gauzere et al., 

2019)—and reshaping the temporal and spatial dynamics of how climate affects budburst, leafout and freezing 

temperatures. Yet it does suggest that despite evidence that climate change has greater impacts on sites further from the 

coast (Harrington & Gould, 2015), warming does not restructure the effect of distance from the coast on false spring risk.A
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Moving forward more data on more species, especially including data on impacts of false spring on growth and survival, 

will be critical for estimates at community or ecosystem scales. Our results rely on an index of false spring risk to estimate 

when damage may have occurred; it does not assess the intensity or severity of the false spring events observed, nor does it 

record the amount of damage to individuals. A major gap is linking this index consistently to tissue damage and longer-

term impacts on growth, which may vary by species (Lenz et al., 2013; Körner et al., 2016; Bennett et al., 2018; Zhuo 

et al., 2018). Some species or individuals may be less freeze tolerant (i.e., are damaged from higher temperatures than -2.2

C), whereas other species or individuals may be able to tolerate temperatures as low as -8.5 C (Lenz et al., 2016), and 
∘
 

∘
 

our results suggest these differences can be critical to species-level estimates (if not overall effects of climatic and 

geographic factors). Further, cold tolerance can be highly influenced by fall and winter climatic dynamics that influence 

tissue hardiness (Charrier et al., 2011; Vitasse et al., 2014; Hofmann & Bruelheide, 2015) and can also influence budburst 

timing (Morin et al., 2007). Thus, we expect budburst, leafout and hardiness are likely integrated and that useful 

forecasting will require far better species-specific models of all these factors—including whether budburst and hardiness 

may be inter-related. 

Our results highlight how climate change complicates forecasting through multiple levels. It has shifted the influence of 

climatic and geographic factors, fundamentally reshaping relationships with major climatic and geographic factors such 

that relationships before climate change no longer hold. It has also potentially magnified species-level variation in false 

spring risk. Layered onto this complexity is further effects of climate change that suggest we are missing key factors that 

drive interspecific variation in false spring risk. Our study focuses on one region (i.e., Central Europe) with high-quality 

and abundant phenological data, and may guide approaches in other systems to identify not only which species will be 

more vulnerable to false springs, but also where in their distributions they will be at risk. Integrating these findings into 

future models will provide more robust forecasts and help us unravel the complexities of climate change effects across 

species.
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Data, Code & Model Output:

Phenological data is available at the Pan European Phenology network webpage (PEP725, www.pep725.eu). Data and 

code from the analyses will be available via KNB upon publication and are available to all reviewers upon request. Raw 

data, Stan model code and output are available on github at https://github.com/cchambe12/regionalrisk 

and provided upon request.
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Table S1: Total number of observations, false springs, sites and years across species. 

Table S2: Summary of linear regression of day of budburst before and after recent climate change across species. 

Table S3: Summary of linear regression of average minimum temperature between budburst and leafout before and after 

recent climate change across species. 

Table S4: Mean day of budburst and standard deviation for each species for before and after recent climate change. 

Table S5: Summary of linear regression of number false springs before and after recent climate change across species. 

Table S6: Summary of Bernoulli model with the effects of species, climatic and geographical predictors on false spring 

risk. 

Table S7: Summary of Bernoulli model with different rates of leafout on false spring risk. 

Table S8: Summary of Bernoulli model with a lower temperature threshold (-5 C) for defining a false spring. 
∘
 

Table S9: Summary of Bernoulli model with varying temperature thresholds for defining a false spring. 

 Figure S1: Model estimates of effects on false spring risk with different rates of leafout. 

Figure S2: Model estimates of effects on false spring risk with a lower temperature threshold (-5 C) for defining a false 
∘
 

spring. 

Figure S3: Model estimates of effects on false spring risk with varying temperature thresholds for defining a false spring. 

Figure S4: Average predictive comparisons for all climate change interactions with each of the main effects across species. 

Figure S5: Model estimates of effects across species with varying rates of leafout. 

Figure S6: Model estimates of effects across species with lower temperature threshold for defining a false spring. 

Figure S7: Model estimates of effects across species with varying temperature thresholds for defining a false spring. 

Methods S1: Species rate of budburst calculations.

Methods S2: Spatial parameter.
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Figures

Figure 1: The average day of budburst mapped by site for each species (ordered by day of budburst 

starting with Betula pendula as the earliest budburst date to Fraxinus excelsior).

Figure 2: Effects of species, climatic and geographical predictors on false spring risk. More positive 

values indicate an increased probability of a false spring whereas more negative values suggest a 

lower probability of a false spring. Dots and lines show means and 98% uncertainty intervals. There 

were 536,993 zeros and 218,094 ones for false springs in the data. See Supporting Information Table 

S6 for full model output.

Figure 3: Mean spring temperatures are plotted for each site and year (from 1951-2016) for each 

species. The purple line shows the trend in mean spring temperatures from March 1 to May 31 and the 

green line represents the trend of average day of budburst for each year for each species. Both lines 

are cyclic penalized cubic regression spline smooths with basis dimensions equal to the number of 

years in the study (i.e., 66). Species are ordered by average day of budburst, with the earliest being 

Betula pendula and the latest being Fraxinus excelsior. 

Figure 4: Day of budburst (a), minimum temperatures between budburst and leafout (b) and number 

of false springs (c) before and after 1983 across species for all sites. Box and whisker plots show the 

25th and 75th percentiles (i.e., the interquartile range) with notches indicating 95% uncertainty 

intervals. Dots and error bars overlaid on the box and whisker plots represent the model regression 

outputs (Supporting Information Tables S2, S3 and S5). Error bars from the model regressions 

indicate 90% uncertainty intervals but, given the number of observations, are quite small for a and b 

and thus not easily visible (see Tables S2, S3 and S5). Uncertainty intervals are more apparent for c 

since we are counting the total number of false spring years for each species and site before and after 

climate change. 
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Figure 5: Species-level variation across geographic and spatial predictors (i.e., mean spring 

temperature (a), distance from the coast (b), elevation (c), North Atlantic Oscillation (NAO) index (d) 

and recent climate change (e)). Lines and shading are the mean and 98% uncertainty intervals for each 

species. To show results on the original scale of the data we converted model output. See Supporting 

Information Table S6 for full model output. 
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