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DEMAND FORECAST MODEL DEVELOPMENT AND SCENARIOS 
GENERATION FOR URBAN AIR MOBILITY CONCEPTS  

2. Introduction 
The purpose of this project is to estimate the demand for various Urban Air Mobility Concepts 
(UAM) of Operations and to generate scenarios for use in analysis and simulations. The demand 
forecast model, previously developed under NASA/NIA Contract No: NNL13AA08B; Task Order 
No: NNL16AA36T, for an urban on-demand air-taxi commuter concept is the basis for this work.  
The analysis presented addresses the following tasks: 

Task 1: UAM Demand Forecast Model and Scenario Generation Development and Improvements. 
Virginia Tech improved the usability of the UAM Demand Forecast Model and associated 
Scenarios Generation codes so that they can be run by researchers who were not part of the code 
development process. 

An integrated set of MATLAB scripts are developed for all four regions to facilitate optimal 
placement of vertiports, calculation of UAM demand, and capacity analysis. We delivered the 
Matlab code with NASA Langley. Modifications to the requirements of the project are maintained 
in a secure online server at Virginia Tech using software tracking (GitHub) that is protected by an 
incremental duplicate backup system. 

Task 2: Demand Forecasts and Scenarios- Virginia Tech will generate a set of demand forecasts 
and scenarios for Northern California and three more regions in the United States to be selected in 
coordination with NASA, based on the existing On-Demand Mobility (ODM) or Urban Air 
Mobility (UAM) commuter concept.   

The report presents in detail the data collection, mode choice calibration, and simulation analysis 
supporting the demand predictions for two UAM vehicle concepts with Vertical Take-Off and 
Landing (VTOL) capability.  The analysis includes a sensitivity analysis of UAM demand under 
various UAM’s cost per passenger mile (CPM) and the number of vertiports placed within a region.  
This report analyzes UAM demand in four U.S. regions, including Northern California (centered 
on San Francisco), Southern California, Dallas-Fort Worth, and New York City.   
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3. Task 2: Demand Forecasts and Scenarios Development 
This section presents the steps undertaken to predict the UAM commuting trip demand.  The 
analysis includes preliminary reviews to weather information of urban areas, analysis of travel 
survey data, calibration of urban-specific mode choice models, application or model choice models 
to the region’s population, and generation of demand results to estimate person-trips.  The demand 
results generated are for commuting trips only, specifically home-to-work and work-to-home trips, 
and do not include other possible sources of UAM demand outside of this project’s scope, such as 
business or shopping trips. 

3.1. Regions Selected and Defining the Study Area 
In addition to building off findings from a previous project on the Northern California (San 
Francisco) region, three additional urban areas are part of the study.  Table 1 outlines the analysis 
used to define the remaining three metropolitan areas. It presents the first-order evaluation of 
characteristics that would promote or inhibit the success of the UAM mode. The shaded cells 
indicate attributes of that city, which could significantly reduce the number of person-trips 
operated.  Based on the population, socio-economic, and weather information, the three areas 
chosen were those surrounding Los Angeles, Dallas-Fort Worth, and New York City. 
 

Table 1: Weather and Socio-Economic Characteristics of Various Metropolitan Areas 
Metropolitan 
Area 

Temperature Wind Precipitation Snow Population Income 

 % 
Time 
below 

32°F** 

% Time 
temp<32°F & 

(air-dew) 
temp is 

=<2°F** 

% Records 
where wind 
speed is >= 
15 knots** 

Average 
annual inches 

Days 
when 
>= 1 
inch* 

MSA 
population 

in 
millions*** 

HHs with 
income 

>100k in 
thousands 

*** 
Atlanta 1.7 0.04 3.7 49.1 0.9 5.8 508.6 
Boston 16.6 0.89 12.1 43 11 4.5 584.8 
Chicago 18.2 1.41 11.5 40.4 12.6 7.2 709.6 
Dallas 3.1 1.14 10.2 35.7 1 7.2 645.5 
Los Angeles 0.04 0.05 15.7 9.4 0 13.4 1,204.1 
Miami 0.9 0.97 3.1 67 0 6.1 437.4 
New York 10.9 0.01 3 43.7 6.7 19.3 1,812.6 
San Francisco 6.9 0.09 16.6 16.8 0 4.7 639.4 
Seattle 9.1 0.12 3.2 41.7 1.7 3.8 433.4 
Washington 
DC 

11.1 1.34 4.8 40.2 4.2 6.2 996.9 

 
* Source: 2007-2017 ‘Global Summary of the Year’ records from Climate Data Online (NCDC). 
** From 6 AM–8 PM, Source: 2015 ASOS 1-min weather records by NOAA 
*** Using 2009 dollars, Source: CEDDS, Woods and Poole, 2016.  
 
To study UAM commuter demand, we consider all counties within 150 miles of each city center. 
Table 2 shows the characteristics of the selected metropolitan areas. Figures 1-4 show the details 
of counties included in the study for Northern California, Southern California, Dallas-Fort Worth, 
and New York, respectively. 
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Table 2: Characteristics of the Selected Urban Areas 

Region Number of Counties 
Included in Study 

Number of Census Block 
Groups 

Number of Daily 
Commuters* (millions) 

Northern California 17 7,106 4.63  
Southern California 10 13,632 9.26 
Dallas-Fort Worth 12 4,158 2.92 

New York City 33 17,294 9.94 
*LEHD LODES -2015 Data 

 
Figure 1: Northern California: Study Area 
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Figure 2: Southern California: Study Area 

 

 
Figure 3: Dallas-Fort Worth: Study Area 



 6  

 
Figure 4: New York Study Area 

 

3.2. Choice Model Estimation 
Figure 5 presents the framework used to calibrate the trip mode choice models for each study 
area. The processes involve merging socio-economic databases, travel behavior data, model 
validation, and model calibration. We discuss the steps in the following sections of the report. 

3.2.1. Mode Choice Datasets 
To estimate UAM demand, we use a mode choice decision-making model on how commuters 
make decisions.  The process involves reconstructing an individual’s mode alternatives choice set 
(i.e., modes available to them) and estimating tradeoffs between time, cost, and convenience while 
commuting.  The Value-Of-Time (VOT) is one metric defined when quantifying such tradeoffs. 
 
To estimate the value of time for commuters, a revealed-preference mode choice data, as well as 
supplementary socio-economic information data, were collected, as listed in Table 3.  We merge 
the datasets contained in Table 3 to include characteristics on both the trip (e.g., origin/destination) 
and the traveler (e.g., income information aggregated to the block-level).   
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Figure 5: Workflow to Prepare Survey Data for Commuter Mode Choice Model Calibration 

 
The National Household Travel Survey (NHTS) data is the basis for the travel survey used in the 
study. We collected add-on NHTS data to improve the quality and spatial scope of the data sets.  
We use an Application Programming Interface (API) to estimate travel time characteristics of the 
automobile and public transportation modes available to the commuter. The research team 
manually collected public transportation and automobile cost per mile and parking costs. The data 
collected applies to commuting trips. A trip was included in the study if it: 1) started and ended 
inside the study area; 2) linked home to work or vice-versa, and 3) was taken on a weekday.  Table 
4 shows a summary of the trip datasets used in the model calibration. For the New York Model, 
there were two mid-income categories as opposed to the other regions that had only one. 
 
 

Preparing Dataset for Model Calibration

National Household 
Travel Survey Add-

On Data 2017

Region-Specific 
Data Filtering

Simulating Driving Trips 
in Open Street Route 

Mapping API

Simulating Transit Trips 
in Open Trip Planner API

Generate Travel Time and Travel 
Distance for Each Trip by Mode and 

its Alternative Mode

Calculating Total Travel 
Cost

Calculating 
Parking Cost

Calculating 
Transit/Driving 

Cost

Manually Collected 
Fare Prices from 
Transit Agencies’ 

Website in the Study 
Area

LODES 
Economic 

Data

Calculating Economic 
Density (Number of 

Workers/ Land Area) of Each 
Tract in the Region

Developing Mode-
Specific Cost (Fare) 

Functions

Developing 
Parking Cost 

Function

Compile Trips with 
Calculated Parameters 

into a Dataset

Analyzing Chosen and 
Alternative Trips, 
Followed by Data 

Cleaning

Presence of Trips with 
Unreasonable or Erroneous 

Parameters

Final Dataset

No

Yes

ACS Median 
Household 
Income by 

Blockgroups

Generating Income Brackets 
and Assign Income Category to 

the Trips
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Table 3: Datasets Used in the UAM Commute Demand Analysis 
Region Datasets Data Resolution 

Northern 
California/ 
Southern 
California 

• National Household Travel Survey-2017 Add-
on Data 

• Longitudinal Employer-Household Dynamics 
LODES Data-2015 

• American Community Survey-2016 

• Location Coordinates 
• Block Group 

 
• Block Group 

Dallas-Fort 
Worth 

• Census Transportation Planning Products-2016 
• Longitudinal Employer-Household Dynamics 

LODES Data-2015 
• American Community Survey-2016 

• Traffic Analysis Zone 
(TAZ) 

• Block Group 
 

• Block Group 

New York City • National Household Travel Survey-2017 Add-
on Data 

• Longitudinal Employer-Household Dynamics 
LODES Data-2015 

• American Community Survey-2016 
• Yellow Cab Data: New York City Taxi and 

Limousine Commission 

• Block Group 
 

• Block Group 
 

• Block Group 
• Taxi Zones 

 

3.2.2. Spatial Income Distribution 
The mode choice model calibration for Northern California, Southern California, and Dallas-Fort 
Worth includes three income categories. The model calibration of New York data employs four 
income categories. The maps shown in Appendix A  illustrate the spatial distribution of median 
income levels. There are significant differences in the spatial distribution of income across the 
study regions. For example, the Northern California region has a higher percentage of the 
population in high-income level block groups. However, the cost of living is higher in Northern 
California compared to other areas.   
 
In Northern California, high-income block groups reside around the San Francisco Bay Area. In 
Southern California and Dallas-Fort Worth, high-income block groups live in the suburbs and far 
away from the downtown areas.  This difference could potentially decrease the demand in Northern 
California as UAM might not be attractive and viable for short commuting distances. The New 
York region has a high concentration of high-income population in Manhattan, Connecticut, the 
western suburbs of Jersey City, and parts of Long Island. High-income and upper-middle-income 
earners in the New York region have longer commutes making the area more attractive for UAM 
operations. 

3.2.3. Model Calibration  
The mode choice model uses a conditional logit model that includes independent variables that 
change between the modes for a single commuter (called generic variables- e.g., travel time, cost, 
distance traveled). The mode choice models do not include variables that remain consistent 
between the modes (called alternative-specific variables, e.g., commuter’s income, gender).  
Alternative-specific model variables could not because the NHTS data did not report UAM as a 
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possible travel alternative, making it impossible to estimate those coefficients. Appendix A 
contains more information on conditional logit models and the derivation of their coefficients.  
Table 5 shows the list of variables included in the models.  We include the travel time to go around 
airport approach surfaces in the region in the estimation of UAM mode travel time. 
 

Table 4: Summary of Mode Choice Data used in Region-Specific Model Calibrations 
 Total 

Trips 
Chose 

Driving 
Chose 
Transit 

Had 
Driving 

Available 

Had 
Transit 

Available 

Low 
Income 
Traveler 

Mid 
Income 
Traveler 

High 
Income 
Traveler 

Income 
Category 
Breaks 

Dallas-
Fort 

Worth 

37,990 36,148 1,842 37,990 16,259 8,569 21,854 7,567 $40k 
$85k 

New York 1,080 846 234 1,080 1,080 646 1,012 360 142 $50k 
$100k 
$150k 

Northern 
California 

7,471 6,982 489 7,399 2,568 916 5,888 667 $45k 
$152k 

Southern 
California 

8,084 7,947 137 8,042 3,095 1,698 4,631 1,755 $45k 
$152k 

 
Table 5: Model Variable Definitions 

Variable Definition Unit 
TT Total travel time: sum of IVTT and OVTT Minutes 
IVTT In-vehicle travel time: time spent in a motorized vehicle, such as 

a car, subway train, or VTOL aircraft 
Minutes 

OVTT Out-of-vehicle travel time: time spent out of a motorized vehicle, 
such as walking or waiting 

Minutes 

Cost Monetary cost: includes costs such as transit fares, fuel costs, 
parking costs, etc. 

$ 

Transfers Number of transit-to-transit transfers on the route.  Driving-to-
transit or transit-to-driving do not count as transfers.  

Transfers 

Income Categories Low, medium, and high-income group variables for all regions, 
except New York which has low, medium-low, medium-high, 
and high-income group variables. 

Binary 

 
Since UAM is not currently available in the regions studied, there is no revealed-preference data 
for the mode.  The data does not show people’s behavior when deciding to take this mode and, 
therefore, the model would not fully capture mode choice for UAM solely using the variables in 
the model.  For example, a person may choose to drive instead of taking transit due to reliability, 
comfort, or safety, none of which are incorporated through the model’s variables as these are not 
available in the data. For the same reason, we cannot estimate reliability, comfort, and safety for 
the UAM mode. Instead, this study utilizes the constants from Georgia Tech’s mode choice stated-
preference survey to capture unobserved biases towards a hypothetical UAM mode. These 
constants are shown in Table 6 and indicate that the unobserved characteristics, on average, 
increased the popularity of the UAM mode. Therefore, without the mode constants, the models 
would underestimate UAM demand. 
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We incorporate Georgia Tech’s findings into this study considering the differences between the 
Georgia Tech model constants (i.e., drive minus UAM, transit minus UAM) to estimate the 
constants in the conditional logit models of our study. The ability to utilize the constants of another 
model is a unique feature of logit models in that it is the difference between the value of utility 
that determines the probabilities of selecting a mode.  Table 7 shows an example to illustrate this 
point.  
 

 
Table 8 shows the calibrated mode choice models for the four urban areas along with their 
corresponding values of time (VOTs).  According to Louviere et al. [1], McFadden suggests that 
pseudo-R2 values between 0.2 and 0.4 represent a model with a very good fit.  Due to data quality 
in the Southern California and Dallas-Fort Worth regions, namely a low count of transit trips 
chosen and flat fare transit offerings, the Northern California model was ultimately applied to these 
regions. For the New Yor Region, we calibrated a separate model. 
 

Table 6: Constants from Georgia Tech’s Survey (Garrow, German, Patterson 2019)  
Mode Mode Constant 
Drive -0.580 
Transit -2.379 
UAM 0 

 
Table 7: Example showing Differences in Utilities to Determine the Probabilities of Selecting a 

Mode 
Mode Utility Exponential (Utility) Probability of choosing the mode 
Drive 2 7.4 24% 
Transit 1 2.7 9% 
UAM 3 20.1 67%     

Drive 1 2.7 24% 
Transit 0 1.0 9% 
UAM 2 7.4 67% 

 

3.3. Mode Choice Model Application 
The application of the logit models to estimate UAM demand requires known locations for UAM 
landing sites (hereon called vertiports). Vertiport locations determine the intermodal connections 
between the vertiport and the origin and destination of the trip. Figure 6 shows the framework used 
to place UAM vertiports, considering the potential demand for UAM. The location of vertiports is 
an iterative process to maximize the number of one-way commuter trips demand within the region. 
The process starts by locating one UAM vertiport at every block group in the study area and using 
the calibrated logit models to predict demand. Successive iterations follow while reducing the 
number of vertiports by half in every iteration and retaining the highest demand vertiports. The 
iterative process ends with the desired number of vertiports. The final result provides vertiport 
locations that maximize demand for a given set of UAM cost parameters and a target number of 
vertiports. 
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Table 8: Region-specific Calibrated Mode Choice Models 

BASIC MODELS WITHOUT CONSTANTS  
 Dallas-Ft. Worth North California South California New York 
TT -0.0550* -0.0782* -0.127* -0.2365* 
Cost  -0.207* -0.242* -0.368* -0.4854* 
Pseudo-R2 0.514 0.468 0.789 0.890 
TT VOT $15.9 $19.4 $20.7 $29.2 
     
ADVANCED MODELS WITHOUT CONSTANTS  
 Dallas-Ft. Worth North California South California New York 
TT     
IVTT  -0.0569* -0.0721* -0.2036* 
OVTT  -0.111* -0.180* -0.2355* 
Cost   -0.352* -0.5714* 
Transfers  0.417* 0.303* -0.5325* 
Low Income  -0.328*  -0.7183* 
Lower-Mid Income    -0.6487* 
Mid Income  -0.272*   
Upper-Mid Income    -0.5592* 
High Income  -0.172*  -0.4196* 
Pseudo-R2  0.489  0.899 
TT VOT     
IVTT VOT  $10.4, $12.5, $19.9 $12.3 $17.0, $18.8, $21.8, 

$29.1 
OVTT VOT  $20.3, $24.4, $38.7 $30.7 $19.7, $21.8, $25.3, 

$33.7 
Constraints   OVTT/IVTT=2.5  
     
ADVANCED MODELS WITH CONSTANTS  
 Dallas-Ft. Worth North California South California New York 
TT     
IVTT  -0.0472* -0.0441* -0.2027* 
OVTT  -0.0845* -0.110* -0.2299* 
Cost   -0.307*  
Transfers  0.343* 0.139* -0.5384* 
Low Income  -0.329*  -0.7157* 
Lower-Mid Income    -0.6472* 
Mid Income  -0.275*   
Upper-Mid Income    -0.5582* 
High Income  -0.172*  -0.4187* 
Transit Constant  -0.603* -1.476* -0.1038* 
VTOL Constant  0.699 0.612 -0.7496 
Pseudo-R2  0.493  0.899 
TT VOT     
IVTT VOT  $8.6, $10.3, $16.5 $8.6 $17.0, $18.8, $21.8, 

$29.1 
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OVTT VOT  $15.4, $18.4, $29.5 $21.5 $19.3, $21.3, $24.7, 
$33.0 

Constraints   OVTT/IVTT=2.5  
 
 
  

 
Figure 6: Demand-Driven Placement of Vertiports 

3.3.1. UAM Demand Analysis Results 
This section contains the demand results for each one of the four urban regions studied.  We 
provide UAM demand parametric results under various vertiport sets and UAM cost per mile 
(CPM).  UAM passenger commuter demand is sensitive to the cost of the UAM mode.  An increase 
in cost per seat mile increase in price leads to a drop in the market share of the low- and mid-
income household demand as those market segments are no longer able to afford the UAM mode 
for commuting.  The model results highlight the importance of UAM’s affordability to support its 
successful implementation.  The UAM cost includes ground access from home to the nearest 
vertiport using a service such as UBER or Lyft, the UAM cost per mile, and the ground access 
from the destination vertiport to work.  In total, these costs have to be affordable to capture a 
reasonable demand for the UAM system. 

Northern California 
Figure 7 shows the sensitivity of the UAM demand against the number of vertiports in Northern 
California. Even though the magnitude of UAM demand is different for both scenarios (UAM 
CPM of $1.80 and UAM CPM of $1.20), the sensitivity towards the number of vertiports is similar. 
The results show that, as the number of vertiports increase,  the number of commuters in the 

Iterative Process

Start Placement of 
Vertiports
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Vertiports
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Every Block Group 
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UAM Demand 
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of the Vertiports Set)

New 
Vertiport Set

Final Set of Vertiports, 
Placement Maximizes UAM 

Demand

NO

The Objective of Every 
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Set of Vertiports which 
will Result in Maximum 

UAM Demand
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catchment area increases as well. There are core vertiports that serve the majority of the UAM 
demand and feeder vertiports that provide UAM service from outlying areas.  A comparison of 
UAM demand for 50 and 400 vertiport sets shows that increasing the number of vertiports by 
700% increases UAM demand by 179% (156%) at CPM of $1.20.  In Northern California, the 
areas with high-income levels are usually the densest (i.e., downtown areas). Therefore, increasing 
the number of vertiports does not increase the demand proportionately. The UAM demand for 
CPM $1.20 is slightly more sensitive, with an increasing number of vertiports as the mode is more 
affordable.  Increasing the number of vertiports expands the network to service more medium and 
low-income areas. 
 

 
Figure 7: Northern California: UAM Demand by Number of Vertiports and CPM 

 
Figure 8 shows the sensitivity of the UAM demand with the UAM cost per passenger mile. Figure 
8 shows the sensitivity of the UAM demand with UAM CPM. In this study, we found that UAM 
demand in Northern California is slightly less sensitive to UAM cost per passenger mile compared 
to areas like Dallas and Southern California. The hypothesis is that a high percentage of high-
income earners in the study area may be able to afford more costly UAM services. Figure 9 shows 
the composition of UAM demand by income category in Northern California. A feature of this 
region is the significant contribution from high-income earners even at the low UAM CPMs 
because high-income earners live in densely populated areas.  Denser block groups are smaller in 
size and have lower intermodal connection times for UAM. Higher intermodal or travel time by 
UAM discourages high-income earners as they have a higher value of time. Therefore, if the 
intermodal and total travel times are low, high-income earners get significant utility from the UAM 
mode even at increased UAM CPMs. As the UAM CPM increases for the given UAM network 
size, the contribution from low- and mid-income households drops to a mere 9% market share at 
$3.00 UAM CPM. 
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Figure 8: Northern California: UAM Demand Sensitivity with CPM and 200 Vertiports 

 

 
Figure 9: Northern California: Composition of UAM Demand by Income Category 

Southern California 
Figure 10 shows the sensitivity of the UAM demand against the number of vertiports in Southern 
California. In Southern California, the UAM demand is relatively much more sensitive to the 
number of vertiports due to the population density in the region. With the increasing UAM network 
size, the mode becomes more accessible to the people. Since the population density is relatively 
high in Southern California, the increase in UAM demand is almost four-fold when comparing the 
smallest (50) and the largest (400) UAM networks. As mentioned before, increasing number 
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vertiports expand the service to include more low and mid-income households, but if the price-
point is not attractive to those households, very little is added to the UAM demand generated.  
 

 
Figure 10: Southern California: UAM Demand by Number of Vertiports and CPM 

 
Figure 11 shows the sensitivity of the UAM demand with the UAM cost per passenger mile. The 
UAM demand in Southern California is relatively more sensitive to the UAM CPM. This is 
attributed to the higher concentration of low- and mid-income households in the study region. As 
the cost of the UAM mode increases it becomes relatively less affordable to the low- and mid-
income households. It can be observed from Figure 12 that the contribution from low- and mid-
income households towards total UAM demand is significantly higher. Even at the $3.00 UAM 
CPM, almost one-third of the demand is coming from low- and mid-income households. This is 
due to the high percentage of people from low- and mid-income households in Southern California 
which can further be observed in spatial income distribution maps in Appendix B. Also, the 
plunging of UAM demand with increasing UAM CPM in Southern California is due to the same 
reason. 
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Figure 11: Southern California: UAM Demand Sensitivity with CPM and 200 Vertiports 

 
 

 
Figure 12: Southern California: Composition of UAM Demand by Income Category 
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Dallas-Fort Worth 
Figure 13 shows the sensitivity of the UAM demand against the number of vertiports in Dallas-
Fort Worth. The sensitivity of UAM demand is similar to Southern California because both regions 
have a lower percentage of high-income households.  The magnitude of UAM demand is lower in 
Dallas-Fort Worth than in the Southern California region because Dallas-Fort Worth has a smaller 
population and fewer high-population density areas. 
 

 
Figure 13: Dallas-Fort Worth: UAM Demand by Number of Vertiports and CPM 

 
Figure 14 shows the sensitivity of UAM demand in Dallas-Fort Worth for various UAM costs per 
passenger mile. The UAM demand in the Dallas region is less sensitive compared to Southern 
California. The trend is due to the population density differences in the two areas. Southern 
California has a lower percentage of high-income households, but a larger population. Dallas-Fort 
Worth (Figure 15) shows a higher contribution to UAM demand from low-and mid-income 
household levels. Figure 15 shows a higher contribution to UAM demand from low-and mid-
income household levels. 
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Figure 14: Dallas-Fort Worth: UAM Demand Sensitivity with CPM and 200 Vertiports 

 
 

 
Figure 15: Dallas-Fort Worth: Composition of UAM Demand by Income Category 
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New York 
For UAM demand estimates in the New York region, we use a different model calibrated using 
the NHTS add-on data. For other regions, we use the model calibrated for Northern California. 
New York has unique characteristics such as very high population density (Manhattan), relatively 
higher disutility in driving due to increased costs (parking, tolls, etc.), and traffic congestion, which 
could favor UAM. For New York, we developed highway travel congestion indices separately 
using Yellow Cab data from the Taxi and Limousine Commission (TLC). Figure 16 shows the 
distribution of the congestion indices for 1.16 million trips. The automobile travel time analysis 
uses a value of 2.77 for the travel congestion index. 
 

 
Figure 16: Congestion Index Distribution in New York City 

 
Figure 17 shows the UAM demand for a different set of vertiports in New York with two different 
UAM CPM cost levels. The UAM demand increases by 114% when the number of vertiports 
increases from 50 to 400. There are four possible reasons for high-demand at $1.80 CPM for UAM.  
First, the monetary cost of driving in the region is high.  Driving cost includes the cost of parking 
and tolls.  Second, the UAM mode can take shorter routes than the ground modes because the area 
has numerous bodies of water.  Third, the ground transportation congestion factor is high relative 
to the other three regions in the study.  Fourth, the spatial distribution of income in the region is 
unique and found in Appendix B. In the New York area, a significant number of the upper mid- 
and high-income households live in the suburbs, offering an advantage to the UAM mode.  Longer 
commutes, higher affordability, costly and slower alternative modes, and high population density 
all together results in high demand for UAM in the region. The unique features of the calibrated 
mode choice model contribute to the high demand results in New York. The mode choice model 
used has almost parity in the coefficients of in-vehicle and out-of-vehicle travel times, implying 
New Yorkers are less sensitive to out-of-vehicle travel times. 
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Figure 17: New York: UAM Demand by Number of Vertiports and CPM 

 
Figure 18 shows the UAM demand sensitivity with UAM CPM for 200 vertiports. The UAM 
demand in New York is not as sensitive as other regions because of the high percentage of upper-
mid and high-income households and costlier driving (both in cost and time). With a $2.2 UAM 
CPM and no base cost, the region could attract 100,000 daily UAM flights. Figure 19 illustrates 
the composition of the UAM demand by income category. As expected, the UAM demand from 
low and lower-mid income decreases with increasing UAM cost. 
 

 
Figure 18: New York: UAM Demand Sensitivity with CPM and 200 Vertiports 
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Figure 19: New York: Composition of UAM Demand by Income Category 

3.3.2. Comparison of UAM Demand Results  
 
Calculation of UAM demand is a complex process with high uncertainty. All urban regions are 
unique in their way, and the impact of regional characteristics on mode choice plays a vital role in 
the potential UAM demand. Figure 20 compares the UAM demand in all four regions for six UAM 
vertiport sets. Figure 20 shows the New York region's latent demand stands out from the four urban 
areas studied.   
 
The number of UAM vertiports has a substantial impact on the UAM demand in Southern 
California and Dallas-Fort Worth. More so than in Northern California and New York City 
regions. Northern California and New York City have unique demographic characteristics such as 
high-income households in densely populated areas (see Figure 32). In Southern California and 
Dallas-Fort Worth, high-income households live in sparsely populated zones. Therefore, as the 
number of vertiports increases, UAM is accessible to less densely populated zones in Southern 
California and Dallas-Fort Worth, increasing UAM demand. 
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Figure 20: UAM Demand by Number of Vertiports for All Regions at CPM of $1.20 

 
Figure 21 compares the UAM demand sensitivity with UAM cost per passenger mile across all 
regions with 200 UAM vertiports. Figure 21 provides insight into the cost of UAM services to 
offer a commuting alternative across all four regions. The UAM demand in Southern California 
and Dallas Fort-Worth areas is more sensitive to UAM CPM than in New York and Northern 
California due to a lower percentage of high-income households in the region. 
 

 
Figure 21: UAM Demand by CPM for All Regions at 200 Vertiports 
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3.3.3. Spatial Distribution of UAM Demand 

Northern California 
Figure 22 shows the spatial distribution of the UAM demand with 75 vertiports and UAM CPM 
of $1.20. The San Francisco Central Business District (CBD) is a significant attractor for the UAM 
trips. Most of the busiest vertiports in the region are inside San Francisco CBD. Although the study 
area for Northern California consists of 17 counties, all 75 vertiports get optimally placed around 
the bay area to maximize the UAM demand. Figure 23 shows the spatial distribution of UAM 
demand with 75 vertiports with UAM CPM of $1.80. Figure 23  shows most of the vertiports 
having fewer than 500 operations per day compared to 1000 operations per day at UAM CPM of 
$1.20. The busiest vertiports located in the SanFrancisco CBD, Mountain View, and San Jose CBD 
still have substantial demand. Figures 22 and 23 show the effect of increasing UAM cost on UAM 
demand at specific vertiports. Both figures show multiple vertiports with high demand within a 
small proximity. UAM vertiports that are close to others raises operational concerns. Appendix B 
contains ddditional maps with 200 vertiports and vertiports placed  with higher UAM CPM costs. 
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Figure 22: Northern California: 75 Vertiports Daily UAM Operations with CPM of $1.20 
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Figure 23: Northern California: 75 Vertiports Daily UAM Operations with CPM of $1.80 

Southern California 
Figure 24 shows the spatial distribution of the UAM commuter demand with 75 vertiports and 
UAM CPM of $1.20. Similar to Northern California, the vertiports in Southern California are 
placed in and around the Los Angeles County by the demand-driven algorithm. High population 
density zones in Southern California are particularly attractive to the placement of UAM vertiports. 
Lancaster (North of Los Angeles) attracts 13 vertiports even though the area contains mostly 
middle-income block groups. The corridor between Santa Monica and Beverly Hills has a higher 
proportion of high-income earners, and hence a cluster of vertiports can be found in that region. 
Unlike Northern California, Los Angeles Downtown is not among the most attractive areas to 
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place vertiports. Figure 33 shows that low and mid-income households comprise the Los Angeles 
downtown area. 
 
UAM commuter demand decreases significantly when the UAM cost per passenger mile increases 
to $1.80 per mile. At $1.80 CMP, the UAM mode is now less affordable for low and mid-income 
household levels. The UAM demand for most of the vertiports in the region decreases to less than 
100 operations per day. The Santa Monica to Beverly Hills corridor attracts UAM trips and several 
vertiports with high demand. All the vertiports in the Lancaster area have fewer than 25 operations 
per day, as the UAM model is less affordable. 
 

 
Figure 24: Southern California: 75 Vertiports Daily UAM Operations with CPM of $1.20 
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Figure 25: Southern California: 75 Vertiports Daily UAM Operations with CPM of $1.80 

Dallas-Fort Worth 
Dallas-Fort Worth is the smallest metropolitan area in terms of size and population. Apart from 
the Dallas-Fort Worth Metropolitan Statistical Area (MSA), the study area is sparsely populated 
and does not have many high-income households compared to other cities. 
 
Figure 26 shows the spatial distribution of the UAM demand with 75 vertiports and UAM CPM 
of $1.20. Most of the high-income households in Dallas-Forth Worth reside in the northern suburbs 
of the city. The population density of the north suburbs is high, and the same area attracts many 
vertiports. Dallas-Fort Worth also has unique commuting patterns. The vertiports on the city 
suburbs act as feeders to the vertiports inside the Dallas CBD. As we move outside the Dallas 
CBD, the UAM demand keeps decreases until reaching the outskirts. The busiest vertiports are in 
Dallas CBD, slight north of Dallas CBD, and near the Centerport region (or near DFW Airport). 
 
Figure 27 shows the vertiports for UAM cost $1.80 CPM. Similar to Southern California, the UAM 
demand in Dallas-Fort Worth decreases significantly with increasing UAM CPM cost. At UAM 
cost of $1.80 CPM, there is only one vertiport with more than 100 operations per day. Most of the 
vertiports have a demand of fewer than 25 operations per day. 
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Figure 26: Dallas-Fort Worth: 75 Vertiports Daily UAM Operations with CPM of $1.20 
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Figure 27: Dallas-Fort Worth: 75 Vertiports Daily UAM Operations with CPM of $1.80 

 

New York 
Figure 28 shows the impact of commercial airports in the New York region on the placement of 
vertiports and UAM demand. The approach and departure surfaces of precision runways at 
commercial airports, limit the vertiport placement in large portions of the New York area. 
Furthermore,  avoidance of approach surfaces adds significant detours to UAM routes producing 
increased travel times and travel costs. For instance, surfaces at La Guardia Airport (LGA) and 
John F. Kennedy Airport (JFK) restrict the placement of vertiports in significant parts of Queens 
and also add travel time and cost to the commuting trips from Long Island to Manhattan. 
 
High population density areas in New York, produce closely-spaced vertiports in areas like 
Manhattan. The next section introduces algorithms to split and consolidate vertiports that are 
closely-spaced. We also discuss methods to limit the vertiport demand at vertiports to contain their 
size to reasonable levels.  
  
The UAM cost per passenger mile used in vertiport placement defines the vertiport location in a 
demand-driven approach. The UAM demand presented in this report use a UAM CPM cost of 
$1.20. This assumption favors the location of UAM vertiports near low and middle-income level 
areas (e.g., the Bronx). Figure 29 shows the UAM demand distribution with a UAM CPM of $1.80. 
Note a significant impact of UAM demand in vertiports located in the Bronx and Staten Island. 
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Figure 29 illustrates the importance of the UAM fare structure employed during the placement of 
vertiports. 

 
Figure 28: New York: 75 Vertiports Daily UAM Operations with CPM of $1.20 
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Figure 29: New York: 75 Vertiports Daily UAM Operations with CPM of $1.80 

 

4. Vertiport Splitting and Consolidation Analysis 
In the previous section, we presented the ideal placement of vertiports based on an iterative 
demand-driven approach. The demand-driven vertiport placement, coupled with the small size of 
block group regions, can sometimes produce closely-spaced vertiports. In this section, we present 
algorithms to split and consolidate vertiports after UAM demand estimation. 
 
A companion, UAM landing site study, estimated the practical size of the largest vertiport to be 
six landing pads and 38 parking stalls. The size estimation included a capacity analysis and 
considered the typical commuting time distribution obtained in the NHTS survey data.  
 
We split a vertiport if the demand during the peak hour requires more than the maximum number 
of landing pads (6 landing pads). Similarly, we consolidate vertiports within 0.5 statute miles of 
each other as long as the total demand does not exceed the maximum landing pad threshold. 
Splitting and consolidation run as a single algorithm that runs iteratively until reaching a desired 
number of the vertiports. The iterative algorithm involves replacing the vertiports (marked for 
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splitting) by two or more vertiports placed using k-medoids (connected census blocks) algorithm, 
consolidating vertiports according to their respective UAM demand, and recalculating the UAM 
demand for the complete scenario.  
 
Sometimes it is difficult to reach a vertiport set where all vertiports have less than the maximum 
number of landing pads. For such instances, we limit the UAM demand for the vertiports exceeding 
the maximum number of landing pads. Tables 9-12 show examples of UAM vertiport demand 
after split/consolidation and application of demand limits for Northern California, Southern 
California, Dallas-Fort Worth, and New York. 
 

Table 9: Northern California Scenarios Post Split-Consolidation and Post Capping 

 
Table 10: Southern California Scenarios Post Split-Consolidation and Post Capping 

Southern California 

Demand Set 
[Landing 

Sites, UAM 
CPM] 

Pre-Split/Consolidation Post-Split/Consolidation Post-Capping 
(if required) 

No. of Flights No. of Sites No. of Flights No. of Flights 

[50, $1.55] 4,566 50 4,566 4,566 
[100, $1.35] 18,356 97 18,360 18,360 
[200, $1.20] 58,956 204 58,758 58,758 

 
Table 11: Dallas-Fort Worth Scenarios Post Split-Consolidation and Post Capping 

Dallas-Fort Worth 

Demand Set 
[Landing 

Sites, UAM 
CPM] 

Pre-Split/Consolidation Post-Split/Consolidation Post-Capping 
(if required) 

No. of Flights No. of Sites No. of Flights No. of Flights 

[50, $1.20] 5,492 49 5,538 5,298 
[100, $0.95] 26,488 102 26,198 25,747 
[200, $0.80] 77,890 209 75,943 72,816 

 

Northern California 

Demand Set 
[Landing 

Sites, UAM 
CPM] 

Pre-Split/Consolidation Post-Split/Consolidation Post-Capping 
(if required) 

No. of Flights No. of Sites No. of Flights No. of Flights 

[50, $1.80] 4,976 47 4,458 4,458 
[100, $1.40] 22,400 91 20,514 18,808 
[200, $1.10] 85,472 210 82,556 70,590 
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Table 12: New York Scenarios Post Split-Consolidation and Post Capping 

New York 

Demand Set 
[Landing 

Sites, UAM 
CPM] 

Pre-
Split/Consolidation 

Post-Split/Consolidation Post-Capping 
(if required) 

No. of Flights No. of Sites No. of Flights No. of Flights 

[50, $3.20] 6,326 36 4,458 4,458 
[100, $2.70] 31,250 120 35,236 33,884 
[200, $2.20] 103,892 273 111,492 99,628 

 
 

5. Conclusions 
 
Calibrating a mode-choice model to estimate the demand for a new concept mode is the usual 
method adopted in transportation studies. However, it has been a challenge to calibrate a model 
that could calculate the demand for the UAM mode. When the focus is on any concept mode, either 
the existing survey data should include a similar transportation mode, or a robust stated preference 
survey should be adopted. A stated preference survey has its shortcomings; it is difficult for the 
survey taker to simulate the circumstances and arrive at the same mode-choice, which they would 
use in the future. Moreover, this study focused on the characteristics of the individuals, which 
could influence their mode-choice behavior. We believe that to predict UAM demand; mode 
choice decisions such as travel cost, travel time, transfers, safety, comfort, etc. will continue to be 
relevant irrespective of the mode (concept or in-use). 
 
Developing a region-specific mode-choice model was a priority in this study. The Northern 
California model is robust, but calibrated models for Southern California and Dallas-Fort Worth 
have weaknesses which would result in erroneous UAM demand. The Southern California and 
Dallas-Forth Worth regions did not offer enough transit trips for robust calibration. The analysis 
shows that Southern California and Dallas-Fort Worth are not well-connected by public 
transportation and have low transit ridership nearing 5%. In such conditions, it is difficult for a 
travel survey to include significant numbers of transit trips needed in the calibration of a mode-
choice model. Calibrating a mode-choice model requires data for all the modes (this study has 
driving and transit as the modes). For this reason, we adopted the Northern California model in the 
estimation of UAM demand for Southern California and Dallas-Forth Worth. 
 
The selection of the income brackets is a critical step in the application of a mode choice model.  
It is required to have enough data in all income brackets to calibrate a robust model. In this study, 
the NHTS-2017 dataset could not support more than three income brackets. Moreover, the high 
variance of income distribution in Northern California resulted in a sizeable middle-income 
bracket ($45k-$152k). Having enough survey data for each desired income bracket could be an 
ideal situation for model calibration. 
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For urban commuter trips, parking costs and tools are essential to estimate the cost of driving trips 
(also park and ride transit trips), especially the ones in-and-out of CBD zones. Unfortunately, there 
is no publicly available dataset on the parking cost to estimate with precision such charges. In this 
study, we collected parking costs in zones with high economic activity to estimate parking costs 
based on spatial location. 
 
The variables used in the model calibration are often constrained by the application process. The 
model application process to calculate the UAM demand is a computationally expensive process 
which deals with millions of trips in the region. Including more modes and the independent 
variable is an ideal step in improving the mode-choice model. However, the model should still be 
feasible in the application. For example, driving could be divided into drive alone and car-pooling 
but there is no method of simulating the car-pooling option for millions of commuters in each 
region. There are variables available in survey data that benefit the mode-choice model but make 
it difficult to apply the model. Information is not available for the application data and hence 
cannot be used. So, the selection of variables in model-calibration is influenced by the application 
process, only if the model application is part of the study. 
 
The UAM demand results could benefit from a better understanding of the inter-modal connection 
for the UAM mode. Inter-modal connections mean ‘Home to Vertiport’ and ‘Vertiport to 
Workplace ’. There is no doubt that the UAM is the faster mode for trips over 10 miles. However, 
the inter-modal connections could be critical in the feasibility of this transportation mode. A better 
understanding of how UAM users will access the vertiports could help in a more credible 
estimation of UAM trip’s parameters. 
 
This study was limited to the commuter market. Commuter flows are usually one-directional, and 
hence UAM vehicles will have to serve a considerable number of deadhead trips. A challenge for 
UAM operations is to reduce deadheading to reduce overall UAM operating costs. A network 
simulator could enhance the realism of the projections presented in this report. 
 
The following paragraphs provide are region-specific conclusions of this study. 

Northern California 
1) Northern California has the highest number of high-income zones and the highest 

percentage of high-income zones in the study area 
2) Even at the low UAM CPM ($1.20), the majority of the UAM demand is contributed by 

high-income households (55%).  The contribution of UAM demand from high-income 
households increases to 90% when the UAM CPM cost is $3.00 

3) The UAM demand is most resilient to increasing UAM costs due to a higher concentration 
of high-income households. High-income households are more likely to afford the mode. 

4) In Northern California, the commuter flows are highly (highest among all study areas) one-
directional, where commuters from around the bay travel to San Francisco CBD for work. 

5) San Francisco CBD has high economic activity concentration and significantly high travel 
times for people traveling to and from around the bay. 

6) For 75 vertiports, the UAM demand in Northern California decreases from 65,020 to 
14,020 to 3,605 flights per day when increasing the CPM from $1.00 to $1.50 to $2.00. 
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7) For 200 vertiports, the UAM demand in Northern California decreases from 121,900 to 
5,964 flights per day when increasing the UAM cost per mile from $1.00 to $2.00. 

8) The UAM demand in Northern California is less sensitive to the increases in the number 
of UAM vertiports. For a given UAM CPM, when increasing the number of vertiports from 
50 to 400 (eight times), the UAM demand only increases by a factor of two. The pattern is 
unique to Northern California because high-income zones have a high population density. 
Therefore, increasing the number of vertiports does not increase the overall mode 
accessibility drastically. 

9) San Francisco CBD presents a unique case and a challenge for operating such a service 
where demand is highly concentrated in a small area. For scenarios with UAM CPM less 
than $1.20, a vertiport in the Financial District is expected to handle 7,500 operations per 
day. Moreover, there are more vertiports in the CBD region with an expected demand of 
around 3,000 operations per day (for the same scenario). This could be a challenging 
problem for airspace management. 

10) The high demand vertiports in Northern California are found in San Francisco CBD, 
Mountain View region, and San Jose CBD. 

Southern California 
11) Southern California region has a higher population than Northern California with the 

majority of the households residing in low- and mid-income households. 
12) Only 15% of the UAM demand is generated from high-income households at a CPM value 

of $1.20. 
13) The UAM demand in Southern California is not resilient to increasing UAM cost as it 

becomes less affordable for low- and mid-income households. 
14) Unlike Northern California, Southern California has multiple zones with high economic 

activity and the trip attraction zones are distributed in multiple areas in and around Los 
Angeles county. This prevents from few vertiports having an exceptionally high 
concentration of UAM demand. 

15) For 75 vertiports, the UAM demand in Southern California decreases from 67,310 to 7,710 
to 1,232 flights per day when increasing the CPM from $1.00 to $1.50 to $2.00. 

16) For 200 vertiports, the UAM demand in Southern California decreases from 139,100 to 
16,930 to 2,916 flights per day when increasing the CPM from $1.00 to $1.50 to $2.00. 

17) The UAM demand in Southern California is relatively more sensitive to the number of 
vertiports. In Southern California, high-income households are very few and usually reside 
in low population density zones, vice-versa for low- and mid-income households. Overall, 
population density is high in Southern California. Therefore, increasing the number of 
vertiports has a drastic impact on mode accessibility. For a given UAM CPM, when 
increasing the number of vertiports from 50 to 400 (eight times), the UAM demand 
increases four-folds. 

18) In Southern California, the UAM CPM used during the placement of vertiports has a bigger 
impact than any other region. This is because of the high-income households being in the 
low population density region and low- and mid-income households being in high 
population density region generally. A higher UAM CPM places more vertiports near high-
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income zones, whereas a lower UAM CPM places more vertiports in high-density zones 
as the mode is affordable to all categories. Therefore, the location of vertiports changes 
significantly according to the UAM CPM used in the placement of vertiports. 

19) The high demand vertiports in Southern California are usually found near the Santa 
Monica-Beverly Hills corridor and south-east of Los Angeles city which is half-way 
between San Diego and Los Angeles.  

Dallas-Fort Worth 
20) Dallas-Fort Worth offers similar UAM demand patterns to Southern California with a 

smaller population and fewer high-income households. In the Dallas-Forth Worth region, 
the UAM demand is more resilient (relative to Southern California only) to increasing 
UAM CPM. 

21) Only 21% of UAM demand is generated by high-income households at a $1.20 CPM cost. 
22) High economic activity zones are found in Dallas CBD and slightly north of the Dallas 

CBD. Most of the high-income zones are located in suburbs in the north of Dallas city. 
Therefore, vertiports are mostly found in that part of the region. 

23) The suburbs are spread across in a circular manner centered around Dallas City. This results 
in smaller feeder vertiports spread around the suburbs to feed into the Dallas CBD or 
economic zones in the northern part. There are a few vertiports with a significant 
concentration of UAM demand. The economic viability of feeder vertiports with very few 
operations could be a concern. 

24) For 75 vertiports, the UAM demand in Dallas-Fort Worth decreases from 17,350 to 590 
flights per day when increasing the CPM from $1.00 to $2.00. 

25) For 200 vertiports, the UAM demand in Dallas-Fort Worth decreases from 32,930 to 1,028 
flights per day when increasing the CPM from $1.00 to $2.00. 

26) Due to smaller populations and fewer high-income households, there are fewer conditions 
under which the commuter market could be promising for the UAM concept. 

New York 
27) New York’s characteristics are significantly different from other regions. The commuting 

patterns, variation in size of block groups, water body location, location of commercial 
airports, etc. Moreover, it has almost 10 million commuters with a higher proportion of 
high-income households than any other region. All these factors and heavy disutility in 
driving makes New York a big market for the UAM. 

28) There are four income categories in New York. 58% of the demand comes from high-
income and upper-mid income households in New York at $1.20 UAM CPM. There are 
significant numbers of long-distance commuters in the region who could gain from UAM.  

29) The UAM demand in New York is relatively less sensitive and that could be attributed to 
costly driving, traffic congestion, and a larger high-income population. 

30) For 75 vertiports, the UAM demand in New York decreases from 258,200 to 38,940 flights 
per day when increasing the CPM from $1.50 to $2.50. 
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31) For 200 vertiports, the UAM demand in New York decreases from 393,100 to 61,870 
flights per day when increasing the CPM from $1.00 to $2.00. 

32) Major trip attractors in the region are Manhattan, Brooklyn downtown, and JFK. Trips are 
produced from all over the region. However, since the UAM fare structure used in the 
analysis does not have a fixed cost parameter, it generated heavy UAM demand for short 
trips which are usually congested by driving. For example, Bronx to lower Manhattan, 
Brooklyn to Manhattan, etc., such trips would be eliminated if a UAM fixed cost is 
introduced. 

33) This analysis includes five minutes of ingress and egress time each. However, it would be 
difficult to operate UAM from skyscrapers in Manhattan with such little ingress and egress 
times. As the ingress/egress or processing time increases, the UAM demand would start 
decreasing. 

34) Even though the results include optimistically low-price points for UAM, it would be 
difficult to operate UAM in New York with lower costs given the high real estate costs in 
the region. Therefore, more realistic demand numbers could be found near the higher end 
of the UAM CPM scale.  

6. Recommendations 
This study is focused on only the commuter market. However, we believe the UAM could be 
beneficial for other types of trips too which are time-sensitive. Therefore, future research should 
also consider shopping, business, personal business, recreational, and trips to airports. 
 
Since UAM is still a concept, there is little understanding of how users will access this mode. In 
this study, only walking and taxi services are considered as the access mode for UAM travelers. It 
is recommended that a detailed analysis of intermodal connections for UAM could provide better 
understanding of the dynamics of intermodal connection.  
 
The study involved applying the model after calibration. Therefore, we were limited by the 
application process because not every mode choice can be simulated for millions of commuters. 
Similarly, there were significant variables in survey data that could not be used due to their absence 
in application data. For example, the umber of vehicles in the household, the number of workers 
in households, gender, etc.  
 
The income brackets used in the study limit the analysis to 3-4 income groups. A mode-choice 
dataset with enough samples in various income groups could help in calibration of the model with 
more income groups, which in-turn could refine the UAM demand results. 
 
The study shows that commuting flows are one-directional, and that would increase the dead-
heading of flights. Network analysis could provide a better insight into the dead-heading flights, 
which would improve the travel cost estimation for the UAM mode. 
The reliability of the modes of transportation modes should be considered in future research. In 
this study, we assumed that every mode of transportation is available when required. For example, 
public transit trips are assumed to be on schedule, and the UAM vehicle is always ready when 
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needed. Many factors affect the reliability of a mode of transportation such as weather and limited 
availability of UAM aircraft. 
 
In this study, we use congestion indices of the Metropolitan Statistical Areas (MSA) from the 
Texas Transportation Institute. It was the only viable option when calculating the travel time for 
millions of trips. The drawback is that the TTI indices are single numbers that ignore the dynamic 
congestion of urban areas. Moreover, departure times are available in LODES data which could 
hamper in applying dynamic congestion to the trips. Both of which could help in a more realistic 
estimation of driving times. 
 
In this study, we used the Open Trip Planner API for simulating transit trips/options in both 
calibration and application. Although the API’s coverage is extensive, it could not replicate all the 
trips or connections. In Dallas-Fort Worth specifically, many transit trips were lost since they could 
not be simulated in the API.  
 
Due to a lack of information on the ingress and egress process at the vertiports, currently, five 
minutes is used as a placeholder in this study. As the vertiports concepts start into shape, a better 
understanding of ingress and egress times at vertiports would emerge. It is believed that vertiport 
location or vertiport type (on a rooftop or vacant land) could influence the ingress and egress time. 
This could help in a better total travel time estimation for the UAM. 
 
Due to the scope of this study and the unavailability of departure times in LODES data, this study 
could not use time-varying cost for any mode of transportation. Time-varying or dynamic cost 
functions would help in arriving at more realistic results. 
 
In this study approach surfaces of the airports with precision, runways are safeguarded completely. 
If there is a better understanding of the interaction of commercial air traffic and UAM traffic in 
the future, this approach could be refined, and we could arrive at better UAM travel time and travel 
distance estimation. 
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8. Appendix A 
Using the mode choice dataset, region-specific demand models were estimated using the 
conditional logit model methodology.  An example of how logit models are estimated is shown in 
Figure 30. The coefficients in the model are estimated by maximizing the sum of the log-
likelihood.  As a mode’s utility (i.e. benefit) increases, so do the probability of that mode being 
chosen. 
 

 
Figure 30: Example of Logit Model Coefficient Estimation. 

 
Utility and the probability of a mode being chosen are not linear.  For example, using the Pittsburg 
to Oakley sample above, a -3.303 utility for driving meant the individual had a 97.4% chance of 
choosing that mode.  As shown in Figure 31, if $4 had been added to the trip’s cost ($6.90+$4.00), 
that percentage would reduce to near 91%.  Once a mode becomes too costly, it is not competitive 
with other modes.  Therefore, adding $24 or $28 has very little change in the individual’s 
probability of choosing the driving mode as both are nearly 0% chance of choosing driving.  This 
non-linear shape aligns with the typical way people make choices between competing modes. Only 
in a certain utility range are modes very competitive with each other. 

 
Figure 31: Example showing Utility and Probability of Mode being Chosen 
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The mode choice models incorporated the spatial income distribution, as shown in the following  

Figure 32: Northern California Income Distribution 
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Figure 33: Southern California Income Distribution 
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Figure 34: Dallas-Fort Worth Income Distribution 
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Figure 35: New York Region Income Distribution 
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9. Appendix B 

 
Figure 36: Northern California: 200 Vertiports Daily UAM Operations with CPM of $1.20 
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Figure 37: Northern California: 200 Vertiports Daily UAM Operations with CPM of $1.80 
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Figure 38: Southern California: 200 Vertiports Daily UAM Operations with CPM of $1.20 
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Figure 39: Southern California: 200 Vertiports Daily UAM Operations with CPM of $1.80 
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Figure 40: Dallas-Fort Worth: 200 Vertiports Daily UAM Operations with CPM of $1.20 
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Figure 41: Dallas-Fort Worth: 200 Vertiports Daily UAM Operations with CPM of $1.80 
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Figure 42: New York: 200 Vertiports Daily UAM Operations with CPM of $1.20 
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Figure 43: New York: 200 Vertiports Daily UAM Operations with CPM of $1.80 


