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Mot ivat ion
• The High-efficiency Electrified Aircraft Thermal Research (HEATheR) project 

• Conceptual study looking into improving the efficiency of hybrid/electrified 
aircraft

• Project seeks to minimize waste heat generated by electrical components
• Also looks into novel solutions to avoid use of heavy thermal management 

systems that cause drag

• In this work, an Outer Mold Line (OML) heat exchanger solution is considered
• Component waste heat is rejected via convection through the outer skin of the 

aircraft
• No air ducting, or any geometrical change in flow path: virtually no effect on 

vehicle drag
• Challenge: Electrical component temperature limits, as well as outer skin 

structural considerations constrain the rejection temperature (<200C)
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HEATheR Scope
• STARC-ABL: Single-aisle Turboelectric AiRCraft with Aft Boundary 

Layer ingesting propulsion
• 150-passenger plane with an 3500hp, electric aft fan
• The aft fan is driven by an electric motor
• Generators on low pressure shaft of underwing turbofans 

power the fan

• RVLT: Revolutionary Vertical Lift Technologies
• 15-passenger tilt-wing concept
• One  turboshaft engine drivers a generator to power 4 fans

• PEGASUS: Parallel Electric-Gas Architecture with Synergistic 
Utilization Scheme
• 48-passenger concept with a short fully-electric mission
• Turboelectic architecture for longer range missions
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Goal
Help assess the feasibility and practicality of OML-based heat rejection

How much heat can we reject? Where to place the 
OML heat exchangers?

What is the effect on
vehicle aerodynamics?

How sensitive is the
cooling performance?
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• Launch Ascent and Vehicle Aerodynamics (LAVA) Unstructured code is used
• Developed in-house at NASA-Ames
• Operates on arbitrary polyhedral unstructured meshes
• RANS solver with Spalart-Allmaras (SA) turbulence model

• Boundary layer is resolved down to viscous sublayer (y+<1)
• Propulsors are modeled using an actuator zone model

• Total thrust and torque of propulsors are imposed as momentum and energy 
sources in a volumetric zone spanned by propeller blades or fan

• OML-cooling surfaces are modeled as isothermal
• With 200F surface temperature
• Temperature choice respects structural limits for long term operation
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• Half airplane is modeled, taking advantage of the symmetry
• Initial grid contains 25.6 million polyhedral cells
• For preliminary analysis, the entire aircraft is considered as a heat rejection surface
• The surface is split into logical patches to measure average heat rejection capability
• The preliminary simulations did not include the thrusters

STARC-ABL
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STARC-ABL cruise (alpha = 0)

Patch-averagedDistribution
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STARC-ABL take-off (alpha = 8)

Patch-averagedDistribution
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STARC-ABL Sensitivity to Angle of Attack
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cruise take-off
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cruise take-off

• Angle of attack sweep was simulated for both cruise and take-off
• Sensitivity of cooling at each surface patch was observed
• Most patches of interest exhibited robust performance with angle of attack variation
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STARC-ABL Grid Sensitivity

Baseline Refined 0.75x Refined 0.5x

% Difference in average heat flux

Patch Refinement 1 
(0.75x)

Refinement 2 
(0.5x)

Boundary layer 
refinement

Wing patch 0.36 0.68 1.66

Fuselage patch 1 1.02 1.91 0.46

Fuselage patch 2 0.77 1.99 0.49

Fuselage patch 3 1.49 2.92 0.44
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STARC-ABL Down Selection of Surfaces

• Candidate OML cooling surfaces are 
narrowed down according to:
• Consistent cooling performance
• Proximity to electrical components
• Away from critical stress areas
• Ease of implementation

• Grid was updated with additional refinement 
at patch boundaries
• 28.5 million polyhedral cells

• The final set of simulations were run with 
thrust-on
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STARC-ABL Patch-to-Patch Interactions
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STARC-ABL Effect on Aerodynamics
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STARC-ABL Final Results

Take-off @ 8 deg angle of attack Cruise
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RVLT Gr id

• ~24M polyhedral elements
• Half airplane is modeled
• Wall spacing selected to achieve y+ < 1
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RVLT OML Patching

• Candidate OML cooling regions have 
been split into logical patches

• For RVLT, hover restricts the OML cooling 
application to wing surfaces, cooling due 
to prop downwash

• Wing leading edge, mid and trailing 
edges have separate patches for inboard, 
mid-board, and outboard

• Motor nacelles have been included as 
candidates
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RVLT Results – Hover

Prop downwash overlap
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RVLT Results – Cruise

18



www.nasa.govHEATheR

Pegasus Grid
• ~22.4M polyhedral elements
• Half airplane is modeled
• Wall normal spacing set to ensure 

y+<1
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Pegasus OML Patching

• Candidate OML cooling regions have been split into logical patches
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PEGASUS Results – Take-off (alpha = 11 deg)
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PEGASUS Results – Take-off (alpha = 11 deg)
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PEGASUS Results – Hot Day Take-off
Baseline (33C)

Hot Day (40C)
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PEGASUS Results – Cruise
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PEGASUS Results – Cruise
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• Three different electrified aircraft concepts within HEATheR were considered for 
OML-based heat exchanger implementation
• OML cooling approach was predicted to produce robust, consistent performance for 

all 3 vehicles at various flight conditions
• The decreased air density at higher altitudes is compensated by lower ambient 

temperatures
• Cooling capacity at take-off (or hover) is still more restricted compared to cruise

• Especially for a potential hot day
• The largest variation was observed for PEGASUS, for which the cooling capacity 

is nearly halved compared to cruise
• The CFD results were used by project to size an OML-based thermal management 

system
• Future works includes further verification and validation studies of the CFD analysis
• As the concept designs mature,  a higher fidelity conjugate simulation can be 

performed to predict surface temperature distribution along with heat flux

Conclusions

26



www.nasa.govHEATheR

Acknowledgements

• The current work was funded by NASA's Convergent Aeronautics Solutions (CAS) 
project. 
• The authors would like to thank James Jensen for contributions to geometry 

processing and Cetin Kiris for the valuable guidance.


