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DEMAND FORECAST MODEL DEVELOPMENT AND SCENARIOS
GENERATION FOR URBAN AIR MOBILITY CONCEPTS

2. Introduction

The purpose of this project is to estimate the demand for various Urban Air Mobility Concepts
(UAM) of Operations and to generate scenarios for use in analysis and simulations. The demand
forecast model, previously developed under NASA/NIA Contract No: NNL13AAO8B; Task Order
No: NNL16AA36T, for an urban on-demand air-taxi commuter concept is the basis for this work.
The analysis presented addresses the following tasks:

Task 1: UAM Demand Forecast Model and Scenario Generation Development and Improvements.
Virginia Tech improved the usability of the UAM Demand Forecast Model and associated
Scenarios Generation codes so that they can be run by researchers who were not part of the code
development process.

An integrated set of MATLAB scripts are developed for all four regions to facilitate optimal
placement of vertiports, calculation of UAM demand, and capacity analysis. We delivered the
Matlab code with NASA Langley. Modifications to the requirements of the project are maintained
in a secure online server at Virginia Tech using software tracking (GitHub) that is protected by an
incremental duplicate backup system.

Task 2: Demand Forecasts and Scenarios- Virginia Tech will generate a set of demand forecasts
and scenarios for Northern California and three more regions in the United States to be selected in
coordination with NASA, based on the existing On-Demand Mobility (ODM) or Urban Air

Mobility (UAM) commuter concept.

The report presents in detail the data collection, mode choice calibration, and simulation analysis
supporting the demand predictions for two UAM vehicle concepts with Vertical Take-Off and
Landing (VTOL) capability. The analysis includes a sensitivity analysis of UAM demand under
various UAM’s cost per passenger mile (CPM) and the number of vertiports placed within a region.
This report analyzes UAM demand in four U.S. regions, including Northern California (centered
on San Francisco), Southern California, Dallas-Fort Worth, and New York City.



3. Task 2: Demand Forecasts and Scenarios Development

This section presents the steps undertaken to predict the UAM commuting trip demand. The
analysis includes preliminary reviews to weather information of urban areas, analysis of travel
survey data, calibration of urban-specific mode choice models, application or model choice models
to the region’s population, and generation of demand results to estimate person-trips. The demand
results generated are for commuting trips only, specifically home-to-work and work-to-home trips,
and do not include other possible sources of UAM demand outside of this project’s scope, such as
business or shopping trips.

3.1. Regions Selected and Defining the Study Area

In addition to building off findings from a previous project on the Northern California (San
Francisco) region, three additional urban areas are part of the study. Table 1 outlines the analysis
used to define the remaining three metropolitan areas. It presents the first-order evaluation of
characteristics that would promote or inhibit the success of the UAM mode. The shaded cells
indicate attributes of that city, which could significantly reduce the number of person-trips
operated. Based on the population, socio-economic, and weather information, the three areas
chosen were those surrounding Los Angeles, Dallas-Fort Worth, and New York City.

Table 1: Weather and Socio-Economic Characteristics of Various Metropolitan Areas

Metropolitan Temperature Wind Precipitation Snow Population Income
Area
% % Time % Records Average Days MSA HHs with
Time | temp<32°F & | where wind | annual inches | when population income
below (air-dew) speed is >= >=1 in >100k in
320F** temp is 15 knots** inch* millions*** | thousands
:<20F** EE
Atlanta 1.7 0.04 37 49.1 0.9 5.8 508.6
Boston 16.6 0.89 12.1 43 11 4.5 584.8
Chicago 18.2 1.41 11.5 40.4 12.6 7.2 709.6
Dallas 3.1 1.14 10.2 35.7 1 7.2 645.5
Los Angeles 0.04 0.05 15.7 9.4 0 134 1,204.1
Miami 0.9 0.97 3.1 67 0 6.1 437.4
New York 10.9 0.01 3 43.7 6.7 19.3 1,812.6
San Francisco 6.9 0.09 16.6 16.8 0 4.7 639.4
Seattle 9.1 0.12 3.2 41.7 1.7 3.8 433.4
Washington 11.1 1.34 4.8 40.2 4.2 6.2 996.9
DC

* Source: 2007-2017 ‘Global Summary of the Year’ records from Climate Data Online (NCDC).
** From 6 AM-8 PM, Source: 2015 ASOS 1-min weather records by NOAA
*** Using 2009 dollars, Source: CEDDS, Woods and Poole, 2016.

To study UAM commuter demand, we consider all counties within 150 miles of each city center.
Table 2 shows the characteristics of the selected metropolitan areas. Figures 1-4 show the details
of counties included in the study for Northern California, Southern California, Dallas-Fort Worth,
and New York, respectively.



Table 2: Characteristics of the Selected Urban Areas

Region Number of Counties Number of Census Block Number of Daily
Included in Study Groups Commuters* (millions)
Northern California 17 7,106 4.63
Southern California 10 13,632 9.26
Dallas-Fort Worth 12 4,158 2.92
New York City 33 17,294 9.94
*LEHD LODES -2015 Data

Sources: Esri, HERE, DeLorme, increment P Corp., NPS, NRCan, Ordnance Survey, © OpenStreetMap contributors, USGS, NGA, NASA,
CGIAR, N Robinson, NCEAS, NLS, OS, NMA, Geodatastyrelsen, Rijkswaterstaat, GSA, Geoland, FEMA, Intermap and the GIS user

Figure 1: Northern California: Study Area




Sources: Esri, HERE, DeLorme, increment P Corp., NPS, NRCan, Ordnance Survey, © OpenStreetMap contributors, USGS, NGA, NASA, CGIAR, N Robinson, NCEAS, NLS, OS,

NMA, Geodatastyrelsen, Rijkswaterstaat, GSA, Geoland, FEMA, Intermap and the GIS user community

Figure 2: Southern California: Study Area

\<

e —— S 7
H N ¥ \1; _K:7§~Nlr A
S : i “ { I g
N § | g % 1.,;\ :
: I '\ .\
J .
l
N
\ .
NS
N "'
\31\\\\
e
{
Seaao e
\ \
\ " &
\ ~ q
\\ W -
\ Z -
\ g X
Al N x\ \ L( i

Sources: Esri, HERE, DeLorme, increment P Corp., NPS, NRCan, Ordnance Survey, © OpenStreetMap contributors, USGS, NGA, NASA, CGIAR, N Robinson, NCEAS, NLS, OS,

NMA, Geodatastyrelsen, Rijkswaterstaat, GSA, Geoland, FEMA, Intermap and the GIS user community

Figure 3: Dallas-Fort Worth: Study Area
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Figure 4: New York Study Area

3.2. Choice Model Estimation

Figure 5 presents the framework used to calibrate the trip mode choice models for each study
area. The processes involve merging socio-economic databases, travel behavior data, model
validation, and model calibration. We discuss the steps in the following sections of the report.

3.2.1. Mode Choice Datasets

To estimate UAM demand, we use a mode choice decision-making model on how commuters
make decisions. The process involves reconstructing an individual’s mode alternatives choice set
(i.e., modes available to them) and estimating tradeoffs between time, cost, and convenience while
commuting. The Value-Of-Time (VOT) is one metric defined when quantifying such tradeoffs.

To estimate the value of time for commuters, a revealed-preference mode choice data, as well as
supplementary socio-economic information data, were collected, as listed in Table 3. We merge
the datasets contained in Table 3 to include characteristics on both the trip (e.g., origin/destination)
and the traveler (e.g., income information aggregated to the block-level).
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Figure 5: Workflow to Prepare Survey Data for Commuter Mode Choice Model Calibration

The National Household Travel Survey (NHTS) data is the basis for the travel survey used in the
study. We collected add-on NHTS data to improve the quality and spatial scope of the data sets.
We use an Application Programming Interface (API) to estimate travel time characteristics of the
automobile and public transportation modes available to the commuter. The research team
manually collected public transportation and automobile cost per mile and parking costs. The data
collected applies to commuting trips. A trip was included in the study if it: 1) started and ended
inside the study area; 2) linked home to work or vice-versa, and 3) was taken on a weekday. Table
4 shows a summary of the trip datasets used in the model calibration. For the New York Model,
there were two mid-income categories as opposed to the other regions that had only one.



Table 3: Datasets Used in the UAM Commute Demand Analysis

Northern e National Household Travel Survey-2017 Add- e Location Coordinates
California/ on Data e Block Group
Sou.therl} e Longitudinal Employer-Household Dynamics
California LODES Data-2015 e Block Group
e American Community Survey-2016

Dallas-Fort e Census Transportation Planning Products-2016 e Traffic Analysis Zone
Worth ¢ Longitudinal Employer-Household Dynamics (TAZ)

LODES Data-2015 e Block Group

e American Community Survey-2016
e Block Group

New York City e National Household Travel Survey-2017 Add- e Block Group
on Data
e Longitudinal Employer-Household Dynamics e Block Group
LODES Data-2015
e American Community Survey-2016 e Block Group
e Yellow Cab Data: New York City Taxi and e Taxi Zones

Limousine Commission

3.2.2. Spatial Income Distribution

The mode choice model calibration for Northern California, Southern California, and Dallas-Fort
Worth includes three income categories. The model calibration of New York data employs four
income categories. The maps shown in Appendix A illustrate the spatial distribution of median
income levels. There are significant differences in the spatial distribution of income across the
study regions. For example, the Northern California region has a higher percentage of the
population in high-income level block groups. However, the cost of living is higher in Northern
California compared to other areas.

In Northern California, high-income block groups reside around the San Francisco Bay Area. In
Southern California and Dallas-Fort Worth, high-income block groups live in the suburbs and far
away from the downtown areas. This difference could potentially decrease the demand in Northern
California as UAM might not be attractive and viable for short commuting distances. The New
York region has a high concentration of high-income population in Manhattan, Connecticut, the
western suburbs of Jersey City, and parts of Long Island. High-income and upper-middle-income
earners in the New York region have longer commutes making the area more attractive for UAM
operations.

3.2.3. Model Calibration

The mode choice model uses a conditional logit model that includes independent variables that
change between the modes for a single commuter (called generic variables- e.g., travel time, cost,
distance traveled). The mode choice models do not include variables that remain consistent
between the modes (called alternative-specific variables, e.g., commuter’s income, gender).
Alternative-specific model variables could not because the NHTS data did not report UAM as a



possible travel alternative, making it impossible to estimate those coefficients. Appendix A
contains more information on conditional logit models and the derivation of their coefficients.
Table 5 shows the list of variables included in the models. We include the travel time to go around
airport approach surfaces in the region in the estimation of UAM mode travel time.

Table 4: Summary of Mode Choice Data used in Region-Specific Model Calibrations

Total | Chose | Chose Had Had Low Mid High Income
Trips | Driving | Transit | Driving Transit | Income Income Income | Category
Available | Available | Traveler | Traveler | Traveler | Breaks
Dallas- | 37,990 | 36,148 | 1,842 37,990 16,259 8,569 21,854 7,567 $40k
Fort $85k
Worth
New York | 1,080 846 234 1,080 1,080 646 1,012 | 360 142 $50k
$100k
$150k
Northern | 7,471 | 6,982 489 7,399 2,568 916 5,888 667 $45k
California $152k
Southern | 8,084 | 7,947 137 8,042 3,095 1,698 4,631 1,755 $45k
California $152k
Table 5: Model Variable Definitions
TT Total travel time: sum of IVTT and OVTT Minutes
IVTT In-vehicle travel time: time spent in a motorized vehicle, such as | Minutes
a car, subway train, or VTOL aircraft
OVTT Out-of-vehicle travel time: time spent out of a motorized vehicle, | Minutes
such as walking or waiting
Cost Monetary cost: includes costs such as transit fares, fuel costs, | $
parking costs, etc.
Transfers Number of transit-to-transit transfers on the route. Driving-to- | Transfers
transit or transit-to-driving do not count as transfers.
Income Categories | Low, medium, and high-income group variables for all regions, | Binary
except New York which has low, medium-low, medium-high,
and high-income group variables.

Since UAM is not currently available in the regions studied, there is no revealed-preference data
for the mode. The data does not show people’s behavior when deciding to take this mode and,
therefore, the model would not fully capture mode choice for UAM solely using the variables in
the model. For example, a person may choose to drive instead of taking transit due to reliability,
comfort, or safety, none of which are incorporated through the model’s variables as these are not
available in the data. For the same reason, we cannot estimate reliability, comfort, and safety for
the UAM mode. Instead, this study utilizes the constants from Georgia Tech’s mode choice stated-
preference survey to capture unobserved biases towards a hypothetical UAM mode. These
constants are shown in Table 6 and indicate that the unobserved characteristics, on average,
increased the popularity of the UAM mode. Therefore, without the mode constants, the models
would underestimate UAM demand.




We incorporate Georgia Tech’s findings into this study considering the differences between the
Georgia Tech model constants (i.e., drive minus UAM, transit minus UAM) to estimate the
constants in the conditional logit models of our study. The ability to utilize the constants of another
model is a unique feature of logit models in that it is the difference between the value of utility
that determines the probabilities of selecting a mode. Table 7 shows an example to illustrate this
point.

Table 8 shows the calibrated mode choice models for the four urban areas along with their
corresponding values of time (VOTs). According to Louviere et al. [1], McFadden suggests that
pseudo-R? values between 0.2 and 0.4 represent a model with a very good fit. Due to data quality
in the Southern California and Dallas-Fort Worth regions, namely a low count of transit trips
chosen and flat fare transit offerings, the Northern California model was ultimately applied to these
regions. For the New Yor Region, we calibrated a separate model.

Table 6: Constants from Georgia Tech’s Survey (Garrow, German, Patterson 2019)
Mode \ Mode Constant \

Drive -0.580
Transit -2.379
UAM 0

Table 7: Example showing Differences in Utilities to Determine the Probabilities of Selecting a

Mode
~ Exponential (Utility) | Probability of choosing the mode
Drive 2 7.4 24%
Transit 1 2.7 9%
UAM 3 20.1 67%
Drive 1 2.7 24%
Transit 0 1.0 9%
UAM 2 7.4 67%

3.3. Mode Choice Model Application

The application of the logit models to estimate UAM demand requires known locations for UAM
landing sites (hereon called vertiports). Vertiport locations determine the intermodal connections
between the vertiport and the origin and destination of the trip. Figure 6 shows the framework used
to place UAM vertiports, considering the potential demand for UAM. The location of vertiports is
an iterative process to maximize the number of one-way commuter trips demand within the region.
The process starts by locating one UAM vertiport at every block group in the study area and using
the calibrated logit models to predict demand. Successive iterations follow while reducing the
number of vertiports by half in every iteration and retaining the highest demand vertiports. The
iterative process ends with the desired number of vertiports. The final result provides vertiport
locations that maximize demand for a given set of UAM cost parameters and a target number of
vertiports.

10



Table 8: Region-specific Calibrated Mode Choice Models

Dallas-Ft. Worth North California South California New York
TT -0.0550* -0.0782%* -0.127* -0.2365%*
Cost -0.207* -0.242%* -0.368* -0.4854*
Pseudo-R® 0.514 0.468 0.789 0.890
T VOoT $15.9 $19.4 $20.7 $29.2
ADVANCED MODELS WITHOUT CONSTANTS

Dallas-Ft. Worth  North California South California New York
TT
IVTT -0.0569* -0.0721* -0.2036*
OVTT -0.111* -0.180* -0.2355%*
Cost -0.352* -0.5714%*
Transfers 0.417* 0.303* -0.5325%
Low Income -0.328* -0.7183*
Lower-Mid Income -0.6487*
Mid Income -0.272*
Upper-Mid Income -0.5592*
High Income -0.172* -0.4196*
Pseudo-R’ 0.489 0.899
T VOoT
IVTT VvOoT $10.4, $12.5, $19.9 $12.3 $17.0, $18.8, $21.8,

$29.1
OVIT VOT $20.3, $24.4, $38.7 $30.7 $19.7, $21.8, $25.3,
$33.7

Constraints OVTT/IVTT=2.5
ADVANCED MODELS WITH CONSTANTS

Dallas-Ft. Worth North California South California New York
TT
IVTT -0.0472%* -0.0441* -0.2027*
OVTT -0.0845%* -0.110* -0.2299%*
Cost -0.307*
Transfers 0.343* 0.139* -0.5384*
Low Income -0.329* -0.7157*
Lower-Mid Income -0.6472%*
Mid Income -0.275%
Upper-Mid Income -0.5582*
High Income -0.172* -0.4187*
Transit Constant -0.603* -1.476* -0.1038*
VTOL Constant 0.699 0.612 -0.7496
Pseudo-R’ 0.493 0.899
T VOoT
IVTT voTr $8.6,$10.3, $16.5 $8.6 $17.0, $18.8, $21.8,

$29.1

11
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Figure 6: Demand-Driven Placement of Vertiports

3.3.1. UAM Demand Analysis Results

This section contains the demand results for each one of the four urban regions studied. We
provide UAM demand parametric results under various vertiport sets and UAM cost per mile
(CPM). UAM passenger commuter demand is sensitive to the cost of the UAM mode. An increase
in cost per seat mile increase in price leads to a drop in the market share of the low- and mid-
income household demand as those market segments are no longer able to afford the UAM mode
for commuting. The model results highlight the importance of UAM’s affordability to support its
successful implementation. The UAM cost includes ground access from home to the nearest
vertiport using a service such as UBER or Lyft, the UAM cost per mile, and the ground access
from the destination vertiport to work. In total, these costs have to be affordable to capture a
reasonable demand for the UAM system.

Northern California

Figure 7 shows the sensitivity of the UAM demand against the number of vertiports in Northern
California. Even though the magnitude of UAM demand is different for both scenarios (UAM
CPM of $1.80 and UAM CPM of $1.20), the sensitivity towards the number of vertiports is similar.
The results show that, as the number of vertiports increase, the number of commuters in the

12



catchment area increases as well. There are core vertiports that serve the majority of the UAM
demand and feeder vertiports that provide UAM service from outlying areas. A comparison of
UAM demand for 50 and 400 vertiport sets shows that increasing the number of vertiports by
700% increases UAM demand by 179% (156%) at CPM of $1.20. In Northern California, the
areas with high-income levels are usually the densest (i.e., downtown areas). Therefore, increasing
the number of vertiports does not increase the demand proportionately. The UAM demand for
CPM §$1.20 is slightly more sensitive, with an increasing number of vertiports as the mode is more
affordable. Increasing the number of vertiports expands the network to service more medium and
low-income areas.
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Figure 7: Northern California: UAM Demand by Number of Vertiports and CPM

Figure 8 shows the sensitivity of the UAM demand with the UAM cost per passenger mile. Figure
8 shows the sensitivity of the UAM demand with UAM CPM. In this study, we found that UAM
demand in Northern California is slightly less sensitive to UAM cost per passenger mile compared
to areas like Dallas and Southern California. The hypothesis is that a high percentage of high-
income earners in the study area may be able to afford more costly UAM services. Figure 9 shows
the composition of UAM demand by income category in Northern California. A feature of this
region is the significant contribution from high-income earners even at the low UAM CPMs
because high-income earners live in densely populated areas. Denser block groups are smaller in
size and have lower intermodal connection times for UAM. Higher intermodal or travel time by
UAM discourages high-income earners as they have a higher value of time. Therefore, if the
intermodal and total travel times are low, high-income earners get significant utility from the UAM
mode even at increased UAM CPMs. As the UAM CPM increases for the given UAM network
size, the contribution from low- and mid-income households drops to a mere 9% market share at
$3.00 UAM CPM.

13




UAM Flights per Day

140,000

I I I I I
[l Northern California

120,000 |-

100,000

80,000

60,000

40,000

20,000

1 1112 13 14 15 16 1.7 1.8 19 2 21 22 23 24 25 26 27 28 29 3
UAM Cost per Passenger Mile ($/sm)

Figure 8: Northern California: UAM Demand Sensitivity with CPM and 200 Vertiports
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Figure 9: Northern California: Composition of UAM Demand by Income Category

Southern California

Figure 10 shows the sensitivity of the UAM demand against the number of vertiports in Southern

California. In Southern California, the UAM demand is relatively much more sensitive to the

number of vertiports due to the population density in the region. With the increasing UAM network
size, the mode becomes more accessible to the people. Since the population density is relatively
high in Southern California, the increase in UAM demand is almost four-fold when comparing the
smallest (50) and the largest (400) UAM networks. As mentioned before, increasing number
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vertiports expand the service to include more low and mid-income households, but if the price-
point is not attractive to those households, very little is added to the UAM demand generated.
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Figure 10: Southern California: UAM Demand by Number of Vertiports and CPM

Figure 11 shows the sensitivity of the UAM demand with the UAM cost per passenger mile. The
UAM demand in Southern California is relatively more sensitive to the UAM CPM. This is
attributed to the higher concentration of low- and mid-income households in the study region. As
the cost of the UAM mode increases it becomes relatively less affordable to the low- and mid-
income households. It can be observed from Figure 12 that the contribution from low- and mid-
income households towards total UAM demand is significantly higher. Even at the $3.00 UAM
CPM, almost one-third of the demand is coming from low- and mid-income households. This is
due to the high percentage of people from low- and mid-income households in Southern California
which can further be observed in spatial income distribution maps in Appendix B. Also, the
plunging of UAM demand with increasing UAM CPM in Southern California is due to the same
reason.
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Dallas-Fort Worth

Figure 13 shows the sensitivity of the UAM demand against the number of vertiports in Dallas-
Fort Worth. The sensitivity of UAM demand is similar to Southern California because both regions
have a lower percentage of high-income households. The magnitude of UAM demand is lower in
Dallas-Fort Worth than in the Southern California region because Dallas-Fort Worth has a smaller
population and fewer high-population density areas.
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Figure 13: Dallas-Fort Worth: UAM Demand by Number of Vertiports and CPM

Figure 14 shows the sensitivity of UAM demand in Dallas-Fort Worth for various UAM costs per
passenger mile. The UAM demand in the Dallas region is less sensitive compared to Southern
California. The trend is due to the population density differences in the two areas. Southern
California has a lower percentage of high-income households, but a larger population. Dallas-Fort
Worth (Figure 15) shows a higher contribution to UAM demand from low-and mid-income
household levels. Figure 15 shows a higher contribution to UAM demand from low-and mid-
income household levels.
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Figure 14: Dallas-Fort Worth: UAM Demand Sensitivity with CPM and 200 Vertiports
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Figure 15: Dallas-Fort Worth: Composition of UAM Demand by Income Category

18



New York

For UAM demand estimates in the New York region, we use a different model calibrated using
the NHTS add-on data. For other regions, we use the model calibrated for Northern California.
New York has unique characteristics such as very high population density (Manhattan), relatively
higher disutility in driving due to increased costs (parking, tolls, etc.), and traffic congestion, which
could favor UAM. For New York, we developed highway travel congestion indices separately
using Yellow Cab data from the Taxi and Limousine Commission (TLC). Figure 16 shows the
distribution of the congestion indices for 1.16 million trips. The automobile travel time analysis
uses a value of 2.77 for the travel congestion index.

«10% Distribution of Calculated Congestion Index
I I I I I I

Number of Records

1 2 3 4 5 6 7 8 9 10
Calculated Congestio Index

Figure 16: Congestion Index Distribution in New York City

Figure 17 shows the UAM demand for a different set of vertiports in New York with two different
UAM CPM cost levels. The UAM demand increases by 114% when the number of vertiports
increases from 50 to 400. There are four possible reasons for high-demand at $1.80 CPM for UAM.
First, the monetary cost of driving in the region is high. Driving cost includes the cost of parking
and tolls. Second, the UAM mode can take shorter routes than the ground modes because the area
has numerous bodies of water. Third, the ground transportation congestion factor is high relative
to the other three regions in the study. Fourth, the spatial distribution of income in the region is
unique and found in Appendix B. In the New York area, a significant number of the upper mid-
and high-income households live in the suburbs, offering an advantage to the UAM mode. Longer
commutes, higher affordability, costly and slower alternative modes, and high population density
all together results in high demand for UAM in the region. The unique features of the calibrated
mode choice model contribute to the high demand results in New York. The mode choice model
used has almost parity in the coefficients of in-vehicle and out-of-vehicle travel times, implying
New Yorkers are less sensitive to out-of-vehicle travel times.
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Figure 17: New York: UAM Demand by Number of Vertiports and CPM

Figure 18 shows the UAM demand sensitivity with UAM CPM for 200 vertiports. The UAM
demand in New York is not as sensitive as other regions because of the high percentage of upper-
mid and high-income households and costlier driving (both in cost and time). With a $2.2 UAM
CPM and no base cost, the region could attract 100,000 daily UAM flights. Figure 19 illustrates
the composition of the UAM demand by income category. As expected, the UAM demand from
low and lower-mid income decreases with increasing UAM cost.
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Figure 18: New York: UAM Demand Sensitivity with CPM and 200 Vertiports
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Figure 19: New York: Composition of UAM Demand by Income Category

3.3.2. Comparison of UAM Demand Results

Calculation of UAM demand is a complex process with high uncertainty. All urban regions are
unique in their way, and the impact of regional characteristics on mode choice plays a vital role in
the potential UAM demand. Figure 20 compares the UAM demand in all four regions for six UAM
vertiport sets. Figure 20 shows the New York region's latent demand stands out from the four urban
areas studied.

The number of UAM vertiports has a substantial impact on the UAM demand in Southern
California and Dallas-Fort Worth. More so than in Northern California and New York City
regions. Northern California and New York City have unique demographic characteristics such as
high-income households in densely populated areas (see Figure 32). In Southern California and
Dallas-Fort Worth, high-income households live in sparsely populated zones. Therefore, as the
number of vertiports increases, UAM is accessible to less densely populated zones in Southern
California and Dallas-Fort Worth, increasing UAM demand.
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Figure 20: UAM Demand by Number of Vertiports for All Regions at CPM of $1.20

Figure 21 compares the UAM demand sensitivity with UAM cost per passenger mile across all
regions with 200 UAM vertiports. Figure 21 provides insight into the cost of UAM services to
offer a commuting alternative across all four regions. The UAM demand in Southern California
and Dallas Fort-Worth areas is more sensitive to UAM CPM than in New York and Northern
California due to a lower percentage of high-income households in the region.
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Figure 21: UAM Demand by CPM for All Regions at 200 Vertiports
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3.3.3. Spatial Distribution of UAM Demand

Northern California

Figure 22 shows the spatial distribution of the UAM demand with 75 vertiports and UAM CPM
of $1.20. The San Francisco Central Business District (CBD) is a significant attractor for the UAM
trips. Most of the busiest vertiports in the region are inside San Francisco CBD. Although the study
area for Northern California consists of 17 counties, all 75 vertiports get optimally placed around
the bay area to maximize the UAM demand. Figure 23 shows the spatial distribution of UAM
demand with 75 vertiports with UAM CPM of $1.80. Figure 23 shows most of the vertiports
having fewer than 500 operations per day compared to 1000 operations per day at UAM CPM of
$1.20. The busiest vertiports located in the SanFrancisco CBD, Mountain View, and San Jose CBD
still have substantial demand. Figures 22 and 23 show the effect of increasing UAM cost on UAM
demand at specific vertiports. Both figures show multiple vertiports with high demand within a
small proximity. UAM vertiports that are close to others raises operational concerns. Appendix B
contains ddditional maps with 200 vertiports and vertiports placed with higher UAM CPM costs.
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Figure 23: Northern California: 75 Vertiports Daily UAM Operations with CPM of $1.80

Southern California

Figure 24 shows the spatial distribution of the UAM commuter demand with 75 vertiports and
UAM CPM of $1.20. Similar to Northern California, the vertiports in Southern California are
placed in and around the Los Angeles County by the demand-driven algorithm. High population
density zones in Southern California are particularly attractive to the placement of UAM vertiports.
Lancaster (North of Los Angeles) attracts 13 vertiports even though the area contains mostly
middle-income block groups. The corridor between Santa Monica and Beverly Hills has a higher
proportion of high-income earners, and hence a cluster of vertiports can be found in that region.
Unlike Northern California, Los Angeles Downtown is not among the most attractive areas to
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place vertiports. Figure 33 shows that low and mid-income households comprise the Los Angeles
downtown area.

UAM commuter demand decreases significantly when the UAM cost per passenger mile increases
to $1.80 per mile. At $1.80 CMP, the UAM mode is now less affordable for low and mid-income
household levels. The UAM demand for most of the vertiports in the region decreases to less than
100 operations per day. The Santa Monica to Beverly Hills corridor attracts UAM trips and several
vertiports with high demand. All the vertiports in the Lancaster area have fewer than 25 operations
per day, as the UAM model is less affordable.

N \ w ——
\‘ ' . . Bu'rs‘( Altadena
~ S @@ Pas'.a
Bak;.he.d;\ : South Pasadena
| = '-'Ju'.‘u!lywa‘ (] *\ AI'mnra .
N @l @ S“_-;egs Ly |
Y
X _ pnta anica Q A \lur.bvl o
ia Edwards Hummqm:\ TN f
Los Padres Air Force ‘ Park i -4
National Bose = l.glcwood @ 5@, ™~
Forest olChey
O s el &
Spé ht 012 4 Mlléég m(".m Carger 'Op@&[ﬂ’éw}p{and) cg*(]butors
1
A
~santa@rbara 3 Santy CV&YI(;?' < Corps Bal
Ventura Simi Valley ‘ SJ
Oxnard— Thousand “ &
e/ Od. Rz . ~San.Bernardino
S A /.J‘uno - 7‘
al s . - ,
e lm_.wo,un. ) . Rn/uers rk gy SR~ N J
. ) l|.Trn~ e COTONa \ Val;v- ;ph'wgs lree
LongiBeach-2range 9] N
Number of UAM @ e ) maie
Operations Per Day MM@Q e Mueta
Temecula
° 0‘25 San Clemente
o 25-100 0
o 100-250 Ocednside
\ Escondido
© 250-500
Poway
@ 500-1000
(
@® 1000-2000 0 71;9 ® 40 80 Miles.
L panBlegp | | £ J
Chula & @panstreetMap (and) (mehuturs CC.BY SA
ot ~Tecate :

Figure 24: Southern California: 75 Vertiports Daily UAM Operatlons Wlth CPM of $1.20

26



N \ ‘:»:‘\ w S
\ 1 C 3
Chi e TH AN iy f
\ 3 o Bl‘rﬁ@k Altadena
N ) ~GI2nale Pas%ﬂOa
Bnk;&hp C South Pasadena
wesgHollywoed \ nbra
: OEL"\/L‘O’ P‘ll\:‘o -
O
bnta Ejgnica [e]
ia ds
s Pa e
B 1Rg] d N
+ i | Dohey
s lm”((ﬂr Hawthorne SYTWOOH 5 Norwa
&”'gq 012 4MISSLIIGS.  S2rderopdamin (and) conirbutors,
' 1 ; OB
A o
Santa-@arbara q.;mk?c arita an Gabriel Corps Ba
7
Ve b
vVentura alley <T@y O 4
Oxnard d 8 O @ N\
2 P G?QAIQO 01 oO San UF}"V&H’[ no
. _ Chonnel mg 5'0 /,,-Qsldnu\\ ——f
= ‘ - IIVGQV-‘C'Uva.‘b\o 7 Riverside
e ‘Wational T U e e =3 _
Ty PorK ° 0 r-AIHO"yh‘-n wr=COorona Palin i—vp;“ru:w
LongiBeach-Crange R (A
Number of UAM PO 3 o
Operations Per Day Missiggieio 1 e
Temecula
e 0-25 san Clemente
o 25-100
o 100-250 Oceanside
\ ' Escondido
@ 250-500
Poway
@ 500-1000
\ ° L
@ 1000-2000 0 \ 40 80 Miles
anbliegp” | | R BT~
Chula & OpenStreetMap (and) contributors, CG-BY-SA
Tecate

Figure 25: Southern California: 75 Vertiports Daily UAM Operations with CPM of $1.80

Dallas-Fort Worth

Dallas-Fort Worth is the smallest metropolitan area in terms of size and population. Apart from
the Dallas-Fort Worth Metropolitan Statistical Area (MSA), the study area is sparsely populated
and does not have many high-income households compared to other cities.

Figure 26 shows the spatial distribution of the UAM demand with 75 vertiports and UAM CPM
of $1.20. Most of the high-income households in Dallas-Forth Worth reside in the northern suburbs
of the city. The population density of the north suburbs is high, and the same area attracts many
vertiports. Dallas-Fort Worth also has unique commuting patterns. The vertiports on the city
suburbs act as feeders to the vertiports inside the Dallas CBD. As we move outside the Dallas
CBD, the UAM demand keeps decreases until reaching the outskirts. The busiest vertiports are in
Dallas CBD, slight north of Dallas CBD, and near the Centerport region (or near DFW Airport).

Figure 27 shows the vertiports for UAM cost $1.80 CPM. Similar to Southern California, the UAM
demand in Dallas-Fort Worth decreases significantly with increasing UAM CPM cost. At UAM
cost of $1.80 CPM, there is only one vertiport with more than 100 operations per day. Most of the
vertiports have a demand of fewer than 25 operations per day.
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Figure 27: Dallas-Fort Worth: 75 Vertiports Daily UAM Operations with CPM of $1.80

New York

Figure 28 shows the impact of commercial airports in the New York region on the placement of
vertiports and UAM demand. The approach and departure surfaces of precision runways at
commercial airports, limit the vertiport placement in large portions of the New York area.
Furthermore, avoidance of approach surfaces adds significant detours to UAM routes producing
increased travel times and travel costs. For instance, surfaces at La Guardia Airport (LGA) and
John F. Kennedy Airport (JFK) restrict the placement of vertiports in significant parts of Queens

and also add travel time and cost to the commuting trips from Long Island to Manhattan.

High population density areas in New York, produce closely-spaced vertiports in areas like
Manhattan. The next section introduces algorithms to split and consolidate vertiports that are
closely-spaced. We also discuss methods to limit the vertiport demand at vertiports to contain their
size to reasonable levels.

The UAM cost per passenger mile used in vertiport placement defines the vertiport location in a
demand-driven approach. The UAM demand presented in this report use a UAM CPM cost of
$1.20. This assumption favors the location of UAM vertiports near low and middle-income level
areas (e.g., the Bronx). Figure 29 shows the UAM demand distribution with a UAM CPM of $1.80.
Note a significant impact of UAM demand in vertiports located in the Bronx and Staten Island.
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Figure 29 illustrates the importance of the UAM fare structure employed during the placement of

vertiports.

YoAke rs‘("”'1s

//3
1

W Bergénf‘ Id
i)

Bioot;;lng

=
Readington’

mingten.———
Montgomery

{ Plai
A\ Ewing Lawrénce
:l'renton

10

DAY

Plattekill

Grove
woodbury
Monroe P

ST Warriman

tate Park >N POl
Havers|

Iey/'

Pougl'}rbk%psue

2 {
Beekman \\
e /,}r : New Milford
East Fishkill } J
, \ 4
Pattérson 0\
{ Brookfield

Carmell{}
Danbury
Ridgebury !
. y.

[

utnam Valley Somers

¢
Yorktown mqgeﬁelt‘i\

int Lewisboro S

trab

Mournt Kisco * Wilton

Ossining

ount Rleasant

" Bayville -

- -
Glen Cove

~" ‘b,

> “"\v

Howerl—Wail
A

~ Huntington

Bris

s

Walenown""
Waterbury

Southbiry Naugatuck
Oxford,

Monroe \D

Seymour

Milford

Bridgeport

Sol

Hamdeén

Y Kew
\ %\Neslﬁv}d
Tru !“;B" 7 /

Farmingt:
tdl New
ington

g
erid

Wallingfq

J

KHaven

' Number of UAM

Operations Per Day
e 0-100

o 100-500

o 500-1000

© 1000-5000

© 5000-10000

@ 10000-20000
@ 20000-40000

Figure 28: New York: 75 Vertiports Daily UAM Operations with CPM of $1.20

30



Yonkers2«3"4 N\ Farmingt
Bergenfjfld ) { A Pough’kespSIe %
| |' { Bristal Neww
J
Plattes \ ]
Plattekill ) Beekman Watertown
y) { New Milford ,
East Fishkill Waterbury
> J
~ LT Patterson
~704%8 NewDurgh | ?
\ N Brookfield Southbiry Naugatuck /
gefield Park ! r! y 4 wallingfy
B8looming "v._ Carmel\{ £ —) (')x'fcrd’z ."I 21
Grove / o > —Danbury Seymour Hamden
B '-‘-'ooldumy ) ~ Ridgebury ,«“;
Monroe ) #Putnam Valley Somers Monroe Derby i
RN ) ) New Haven
=~ Yorktown Ridasofield =
/ ' gefie West' Haven
Harriman ! ” T B
bli;; /;,:.,g Slz)ny Poml\ LeSooe mBul Milford
nion City J Haverstraw Mou/m Kisco Wilton
7 / =
eeha\wlfén \ 0ssining // J Bridgeport
S fiS') lle: 7 " Norwalk
\ P 9 o y Mount Rleasant
Ramsey | StaiQord
akiand I Whit dins
« o Port Chester
{ Ridgewood B -
© OpfenStreetMap-arid); 7l Q. -Harrifon
cofftributofs, CC-BY-6A |1 e A%
A 23 \Pater'sor;l‘_\ Bayville 0

T OOvVeT = parsippany- o - / - 2 (&7
arsippany 3 Glen Gove Huntington @mithtown

Mount Olive ("Iroy Hills ( ¥ v
<6 ! — 1
Mornstown plog ," o ,—/9/' — Brookhaven
Madison E3sDOIN SO S A E
g Newar i —1slipy
X ) - QO __west Babylon
Berkeley Heights ‘Um?" b prl =
7 l,,,Elgaberh, J
Plainfield < o)
A7 Ligé
Green Brook /.{‘/ njo OOV Number of UAM
| Readington—=" %~ 0 -woom;r‘aa% Operations Per Day
J ! ay J
24 o Y
mington 7 ;( . e 0-100
{ Montgomery New Brunswic N\
South Rw’ur O ..\5-._ Keansburg o 100'500
©ld Eridge WM’,qusgf,\,” o 500-1000
&3, ] - HedBank © 1000-5000
{ ain’ oro \ J S
| / / Mariboro 7\ Long'8ranch . 5000_10000
Ewing Lawrénce Freehold™~— $:‘4‘, r,‘ . 10000-20000
N~ Trenton Freehold Township / 1-Nepturie
pr/ 10 20 40 Miles 2 4 @ 20000-40000 -SA
[Emee ] 1 | 1 I I | Howell—YYall 7

Figure 29: New York: 75 Vertiports Daily UAM Operations with CPM of $1.80

4. Vertiport Splitting and Consolidation Analysis

In the previous section, we presented the ideal placement of vertiports based on an iterative
demand-driven approach. The demand-driven vertiport placement, coupled with the small size of
block group regions, can sometimes produce closely-spaced vertiports. In this section, we present
algorithms to split and consolidate vertiports after UAM demand estimation.

A companion, UAM landing site study, estimated the practical size of the largest vertiport to be
six landing pads and 38 parking stalls. The size estimation included a capacity analysis and
considered the typical commuting time distribution obtained in the NHTS survey data.

We split a vertiport if the demand during the peak hour requires more than the maximum number
of landing pads (6 landing pads). Similarly, we consolidate vertiports within 0.5 statute miles of
each other as long as the total demand does not exceed the maximum landing pad threshold.
Splitting and consolidation run as a single algorithm that runs iteratively until reaching a desired
number of the vertiports. The iterative algorithm involves replacing the vertiports (marked for
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splitting) by two or more vertiports placed using k-medoids (connected census blocks) algorithm,
consolidating vertiports according to their respective UAM demand, and recalculating the UAM
demand for the complete scenario.

Sometimes it is difficult to reach a vertiport set where all vertiports have less than the maximum
number of landing pads. For such instances, we limit the UAM demand for the vertiports exceeding
the maximum number of landing pads. Tables 9-12 show examples of UAM vertiport demand
after split/consolidation and application of demand limits for Northern California, Southern
California, Dallas-Fort Worth, and New York.

Table 9: Northern California Scenarios Post Split-Consolidation and Post Capping

Northern California

Demand Set | Pre-Split/Consolidation Post-Split/Consolidation Post-Capping
[Landing (if required)
Sites, UAM No. of Flights No. of Sites No. of Flights No. of Flights
CPM]
[50, $1.80] 4,976 47 4,458 4,458
[100, $1.40] 22,400 91 20,514 18,808
[200, $1.10] 85,472 210 82,556 70,590

Table 10: Southern California Scenarios Post Split-Consolidation and Post Capping
Southern California

Demand Set | Pre-Split/Consolidation Post-Split/Consolidation Post-Capping
[Landing (if required)
Sites, UAM No. of Flights No. of Sites No. of Flights No. of Flights
CPM]
[50, $1.55] 4,566 50 4,566 4,566
[100, $1.35] 18,356 97 18,360 18,360
[200, $1.20] 58,956 204 58,758 58,758

Table 11: Dallas-Fort Worth Scenarios Post Split-Consolidation and Post Capping
Dallas-Fort Worth

Demand Set | Pre-Split/Consolidation Post-Split/Consolidation Post-Capping
[Landing (if required)
Sites, UAM No. of Flights No. of Sites No. of Flights No. of Flights
CPM]
[50, $1.20] 5,492 49 5,538 5,298
[100, $0.95] 26,488 102 26,198 25,747
[200, $0.80] 77,890 209 75,943 72,816




Table 12: New York Scenarios Post Split-Consolidation and Post Capping

Demand Set Pre- Post-Split/Consolidation Post-Capping
[Landing Split/Consolidation (if required)
Sites, UAM No. of Flights No. of Sites No. of Flights | No. of Flights
CPM]
[50, $3.20] 6,326 36 4,458 4,458
[100, $2.70] 31,250 120 35,236 33,884
[200, $2.20] 103,892 273 111,492 99,628

5. Conclusions

Calibrating a mode-choice model to estimate the demand for a new concept mode is the usual
method adopted in transportation studies. However, it has been a challenge to calibrate a model
that could calculate the demand for the UAM mode. When the focus is on any concept mode, either
the existing survey data should include a similar transportation mode, or a robust stated preference
survey should be adopted. A stated preference survey has its shortcomings; it is difficult for the
survey taker to simulate the circumstances and arrive at the same mode-choice, which they would
use in the future. Moreover, this study focused on the characteristics of the individuals, which
could influence their mode-choice behavior. We believe that to predict UAM demand; mode
choice decisions such as travel cost, travel time, transfers, safety, comfort, etc. will continue to be
relevant irrespective of the mode (concept or in-use).

Developing a region-specific mode-choice model was a priority in this study. The Northern
California model is robust, but calibrated models for Southern California and Dallas-Fort Worth
have weaknesses which would result in erroneous UAM demand. The Southern California and
Dallas-Forth Worth regions did not offer enough transit trips for robust calibration. The analysis
shows that Southern California and Dallas-Fort Worth are not well-connected by public
transportation and have low transit ridership nearing 5%. In such conditions, it is difficult for a
travel survey to include significant numbers of transit trips needed in the calibration of a mode-
choice model. Calibrating a mode-choice model requires data for all the modes (this study has
driving and transit as the modes). For this reason, we adopted the Northern California model in the
estimation of UAM demand for Southern California and Dallas-Forth Worth.

The selection of the income brackets is a critical step in the application of a mode choice model.
It is required to have enough data in all income brackets to calibrate a robust model. In this study,
the NHTS-2017 dataset could not support more than three income brackets. Moreover, the high
variance of income distribution in Northern California resulted in a sizeable middle-income
bracket ($45k-$152k). Having enough survey data for each desired income bracket could be an
ideal situation for model calibration.
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For urban commuter trips, parking costs and tools are essential to estimate the cost of driving trips
(also park and ride transit trips), especially the ones in-and-out of CBD zones. Unfortunately, there
is no publicly available dataset on the parking cost to estimate with precision such charges. In this
study, we collected parking costs in zones with high economic activity to estimate parking costs
based on spatial location.

The variables used in the model calibration are often constrained by the application process. The
model application process to calculate the UAM demand is a computationally expensive process
which deals with millions of trips in the region. Including more modes and the independent
variable is an ideal step in improving the mode-choice model. However, the model should still be
feasible in the application. For example, driving could be divided into drive alone and car-pooling
but there is no method of simulating the car-pooling option for millions of commuters in each
region. There are variables available in survey data that benefit the mode-choice model but make
it difficult to apply the model. Information is not available for the application data and hence
cannot be used. So, the selection of variables in model-calibration is influenced by the application
process, only if the model application is part of the study.

The UAM demand results could benefit from a better understanding of the inter-modal connection
for the UAM mode. Inter-modal connections mean ‘Home to Vertiport’ and ‘Vertiport to
Workplace ’. There is no doubt that the UAM is the faster mode for trips over 10 miles. However,
the inter-modal connections could be critical in the feasibility of this transportation mode. A better
understanding of how UAM users will access the vertiports could help in a more credible
estimation of UAM trip’s parameters.

This study was limited to the commuter market. Commuter flows are usually one-directional, and
hence UAM vehicles will have to serve a considerable number of deadhead trips. A challenge for
UAM operations is to reduce deadheading to reduce overall UAM operating costs. A network
simulator could enhance the realism of the projections presented in this report.

The following paragraphs provide are region-specific conclusions of this study.

Northern California

1) Northern California has the highest number of high-income zones and the highest
percentage of high-income zones in the study area

2) Even at the low UAM CPM ($1.20), the majority of the UAM demand is contributed by
high-income households (55%). The contribution of UAM demand from high-income
households increases to 90% when the UAM CPM cost is $3.00

3) The UAM demand is most resilient to increasing UAM costs due to a higher concentration
of high-income households. High-income households are more likely to afford the mode.

4) In Northern California, the commuter flows are highly (highest among all study areas) one-
directional, where commuters from around the bay travel to San Francisco CBD for work.

5) San Francisco CBD has high economic activity concentration and significantly high travel
times for people traveling to and from around the bay.

6) For 75 vertiports, the UAM demand in Northern California decreases from 65,020 to
14,020 to 3,605 flights per day when increasing the CPM from $1.00 to $1.50 to $2.00.
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7) For 200 vertiports, the UAM demand in Northern California decreases from 121,900 to
5,964 flights per day when increasing the UAM cost per mile from $1.00 to $2.00.

8) The UAM demand in Northern California is less sensitive to the increases in the number
of UAM vertiports. For a given UAM CPM, when increasing the number of vertiports from
50 to 400 (eight times), the UAM demand only increases by a factor of two. The pattern is
unique to Northern California because high-income zones have a high population density.
Therefore, increasing the number of vertiports does not increase the overall mode
accessibility drastically.

9) San Francisco CBD presents a unique case and a challenge for operating such a service
where demand is highly concentrated in a small area. For scenarios with UAM CPM less
than $1.20, a vertiport in the Financial District is expected to handle 7,500 operations per
day. Moreover, there are more vertiports in the CBD region with an expected demand of
around 3,000 operations per day (for the same scenario). This could be a challenging
problem for airspace management.

10) The high demand vertiports in Northern California are found in San Francisco CBD,
Mountain View region, and San Jose CBD.

Southern California

11) Southern California region has a higher population than Northern California with the
majority of the households residing in low- and mid-income households.

12) Only 15% of the UAM demand is generated from high-income households at a CPM value
of $1.20.

13) The UAM demand in Southern California is not resilient to increasing UAM cost as it
becomes less affordable for low- and mid-income households.

14) Unlike Northern California, Southern California has multiple zones with high economic
activity and the trip attraction zones are distributed in multiple areas in and around Los
Angeles county. This prevents from few vertiports having an exceptionally high
concentration of UAM demand.

15) For 75 vertiports, the UAM demand in Southern California decreases from 67,310 to 7,710
to 1,232 flights per day when increasing the CPM from $1.00 to $1.50 to $2.00.

16) For 200 vertiports, the UAM demand in Southern California decreases from 139,100 to
16,930 to 2,916 flights per day when increasing the CPM from $1.00 to $1.50 to $2.00.

17) The UAM demand in Southern California is relatively more sensitive to the number of
vertiports. In Southern California, high-income households are very few and usually reside
in low population density zones, vice-versa for low- and mid-income households. Overall,
population density is high in Southern California. Therefore, increasing the number of
vertiports has a drastic impact on mode accessibility. For a given UAM CPM, when
increasing the number of vertiports from 50 to 400 (eight times), the UAM demand
increases four-folds.

18) In Southern California, the UAM CPM used during the placement of vertiports has a bigger
impact than any other region. This is because of the high-income households being in the
low population density region and low- and mid-income households being in high
population density region generally. A higher UAM CPM places more vertiports near high-
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income zones, whereas a lower UAM CPM places more vertiports in high-density zones
as the mode is affordable to all categories. Therefore, the location of vertiports changes
significantly according to the UAM CPM used in the placement of vertiports.

19) The high demand vertiports in Southern California are usually found near the Santa
Monica-Beverly Hills corridor and south-east of Los Angeles city which is half-way
between San Diego and Los Angeles.

Dallas-Fort Worth

20) Dallas-Fort Worth offers similar UAM demand patterns to Southern California with a
smaller population and fewer high-income households. In the Dallas-Forth Worth region,
the UAM demand is more resilient (relative to Southern California only) to increasing
UAM CPM.

21)Only 21% of UAM demand is generated by high-income households at a $1.20 CPM cost.

22) High economic activity zones are found in Dallas CBD and slightly north of the Dallas
CBD. Most of the high-income zones are located in suburbs in the north of Dallas city.
Therefore, vertiports are mostly found in that part of the region.

23) The suburbs are spread across in a circular manner centered around Dallas City. This results
in smaller feeder vertiports spread around the suburbs to feed into the Dallas CBD or
economic zones in the northern part. There are a few vertiports with a significant
concentration of UAM demand. The economic viability of feeder vertiports with very few
operations could be a concern.

24) For 75 vertiports, the UAM demand in Dallas-Fort Worth decreases from 17,350 to 590
flights per day when increasing the CPM from $1.00 to $2.00.

25) For 200 vertiports, the UAM demand in Dallas-Fort Worth decreases from 32,930 to 1,028
flights per day when increasing the CPM from $1.00 to $2.00.

26) Due to smaller populations and fewer high-income households, there are fewer conditions
under which the commuter market could be promising for the UAM concept.

New York

27)New York’s characteristics are significantly different from other regions. The commuting
patterns, variation in size of block groups, water body location, location of commercial
airports, etc. Moreover, it has almost 10 million commuters with a higher proportion of
high-income households than any other region. All these factors and heavy disutility in
driving makes New York a big market for the UAM.

28) There are four income categories in New York. 58% of the demand comes from high-
income and upper-mid income households in New York at $1.20 UAM CPM. There are
significant numbers of long-distance commuters in the region who could gain from UAM.

29) The UAM demand in New York is relatively less sensitive and that could be attributed to
costly driving, traffic congestion, and a larger high-income population.

30) For 75 vertiports, the UAM demand in New York decreases from 258,200 to 38,940 flights
per day when increasing the CPM from $1.50 to $2.50.
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31)For 200 vertiports, the UAM demand in New York decreases from 393,100 to 61,870
flights per day when increasing the CPM from $1.00 to $2.00.

32) Major trip attractors in the region are Manhattan, Brooklyn downtown, and JFK. Trips are
produced from all over the region. However, since the UAM fare structure used in the
analysis does not have a fixed cost parameter, it generated heavy UAM demand for short
trips which are usually congested by driving. For example, Bronx to lower Manhattan,
Brooklyn to Manhattan, etc., such trips would be eliminated if a UAM fixed cost is
introduced.

33) This analysis includes five minutes of ingress and egress time each. However, it would be
difficult to operate UAM from skyscrapers in Manhattan with such little ingress and egress
times. As the ingress/egress or processing time increases, the UAM demand would start
decreasing.

34) Even though the results include optimistically low-price points for UAM, it would be
difficult to operate UAM in New York with lower costs given the high real estate costs in
the region. Therefore, more realistic demand numbers could be found near the higher end
of the UAM CPM scale.

6. Recommendations

This study is focused on only the commuter market. However, we believe the UAM could be
beneficial for other types of trips too which are time-sensitive. Therefore, future research should
also consider shopping, business, personal business, recreational, and trips to airports.

Since UAM is still a concept, there is little understanding of how users will access this mode. In
this study, only walking and taxi services are considered as the access mode for UAM travelers. It
is recommended that a detailed analysis of intermodal connections for UAM could provide better
understanding of the dynamics of intermodal connection.

The study involved applying the model after calibration. Therefore, we were limited by the
application process because not every mode choice can be simulated for millions of commuters.
Similarly, there were significant variables in survey data that could not be used due to their absence
in application data. For example, the umber of vehicles in the household, the number of workers
in households, gender, etc.

The income brackets used in the study limit the analysis to 3-4 income groups. A mode-choice
dataset with enough samples in various income groups could help in calibration of the model with
more income groups, which in-turn could refine the UAM demand results.

The study shows that commuting flows are one-directional, and that would increase the dead-
heading of flights. Network analysis could provide a better insight into the dead-heading flights,
which would improve the travel cost estimation for the UAM mode.

The reliability of the modes of transportation modes should be considered in future research. In
this study, we assumed that every mode of transportation is available when required. For example,
public transit trips are assumed to be on schedule, and the UAM vehicle is always ready when
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needed. Many factors affect the reliability of a mode of transportation such as weather and limited
availability of UAM aircratft.

In this study, we use congestion indices of the Metropolitan Statistical Areas (MSA) from the
Texas Transportation Institute. It was the only viable option when calculating the travel time for
millions of trips. The drawback is that the TTI indices are single numbers that ignore the dynamic
congestion of urban areas. Moreover, departure times are available in LODES data which could
hamper in applying dynamic congestion to the trips. Both of which could help in a more realistic
estimation of driving times.

In this study, we used the Open Trip Planner API for simulating transit trips/options in both
calibration and application. Although the API’s coverage is extensive, it could not replicate all the
trips or connections. In Dallas-Fort Worth specifically, many transit trips were lost since they could
not be simulated in the API.

Due to a lack of information on the ingress and egress process at the vertiports, currently, five
minutes is used as a placeholder in this study. As the vertiports concepts start into shape, a better
understanding of ingress and egress times at vertiports would emerge. It is believed that vertiport
location or vertiport type (on a rooftop or vacant land) could influence the ingress and egress time.
This could help in a better total travel time estimation for the UAM.

Due to the scope of this study and the unavailability of departure times in LODES data, this study
could not use time-varying cost for any mode of transportation. Time-varying or dynamic cost
functions would help in arriving at more realistic results.

In this study approach surfaces of the airports with precision, runways are safeguarded completely.
If there is a better understanding of the interaction of commercial air traffic and UAM traffic in
the future, this approach could be refined, and we could arrive at better UAM travel time and travel
distance estimation.
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8. Appendix A

Using the mode choice dataset, region-specific demand models were estimated using the
conditional logit model methodology. An example of how logit models are estimated is shown in
Figure 30. The coefficients in the model are estimated by maximizing the sum of the log-
likelihood. As a mode’s utility (i.e. benefit) increases, so do the probability of that mode being
chosen.

In- Out-
- ) Log
Mode Chosen | Vehicle Vehicle Num Cost Income - Probability o
Person O/D Alt (d) Time Time Transfers (%) Level Urtility P) leeﬂtood
(Min) (Min) (L)
Pittsburg Drive 1 192 3 0 6.90 Mid -3.303 97.4% -0.02599
to Oakley Transit 0 4915 27.83 1 544 Mid -6.940 2.56% 0
San Francisco | Drive 0 3438 3 0 1591 | High -5.044 55.7% 0
to Oakland Transit 1 22 29.95 0 412 High 5273 44.3% -0.8144
Oakland to Drive 0 456 3 0 2021 | High 6.398 87.7% 0
San Ramon Transit 1 5567 38.28 1 8.03 High -8.366 12.3% -2.0991
Sum of Log Likelihood -2.9395

T )
LL =dxIn(P)

euti]ity

Utility = B Xivrr + BovriXovrt + BnumTrANSFERSXNUMTRANSFERS *
Bcost Low iIncXcosT Low_ inc + Bcost mip_incXcosT mip_inc + p=
Bcost HicH incXcosT HicH NG T BoriveXprive + BrransimXtransiT Ty eutility

Figure 30: Example of Logit Model Coefficient Estimation.

Utility and the probability of a mode being chosen are not linear. For example, using the Pittsburg
to Oakley sample above, a -3.303 utility for driving meant the individual had a 97.4% chance of
choosing that mode. As shown in Figure 31, if $4 had been added to the trip’s cost ($6.90+$4.00),
that percentage would reduce to near 91%. Once a mode becomes too costly, it is not competitive
with other modes. Therefore, adding $24 or $28 has very little change in the individual’s
probability of choosing the driving mode as both are nearly 0% chance of choosing driving. This
non-linear shape aligns with the typical way people make choices between competing modes. Only
in a certain utility range are modes very competitive with each other.
100 , +f0
90 o
0 98 7 +84
70
60
50
40
30
20 o
10 8244820

o
+$12

+$16.

Probability of Driving

2 *$28 4 8 6 -4 -2
Utility of Driving

Figure 31: Example showing Utility and Probability of Mode being Chosen
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The mode choice models incorporated the spatial income distribution, as shown in the following

C—Low-Income Block Group

C— Mid-Income Block Group

———= High-Income Block Group

C———— Zero or No income Information

Figure 32: Northern California Income Distribution
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— Low-Income Tract
— Mid-Income Tract
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Figure 34: Dallas-Fort Worth Income Distribution
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9. Appendix B
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Figure 37: Northern California: 200 Vertiports Daily UAM Operations with CPM of $1.80
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Figure 38: Southern California: 200 Vertiports Daily UAM Operatlons with CPM of $1 20
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Figure 39: Southern California: 200 Vertiports Daily UAM Operations with CPM of $1.80
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Figure 41: Dallas-Fort Worth: 200 Vertiports Daily UAM Operations with CPM of $1.80
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Figure 42: New York: 200 Vertiports Daily UAM Operations with CPM of $1.20
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Figure 43: New York: 200 Vertiports Daily UAM Operations with CPM of $1.80
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